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Abstract

We develop a control algorithm that ensures the safety, in terms of confinement in a set, of a system with unknown, 2nd-
order nonlinear dynamics. The algorithm establishes novel connections between data-driven and robust, nonlinear control. It
is based on data obtained online from the current trajectory and the concept of reciprocal barriers. More specifically, it first
uses the obtained data to calculate set-valued functions that over-approximate the unknown dynamic terms. For the second
step of the algorithm, we design a robust control scheme that uses these functions as well as reciprocal barriers to render the
system forward invariant with respect to the safe set. In addition, we provide an extension of the algorithm that tackles issues
of controllability loss incurred by the nullspace of the control-direction matrix. The algorithm removes a series of standard,
limiting assumptions considered in the related literature since it does not require global boundedness, growth conditions, or a
priori approximations of the unknown dynamics’ terms.
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1 Introduction

Learning-based control is an important emerging topic
of research that tackles uncertain autonomous systems.
Control of uncertain systems has been widely studied in
the literature, mostly by means of robust and adaptive
control [1]. These techniques, however, require restric-
tive assumptions on the uncertainty type, such as linear
parametrizations, a priori neural-network approxima-
tions, or additive disturbances. Such assumptions might
be too restrictive in cases where the dynamics sustain
abrupt unknown changes, due to, for instance, unpre-
dicted failures. Traditional control techniques might fail
in such scenarios and one must turn to data-based ap-
proaches. At the same time, since we aim to tackle cases
of abrupt dynamic changes, standard episodic reinforce-
ment learning algorithms [2] are inapplicable; we are re-
stricted to data obtained on the fly from the current tra-
jectory, which limits greatly the available resources.

This paper considers the problem of safety, in the sense
of confinement in a given set, of 2nd-order nonlinear
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systems of the form (to be precisely defined in Sec. 2)

ẋ1 = x2 (1a)

ẋ2 = f(x) + g(x)u (1b)

with a priori unknown terms f and g, for which the as-
sumptions we impose are restricted to local Lipschitz
continuity. Unlike previous works in the related litera-
ture, we do not impose growth conditions [3] or global
Lipschitz continuity on the dynamics [4, 5], and we do
not assume boundedness of the state [5]. Moreover, we
do not restrict g to be in the class of square positive
definite matrices, a convenient property that has been
commonly used in the related literature [6–8]. Finally,
we do not employ approximations of the dynamics, such
as linear parametrizations [9,10] or neural networks [6].

Our proposed solution consists of a two-layered algo-
rithm for the safety control of the unknown system in
(1), integrating nonlinear feedback control with on the
fly data-driven techniques. More specifically, the main
contributions are as follows. Firstly, we use a discrete,
finite set of data obtained from the current trajectory to
compute an estimate of the control matrix g. Secondly,
we use this estimate to design a novel feedback control
protocol based on reciprocal barriers, rendering the sys-
tem forward-invariant with respect to the given safe set
under certain assumptions on the estimation error. We
further provide an analytic relation between the estima-
tion error and the frequency of the obtained data. Fi-
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Fig. 1. Example of a set C = {x ∈ Rn : h(x) = r2−‖x‖2 > 0}
for the invariance of the system trajectory; Cµx =
{x ∈ Rn : h(x) = r2 − ‖x‖2 ∈ (0, µx)} dictates the region
where the safety controller is activated.

nally, we provide a provably correct extension that tack-
les controllability loss incurred by the control matrix g.
The proposed algorithm is “minimally invasive”, in the
sense that it acts only close to the boundary of the safe
set, and does not require any expensive numerical op-
erations or tedious analytic expressions to produce the
control signal, enhancing thus its applicability.

This paper extends our preliminary work [11] in the fol-
lowing directions: firstly, we consider second-order sys-
tems allowing position-like safety constraints with re-
spect to x1, in contrast to the first-order case of [11]. Sec-
ondly, we provide better insight to the proposed solution
by relating the estimation error of g with the frequency
of the obtained data. Finally, we provide an analytic
proof for the correctness of the algorithm that tackles
the controllability loss incurred by the control matrix g.

Related Work: Safety of autonomous systems [12] has
been studied intensively by the control community. The
most widely used methodology is the concept of barrier
certificates [13], which provide a convenient and efficient
way to guarantee invariance in a given set [14–16]. Nev-
ertheless, standard control based on barrier certificates
relies heavily on the underlying dynamics since the re-
spective terms are used in the control design. Extensions
that tackle dynamic uncertainties have been considered
in [9, 10, 17–19] using robust and adaptive control, re-
stricted, however, to additive perturbations or constant
unknown parameters. Similarly, [7, 20–22] use barrier
functions to guarantee safety for systems whose dynamic
terms satisfy linear parametrizations with respect to un-
certainties or growth and dissipative conditions. There-
fore, the respective methodologies are not applicable to
the class of systems considered in this paper.

Another class of works dealing with unknown dynamics
is that of funnel control, which guarantees confinement
of the state in a given funnel, [6, 23, 24]. In contrast to
the setup of the current paper, such methodologies ei-

ther rely on approximation of the dynamics using neu-
ral networks [6], or require positive definite input matrix
g [6, 24] (see (1)). The former lacks good heuristics for
choosing radial basis functions and number of layers and
relies on strong assumptions on the amount of data and
the approximation errors, while the latter restricts the
class of considered systems.

A promising family of methodologies that deals with un-
known dynamics is that of data-driven control [25–29].
Most of the related works, however, provide theoretically
verified results for the limiting case of linear dynamics
and consider the problem of stabilization/tracking, with-
out being able to account for safety constraints that con-
cern the transient state of the system. Learning-based,
data-driven approaches have also been integrated with
barrier certificates to address the safety of uncertain sys-
tems [8,30–35]; [30–32], however, only consider additive
uncertain terms modeled by Gaussian processes and as-
sumed to evolve in compact sets. In [35] the authors have
access to a nominal model and propose an episodic re-
inforcement learning approach that tackles the residual
disturbance. [34] and [33] use data for learning barrier
functions by employing the underlying dynamics, either
partially or fully, and [36] considers the safety problem
for stochastic system with additive disturbances. Finally,
[8] uses approximation of the dynamics using neural net-
works. On the contrary, we consider nonlinear systems
of the form (1) where both f and g are entirely unknown.

Moreover, many of the aforementioned works require
large amounts of data in order to provide accurate re-
sults. Recent methodologies that employ limited data
obtained on the fly have been developed in [4,5,37], im-
posing, however, restrictive assumptions on the dynam-
ics, such as global boundedness and Lipschitz continuity
with known bounds, or known bounds on the approx-
imation errors. In addition, the aforementioned works
resort to online optimization techniques for safety spec-
ifications, increasing thus the complexity of the result-
ing algorithms. Other standard optimization-based al-
gorithms that guarantee safety through state constraints
[26, 38] cannot tackle dynamic uncertainties more so-
phisticated than additive bounded disturbances. In the
current paper, we rely on limited data without impos-
ing any of the assumptions stated above, developing a
computationally efficient safety control algorithm.

The remainder of this article is structured as follows. Sec-
tion 2 gives the problem formulation. Section 3 presents
the approximation algorithm and the control design is
provided in Section 4. Section 5 investigates the case
of controllability loss, and Section 6 presents simulation
examples. Finally, Section 7 concludes the paper. The
proofs of our results are provided in the Appendix.
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2 Problem Formulation

Notation: We denote by N and N̄ := N ∪ {0} the sets
of naturals and nonnegative integers, respectively. The
set of n-dimensional nonnegative reals, with n ∈ N,
is denoted by Rn≥0; Int(A), ∂A, and Cl(A) denote the
interior, boundary, and closure, respectively, of a set
A ⊆ Rn. The open and closed ball of radius r > 0
around x ∈ Rn is denoted by Br(x) and B̄r(x), respec-
tively. The minimum eigenvalue of a matrix A ∈ Rn×m
is denoted by λmin(A). Given a ∈ Rn, ‖a‖ denotes its

2-norm; ∇yh(·) := ∂h(·)
∂y ∈ Rm is the gradient of a real-

valued function h : Rn → R with respect to y ∈ Rm,

and ∇h(x) := dh(x)
dx ∈ Rn. An interval in R is denoted

by [a, b] = {x ∈ R : a ≤ x ≤ b} and the set of intervals
on R by IR := {A := [A, Ā] : A, Ā ∈ R,A ≤ Ā}, which
extends to the sets of interval vectors IRn and matrices
IRn×m. We denote by |A| := max{A,A} the absolute
value of an interval A ∈ IR, and the infinity norm of
B := (B1, . . . ,Bn) ∈ IRn by ‖B‖∞ = maxi∈{1,...,n} |Bi|.
The width of an intervalA ∈ Rn is denoted by wd(A) :=
A−A. We extend the definitions [39] of arithmetic op-
erations, set inclusion, and intersections of intervals to
interval vectors and matrices componentwise.

Let a system characterized by x := [x1, x2]> ∈ R2n,
xi := [xi1 , . . . , xin ]> ∈ Rn, i ∈ {1, 2}, with dynamics

ẋ1 = x2, (2a)

ẋ2 = f(x) + g(x)u (2b)

where f := [f1, . . . , fn]> : R2n → Rn, g := [gij ] : R2n →
Rn×m are unknown, locally Lipschitz functions, and u :=
[u1, . . . , um]> ∈ Rm is the control input.

The problem we consider is the invariance of x1(t) in a
given closed set C ⊂ Rn of the form

C := {x1 ∈ Rn : h(x1) ≥ 0}, (3)

where h : Rn → R is a continuously differentiable func-

tion, with bounded derivative dh(x)
dx in Int(C). More

specifically, we aim to design a control law that achieves
x1(t) ∈ Int(C), i.e., h(x1(t)) > 0, for all t ≥ t0, given
that x1(t0) ∈ Int(C) for an initial time instant t0 ≥ 0.

As mentioned in Section 1, we aim to integrate a non-
linear feedback control scheme with a data-driven algo-
rithm that approximates the dynamics (2) by using data
obtained on the fly from a finite-horizon trajectory. More
specifically, let a sequence {t0, t1, . . . } of increasing time
instants ti, with ∆ti := ti+1 − ti, i ∈ N̄. At each ti, the
system obtains the measurement of (xi, ẋi, ui), with

xi := [xi11
, . . . , xi1n , x

i
21
, . . . , xi2n ]> := x(ti)

ẋi := [ẋi11
, . . . , ẋi1n , ẋ

i
21
, . . . , ẋi2n ]> := ẋ(ti)

ui := [ui1, . . . , u
i
m]> := u(ti),

from the current trajectory of (2). Therefore, at each
ti, i ∈ N̄, the system has access to the discrete dataset
Ti := {(xj , ẋj , uj)}ij=0. The trajectory that produces
the dataset Ti has finite horizon in the sense that, for
each finite i, Ti is finite. We are now ready to define the
problem treated in this paper.

Problem 1 Let a system evolve subject to the unknown
dynamics (2), with x1(t0) ∈ Int(C). Let a discrete se-
quence {ti}i∈N̄ of increasing time instants, and assume
that the system obtains a measurement of (xi, ẋi, ui) at
each ti, i ∈ N̄. Compute a time-varying, feedback-control
law u : R2n × [t0,∞) → Rm that guarantees x1(t) ∈
Int(C), for all t ≥ t0.

We further impose the following assumptions, required
for the solution of Problem 1, where we use Ā := C ×V,
with V ⊂ Rn being a compact set.

Assumption 1 It holds that C ⊂ Br(0) for some r > 0.

Assumption 2 There exist known positive con-
stants f̄k, ḡk` satisfying |fk(x) − fk(y)| ≤ f̄k|x − y|,
|gk`(x) − gk`(y)| ≤ ḡk`|x − y|, for all k ∈ {1, . . . , n},
` ∈ {1, . . . ,m}, x, y ∈ Ā.

Assumption 3 There exist positive νh, εh such that
‖∇h(x1)‖ ≥ εh for all x1 satisfying h(x1) ∈ (0, νh].

Assumption 1 simply states that the system trajectory
remains bounded when it evolves inside the safe set C.
Assumption 2 considers knowledge of upper bounds of
the Lipschitz constants of fk and gkl in the safe set Ā.
Note that we do not assume that the system is bounded
in any set or exact knowledge of the Lipschitz constants.
Assumption 3 is a simple controllability condition stat-
ing that ḣ is not identically zero close to ∂C.

Note that the problem setting exhibits unique challenges
due to the on-the-fly availability of the data, the non-
linear nature of the dynamics, and the safety constraint
x1(t) ∈ C. In contrast to most related works, we do
not assume global boundedness, global Lipschitzness, or
growth conditions on the dynamic terms [3–5], and we
do not employ approximation structures or offline data
offline [6,9,10]. Moreover, the safety constraint x(t) ∈ C
introduces additional difficulties with respect to related
works [25–29, 40, 41]: firstly, it imposes a requirement
both on the transient- and the steady-state trajectory
of the system, unlike the asymptotic property of stabil-
ity. Secondly, the allowed fraction of the state space that
the system can explore and obtain measurements in is
restricted by C. The solution of Problem 1, consisting of
a two-layered approach, is given in Sections 3-5. Firstly,
we use previous results on on the fly approximation of
the unknown dynamics [4] and compute Lipschitz esti-
mates for g(x). Secondly, we use these estimates to de-
sign a feedback controller based on reciprocal barriers.
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Algorithm 1 Approximate(ti,Ti)

Input: Single trajectory Ti, sufficiently large M > 0.
Output: Ei = {(xj , CjF , C

j
G)|f(xj) ∈ CjF , g(xj) ∈ CjG}ij=0

1: RfA ← [−M,M ]n, RGA ← [−M,M ]n×m

2: C0
F ← RfA

3: C0
G ← RGA

4: E0 ← {(x0, C0
F , C

0
G)}

5: for ι ∈ {1, . . . , i} ∧ (xι, ẋι, uι) ∈ Ti do
6: F ι ← F (xι,Eι−1),
7: Gι ← G(xι,Eι−1)
8: (CιF , C

ι
G)← UpdateSets(xι, ẋι, uι,F ι,Gι)

9: Eι ← Eι−1 ∪ {(xι, CιF , CιG)}
10: do
11: Execute lines 5–9 with Ei instead of Eι−1 in line 6
12: while Ei is not invariant
13: return Ei

3 On-the-fly over-approximation of the dynam-
ics

In this section, we use the approximation algorithm of
[4], which is based on data obtained online from a sin-
gle finite-horizon trajectory, to compute an estimate of
the control matrix g(x). The approximation algorithm
uses, at each ti, i ∈ N̄, the information from the finite
dataset Ti in order to construct a data-driven differen-
tial inclusion ẋ ∈ F i(x) + Gi(x)u that contains the un-
known vector fields of (2), where F i : R2n → IRn and
Gi : R2n → IRn×m are known interval-valued functions.
Such an over-approximation enables us to provide a lo-
cally Lipschitz estimate ĝi of g to be used in the subse-
quent feedback control scheme.

The over-approximation algorithm is illustrated in Al-
gorithm 2. The functions F := (F 1, . . . ,F n) ∈ IRn and
G := (Gk`) ∈ IRn×m, used in lines 6 and 7, respectively,
are given by

F k(x, Ei) :=
⋂

(xj ,C
j
F ,·)∈Ei

{
CjFk + f̄k‖x− xj‖[−1, 1]

}
(4a)

Gk`(x, Ei) :=
⋂

(xj ,·,CjG)∈Ei

{
CjGk` + ḡk`‖x− xj‖[−1, 1]

}
(4b)

for all k ∈ {1, . . . , n} and ` ∈ {1, . . . ,m}, where the set

Ei has the form E := {(xj , CjF , C
j
G)}i−1

j=0, for some i ∈ N̄.

The function UpdateSets(), used in line 8, updates the
sets CιF := (CιF1

, . . . , CιFn)and CιG := (CιGk`) as

CιFk := {F ιk} ∩ {ẋιk − Yιk} , (5a)

s0,k :=
{
ẋιk − CιFk

}⋂
{Yιk}, (5b)

CιGk` :=

{({
s`−1,k −

∑
p>` G

ι
kpu

ι
p

}⋂
{Gιk`uι`}

)
1
uι
`
, uι` 6= 0

Gιk`, otherwise,

(5c)

s`,k :=
{
s`−1,k − CιGk`u

ι
`

}⋂∑
p>`

Gιkpuιp

 , (5d)

for all k ∈ {1, . . . , n}, ` ∈ {1, . . . ,m}, and some ι ∈
{1, . . . , i}, where Yι := (Yι1, . . . ,Yιn) := Gιuι ∈ IRn.

We briefly explain the intuition behind Algorithm 2. The
algorithm refines iteratively the sets CιF , CιG , F ι, and
Gι to over-approximate f and g at each data point of
Ji. More specifically, it updates the intervals F ι and
Gι in (4) using the Lipschitz estimates f̄k, ḡk`, and the
sets CιF and CιG in (5) using the dynamics constraint
(2). In fact, it can be proven that f(x) ∈ F (x,Ei) and
g(x) ∈ G(x,Ei), for all x ∈ Ā, i ∈ N̄, and that CιF ,
CιG are the smallest intervals enclosing f(xι) and g(xι),
respectively, given only (xι, ẋι, uι), F ι and Gι [4]. The
computational complexity of the algorithm (in time and
memory) is quadratic in the number of elements of Ti

and linear in the system dimension n.

The subsequent theorem characterizes the correctness of
the obtained differential inclusions.

Theorem 1 ([4], Theorem 1) Let i ∈ N and Fi :=
(Fi1, . . . ,F

i
n) : R2n → IRn, Gi := (Gik`) : R2n → IRn×m,

with Fi(x) := F (x,Ei), Gi(x,Ei) := G(x) where Ei is
output of Algorithm 1, which is executed at ti using the
dataset Ti. Then it holds that

ẋ(t) ∈ Fi(x(t)) + Gi(x(t))u,∀t ≥ ti.

Remark 1 As pointed out in [4], we can adjust Algo-
rithm 1 to account for extra information on f and g, if
available, yielding tighter approximations Fi and Gi. In
particular, if we are given sets A ⊆ Ā, RfA , RGA such
that {f(x)|x ∈ A} ⊆ RfA and {g(x)|x ∈ A} ⊆ RGA ,
these can be used in Algorithm 1, replacing the respective
ones defined in line 1. We stress, nevertheless, that we
do not require the availability of such sets.

Based on Theorem 1, we propose now a locally Lipschitz
function ĝi : Ā → Rn×m that estimates the unknown
function g at each time instant ti.

Lemma 1 Let i ∈ N̄. Given θ ∈ [0, 1], each component
of the function ĝi := [ĝik`] : Ā → Rn×m given by

ĝik`(x) = θGik`(x) + (1− θ)Ḡik`(x), (6)
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where Gik` and Ḡik` are the left and right endpoints, re-
spectively, of the interval Gik`, is locally Lipschitz in Ā,
for all k ∈ {1, . . . , n} and ` ∈ {1, . . . ,m}.

Remark 2 (Measurement noise) We can extend the
proposed methodology to account for noise in the obtained
measurements related to ẋ. In particular, we can con-
sider cases where the systems obtains, at each ti, i ∈ N̄,

the measurement (xi, ˜̇xi, ui), where ˜̇xi := ẋi + ∆ẋi, and
∆ẋi ∈ R2n is bounded measurement noise. Algorithm
2 can then incorporate in (5) an estimate of the upper
bound of ∆ẋi to update CiFk and s0,k, leading, never-

theless, to more conservative approximations Fi and Gi.
More details can be found in [42].

4 Control design and Safety Guarantees

This section presents the main results of the paper. We
first propose, in Section 4.1, a learning-based control
algorithm that relies on the approximation of the dy-
namics of Section 3 and the concept of reciprocal bar-
riers. Next, we provide in Section 4.2 bounds on the
approximation errors ĝikl(x

i) − gkl(xi), k ∈ {1, . . . , n},
` ∈ {1, . . . ,m}, i ∈ N̄, based on the frequency of the up-
date time instants ti, i ∈ N. Finally, Section 4.3 presents
a simplified version of the algorithm for the special case
where g(x) is square and g(x)+g(x)> is positive definite.

4.1 Learning-based Control Design

Given the set C = {x ∈ Rn : h(x) ≥ 0} and following
[15], we define a continuously differentiable reciprocal
barrier function β : (0,∞)→ R that satisfies

1

α1(h)
≤ β(h) ≤ 1

α2(h)
(7)

for class K functions α1, α2. Note that (7) implies
infx∈Int(C) β(h(x)) > 0 and limx→∂C β(h(x)) = ∞. In
order to render C forward-invariant, we aim to design a
control algorithm that guarantees the boundedness of β
in a compact set. We further require the extra condition:

max

{∥∥∥∥dβ(h)

dh

∥∥∥∥ ,∥∥∥∥d2β(h)

dh2

∥∥∥∥} ≤ 1

α4(h)
, (8)

for a classK function α4, implying that the derivatives of
β are bounded when x1 lies in compact subsets of Int(C).
Examples of β include β(h) = 1

h , β(h) = − ln
(

h
1+h

)
.

We further define

βd := βd(x1) :=
dβ(h(x1))

dh(x1)
.

Ideally, we would like the system to deviate minimally
from a potential nominal task assigned to it, dictated by

a nominal continuous controller un(x). Therefore, as in
[15], we would like to allow β to grow when x1 is not close
to the boundary of C. To this end, we use a decreasing
continuous signal σµ : R→ R≥0 satisfying σµ(x) = 1 for
x ≤ 0 and σµ(x) = 0 for x ≥ µ, for some µ > 0. For a
given constant µx > 0, we want the control law to act
only when 0 < h(x1) ≤ µx, which defines the set

Cµx := {x1 ∈ Rn : h(x1) ∈ (0, µx]}.

Therefore, following a backstepping-like scheme, we de-
sign first a reference signal for x2 as

x2,r := x2,r(x1) := −κxσµx(h(x1))βd(x1)∇h(x1), (9)

where κx is a constant control gain, and define the error

e2 := e2(x) := x2 − x2,r (10)

We choose the constant µx small enough such that µx <
νh implying ‖∇h(x1)‖ ≥ εh for all x1 ∈ Cµx , according
to Assumption 3.

We next design the control law such that β and e2 remain
bounded. To that end, we define a continuously differ-
entiable function hv : R2n → R satisfying hv(x) > 0 if
and only if ‖e2‖ < B̄2, for a positive B̄2, and define

Cv := {x ∈ R2n : hv(x) ≥ 0} ⊂ R2n.

An example is ellipsoidal functions of the form hv(x) :=
1 − e2(x)>Ave2(x) for an appropriate Av ∈ Rn×n. The
function hv depends explicitly on e2, i.e., the difference
x2 − x2,r(x1), but we define it as a function of x to ease
the subsequent analysis. We choose the constant κx in
(9) and hv such that C ∩ Cv ⊂ Ā (see Assumption 2),
so that Algorithm 1 produces valid approximations of
the dynamic terms. We also choose the constant B̄2 such
that hv(x(t0)) > 0. Next, we design the control law to
guarantee hv(x(t)) > 0, for all t ≥ t0. Following similar
steps as with h(x1), we define a continuously differen-
tiable reciprocal function βv : (0,∞) → R that satisfies
(7) for for class K functions αv1 , αv2 , and which we aim
to maintain bounded. As in the case of β, we define

βv,d := βv,d(x) :=
dβv(hv(x))

dhv(x)
.

Similar to the definition of Cµx , we choose a constant
µv > 0 that defines the set

Cv,µv := {x ∈ R2n : hv(x) ∈ (0, µv]}, (11)

where we aim to enable the safety control law.

Let now the estimate ĝi(x) of g(x), as computed by
Lemma 1, for t ∈ [ti, ti+1), i ∈ N̄. Let also the error

g̃i(x) := ĝi(x)− g(x)
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for i ∈ N̄. We use the term ĝi(x) in the control design to
cancel the effect of g(x), inducing thus a time-dependent
switching. More specifically, we set u as

u(x, t) := un(x)− κvσµv (hv(x))βv,d(x)
ĝi(x)>∇hv(x)

‖ĝi(x)>∇hv(x)‖2
,

(12)

for t ∈ [ti, ti+1), i ∈ N̄, where un(x) is a nominal contin-
uous controller, and κv is a positive constant.

Note that the proposed control scheme, consisting of Al-
gorithm 2 and (9)-(12), does not use any a priori infor-
mation of f(x) and g(x); it estimates g(x) by using the
data obtained on the fly, and does not use any approxi-
mation regarding f(x). Further, the algorithm does not
use the instants t0, t1, . . . , or the rate ∆ti = ti+1 − ti
and hence these do not need to be given a priori.

Before stating the main result of this section, we estab-
lish the existence of solutions of the closed-loop system.

Lemma 2 Let a system evolve according to the dynamics
(2) and control scheme (9)-(12); Let also a set C satisfying
x1(t0) ∈ Int(C) for some t0 ≥ 0. Then there exists a
unique, maximal solution x : [t0, tmax)→ Int(C̄)∩Int(Cv)
for some tmax > t0, where C̄ := {x ∈ R2n : x1 ∈ C}.

We are now ready to state the main results of this paper.
More specifically, the next theorem states that, if the es-
timated system defined by ĝi(x) is controllable with re-
spect to hv(x), and if ĝi(x) is sufficiently close to g(x),
we achieve boundedness of x1(t) in Int(C) and, conse-
quently, provide a solution to Problem 1.

Theorem 2 Let a system evolve according to (2) and
(9)-(12). Let also a set C satisfying x1(t0) ∈ Int(C) for
some t0 ≥ 0. Define, for µ > 0,

Tµ := {t ∈ [t0, tmax) : x(t) ∈ Int(Cv,µ)}

and it := max{i ∈ N̄ : ti ≤ t}, t ∈ [t0, tmax). Assume
there exists µ′v ∈ (0, µv) such that the following holds: for
each t ∈ Tµ′v , there exist r := r(t, µ′v) > 0, ε1, ε2, with

ε1 > ε2, for which the following conditions hold 1

Br(x(t)) ⊂ Cv (13a)

‖ĝit(y)>∇x2
hv(y)‖ ≥ ε1, (13b)

‖g̃it(y)‖‖∇x2hv(y)‖ < ε2σµv (µ′v), (13c)

for all y ∈ Br(x(t)). Then, under Assumptions 1 and 3,
it holds that x1(t) ∈ Int(C), and all closed-loop signals
remain bounded, for all t ≥ t0.

1 ∇x2hv(y): means the gradient is evaluated at the point y.

We now elaborate on the required conditions (13), which
concern the trajectory of the system close to ∂Cv.

Firstly, (13b) is a sufficient controllability condition that
allows the boundedness of the control law (12) close to
∂Cv. Note that, unlike the majority of the related works,
which assume the structural condition of square and pos-
itive definite g(x), (13b) depends on the estimate ĝ of
g as well as the choice of hv(x). We exploit this depen-
dency in Section 5 to relax condition (13b) via an online
mechanism that locally switches to a different hv(x).

Secondly, condition (13c) implies that the system will
have computed a sufficiently good approximation of
g(x), via gi(x), before reaching the boundary of Cv. Such
an approximation can be practically achieved via rich
exploration of the state space and large frequency of
measurements {(xi, ẋi, ui)}. In turn, one can accomplish
the former by selecting a persistently exciting nominal
controller un, such as a high-frequency sinusoidal signal
with small amplitude. However, the explicit derivation
of a condition on the persistence of excitation of the
nominal controller is out of the scope of this paper.
Moreover, note that (13c) is only sufficient and not
necessary; the proposed algorithm might maintain the
safety of the system even if (13c) does not hold. Regard-
ing the frequency of measurement updates, we provide
in Section 4.2 a relation among ti+1− ti and ‖g̃i(xi+1)‖.

4.2 Bounds on g̃i(x)

Theorem 2 is based on a small enough error of the ap-
proximation error g̃i(x). As explained in Section 4.1, this
is achieved through sufficient exploration of the state
space and a sufficiently high frequency of the measure-
ment updates ti, i ∈ N̄. In this section, we provide a
closed-form relation between the approximation error
g̃i(xi+1) and the difference ∆ti = ti+1 − ti.

We begin by defining some preliminary notation. Note
first that Theorem 2 proves the boundedness of the
control signal u(x, t); we use U i ∈ IRm to denote the
bounded set satisfying u(x(t), t) ∈ U i ∈ IRm, for all
t ∈ [ti, ti+1] for i ∈ N̄. Moreover, we define the terms

h(x, u) := F (x) + G(x)u (14a)

δi :=

√√√√ n∑
k=1

(fk +

m∑
`=1

gk`|U i` |)
2 (14b)

Si := xi +
∆t‖h(xi,U i)‖∞

1−
√
n∆tiδi

[−1, 1]n (14c)

Ki := (J f + J gU i)
(
h(xi,U i) +

∆ti‖h(xi,U i)‖∞
1−
√
n∆tiδi

Hi
)

(14d)

Hi := (f̄ + ḡU)[−
√
n,
√
n]n, (14e)

for i ∈ N̄, where J f := (J fkp) ∈ IRn×n and J g :=

(J gk`p) ∈ IRn×m×n denote the over-approximations of
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the Jacobian of f and g, respectively, and are given by

J fkp = f̄k[−1, 1] and J gk`p = ḡk`[−1, 1] for all k, p ∈
{1, . . . , n} and ` ∈ {1, . . . ,m}. We are now ready to
provide a relation between g̃i(xi+1) and ∆ti.

Lemma 3 (Point-based estimation error) Let the
current state xi = x(ti) and the bounded admissible set
of control values between time ti and ti+1 = ti + ∆ti
be U i ∈ IRm, i ∈ N̄. Under the assumption that
(
√
nδi)∆t < 1, it holds that

‖ĝik`‘(xi+1)− gk`(xi+1)‖ ≤ wd(CiGk`) + 2ḡk`‖h(xi,U i)‖∆ti

+ 2ḡk`‖Ki‖
∆t2i

2
(15)

for all k ∈ {1, . . . , n}, and ` ∈ {1, . . . ,m}.

Relation (15) connects the approximation error g̃i(xi+1)
and the intervals ∆ti, implying that more frequent mea-
surements (smaller ∆ti) might lead to smaller g̃i(xi+1).
The term wd(CiGk`) is independent of ∆ti and depends
on the richness of obtained data (see Algorithm 1).

4.3 Square Control Matrix g(x)

The fact that g is non-square and completely unknown
and hence cannot be used in the control algorithm makes
the considered problem significantly more challenging
compared to other works in the related literature that
assume positive definiteness of g or of g + g> [6–8, 24].
In fact, we show now that a simple feedback control law
can solve Problem 1 in the case of square and positive
definite matrix g, without using measurements on ẋ. We
first need Assumption 3 to hold for ∇x2

h2(x):

Assumption 4 There exist positive νv, εv such that
‖∇x2hv(x)‖ ≥ εv for all x satisfying hv(x) ∈ (0, νv].

As with (12), we select a positive constant µv to enable
the control law in the set Cv,µv = {x ∈ R2n : hv(x) ∈
(0, µv]}. Similarly to µx, we choose the constant µv suf-
ficiently small so that it satisfies µv < νv, implying
‖∇x2

hv(x)‖ ≥ εv for all x ∈ Cµv .

Given the reference signal x2,r in (9), the function hv(·)
and βv(·), the switching function σµ(), and the constant
µv, we design now the control law as

u := u(x, t) := un(x)− κvσµv (hv(x))βv,d(x)∇x2
hv(x),

(16)

whose correctness is proven in the following theorem.

Theorem 3 Let a system evolve according to the dy-
namics (1) and control law (16), with m = n and let
a set C satisfying x1(t0) ∈ Int(C) for some t0 ≥ 0.
Assume there exists a constant µ′v ∈ (0, µ) such that

λmin

(
g(x) + g(x)>

)
> 0, for all x ∈ Cv,µ′v . Under As-

sumptions 1, 3, it holds that x1(t) ∈ Int(C), and all
closed-loop signals are bounded, for all t ≥ t0.

Note that, if g(x) is square and satisfies λmin(g(x) +
g(x)>), there is no need for its approximation through
online data and the respective assumption on the ap-
proximation error (13b) is no longer required. Intuitively,
g(x) retains the direction of the applied control input,
which is sufficient to guarantee safety.

Remark 3 (High relative degree) Theorems 2 and 3
suggest a way to tackle higher-order dynamics of the form

ẋi = fi(x̄i) + gi(x̄i)xi+1, i ∈ {1, . . . , k − 1},
ẋk = f(xk) + g(x)u

for a positive integer k, where x̄i := [x>1 , . . . , x
>
i ]> ∈

Rn·i, for all i ∈ {1, . . . , k}, and x := x̄k. By assuming
that gi+g

>
i are positive definite, for all i ∈ {1, . . . , k−1},

we can design continuous reference signals xi+1,r for the
states xi+1, as in (9) and based on consecutive error sig-
nals as in (10). The control signal u can then be designed
based on the over-approximation of g(x) and a reciprocal
barrier on the difference xk − xk,r, as in (12).

5 Controllability loss

In this section we provide an algorithm that considers
cases where ‖ĝi(x)>∇x2hv(x)‖ can become arbitrarily
small, relaxing thus the condition (13b) in Theorem 2.
Note that, since we desire ĝi(x) to be close to g(x), and
hence the interval Gi(x) to be small (see Lemma 1),
choosing a different ĝi(x) from Gi(x) is not expected to
significantly modify the term ‖ĝi(x)>∇x2

hv(x)‖ and re-
solve the controllability issue at hand.

The framework we follow in order to tackle such cases
is an online switching mechanism that computes locally
alternative barrier functions hj , defining new safe sets

Cj := {x ∈ Rn : hj(x) ≥ 0} ⊂ Cj−1,

for j ≥ 2, and h1 := hv, C1 := Cv. More specifically, at a
point xc where ‖ĝi(xc)>∇x2hv(xc)‖ becomes too small,
the algorithm looks for an alternative function h2 with
C2 ⊂ Cv and ‖ĝi(xc)>∇x2h2(xc)‖ is sufficiently large.
The next example illustrates this reasoning.

Example 1 Consider a system with x1 = [x11, x12]> ∈
R2, x2 = [x21, x

>
22]> ∈ R2, ĝi(x) = [2x21,−2]> for some

i ∈ N̄, and hv(x) = 4.5 − ‖x2‖2, representing a sphere

with radius of
√

4.5 (depicted with red in Fig. 2). The term
‖ĝi(x)>∇x2hv(x)‖ vanishes on the parabola x22 = x2

21
(depicted with black in Fig. 2). When x is close enough
to that line, the proposed algorithm computes a new h2;
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Fig. 2 depicts the case when xc = [1, 0.95] (green aster-
isk). A potential choice is then the ellipsoidal set h2 =
−0.175x2

21+0.2x21x22−0.2x2
22+0.15x21−0.0889x22+0.2

(depicted with blue in Fig. 2). The new h2 satisfies
C2 ⊂ Cv, h2(xc) > 0, while ‖ĝi(x)>∇x2h2(x)‖ van-
ishes on the parabola 0.1x21 − 0.8x22 − 0.4x21x22 +
0.7x2

21 − 0.1779 (depicted with purple in Fig. 2), with
‖ĝi(xc)>∇x2

h2(xc)‖ = 1.6379. The controller switches
locally to h2 until ‖ĝi(x)>∇x2

hv(x)‖ becomes suffi-
ciently large again. In case the system navigates along
the line ‖ĝi(x)>∇x2

hv(x)‖ = 0 to a region where
‖ĝi(x)>∇x2

h2(x)‖ is also small, the procedure is repeated
and a new h3 is computed.

In the aforementioned example, the region around
the point where both ‖ĝi(x)>∇x2hv(x)‖ = 0 and
‖ĝi(x)>∇x2h2(x)‖ = 0 is around the intersection of the
black and purple lines in Fig. 2. Note, however, that in
the specific example, the system cannot navigate close to
that point since employment of h2 will keep it bounded
in C2 (the set defined by the blue line in the figure).

Similarly to hv(x), the functions hj , j ≥ 2, depend ex-
plicitly on e2, i.e., the difference x2−x2,r(x1). Moreover,
for technical requirements, we assume in the following
that Cv is a compact 2n-dimensional manifold.

The aforementioned procedure is described more for-
mally in the algorithm SafetyAdaptation (Algorithm
2). More specifically, for a given j, each ρj indi-
cates whether the system is close to the set where
‖ĝi(x)>∇x2

hj(x)‖ = 0. If that’s the case (ρj = 0),
the algorithm computes a new function hj+1 such
that Cj+1 ⊂ Cj , and in the switching point it holds
that hj+1(x) > 0 and ‖ĝi(x)>∇x2

hj+1(x)‖ is suffi-
ciently large; the control law uses then hj+1(x). If
‖ĝi(x)>∇x2

hι(x)‖ becomes sufficiently large, for some
ι < j, the algorithm sets j back to ι, and the control
uses hι(x) again. We also impose a hysteresis mecha-
nism for the switching of the constants ρι (lines 4, 10)
through the parameters ε̄, ε.

The reasoning behind Algorithm 2 is the following. By
appropriately choosing the functions hι(x), the solutions
of ‖ĝi(x)>∇x2

hι(x)‖ = 0 form curves of measure zero.
Hence, the intersection of 2n such lines will be a single
point in R2n and hence the employment of a newly com-
puted h2n+1 will drive the system away from that point,
resetting the algorithm. More formally, there is no t ≥ t0
and j ≥ 2n + 1 such that ‖gi(x(t))>∇x2hj(x(t))‖ ≤ ε,
implying that the iterator variable j of Algorithm 2 will
never exceed 2n+ 1.

Following similar steps as with h and hv, we de-
fine continuously differentiable reciprocal functions
βj : (0,∞) → R that satisfy (7) for class K functions
αj1 , αj2 , and j ∈ {1, . . . , 2n+ 1}. The formal definition

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Fig. 2. Illustration of the adaptation algorithm (Algorithm
2). At a point xc on the curve ‖gi(x)>∇x2hv(x)‖ = 0 (green
point on black curve), the algorithm computes a new h2(x)
such that C2 ⊂ Cv (blue curve) and xc is sufficiently far from
the curve ‖gi(x)>∇x2h2(x)‖ = 0 (purple curve).

of the control law is then, for all t ∈ [ti, ti+1) and i ∈ N̄,

u = un(x)− κvσµv (hv(x))ub(x, t) (17a)

ub :=

2n+1∑
ι=1

ρι

ι−1∏
j=1

(1− ρj)βj,d
ĝi(x)>∇x2hι(x)

‖ĝi(x)>∇x2
hι(x)‖2

, (17b)

with h1 = hv, β1 = βv, and βj,d :=
dβj(hj(x))

dhj(x) .

The SafetyAdaptation algorithm is run separately for
each time interval [ti, ti+1), i ∈ N̄. That is, when a new
measurement (xi+1, ẋi+1, ui+1) is received, the estima-
tion of g(x) is updated, a new ĝi+1 is computed by Algo-
rithm 1, and SafetyAdaptation is reset (j and ρι are re-
set as in lines 1− 3). This is illustrated in the algorithm
SafetyControl (Algorithm 3).

Algorithm 2 SafetyAdaptation(gi, h, ε̄, ε)

1: ρι ← 1, ∀ι ∈ {1, . . . , n+ 1}; j ← 1; h1 ← hv;
2: while True do
3: if ‖ĝi(x)>∇x2

hj(x)‖ ≤ ε ∧ ρj = 1 then
4: xc ← x; ρj ← 0;
5: Find hj+1 such that

(1) C(hj+1) ⊂ C(hj)
(2) hj+1(xc) > 0
(3) ‖ĝi(xc)>∇x2

hj+1(xc)‖ ≥ γj+1;
6: j ← j + 1;

7: for ι ∈ {1, . . . , j − 1} do
8: if ‖ĝi(x)>∇x2

hι(x)‖ > ε̄ ∧ ρι = 0 then
9: ρι ← 1; j ← i;

10: Break;

11: Apply (17)

Algorithm 2 imposes an extra, state-dependent switch-
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ing to the closed-loop system, which can be written as

ẋ = f(x) + g(x)un − κvσµv (hv(x))g(x)uj(x, t), (18)

where uj := βj,d(x)
ĝi(x)>∇x2hj(x)

‖ĝi(x)>∇x2hj(x)‖2 , for some i ∈ N̄,

j ∈ N. The switching regions are not pre-defined, but
detected online based on the trajectory of the system
(line 4 of Algorithm 2). Moreover, by choosing γj > ε,
for all j ≥ 2, we guarantee that the switching does not
happen continuously, and hence the solution of (18) is
well-defined in [t0, tmax) for some tmax > t0, satisfying
x(t) ∈ Int(C̄) ∩ Int(Cv), for all t ∈ [t0, tmax) (similar to
the proof of Lemma 2).

Theorem 4 guarantees the safety of the system by using
Algorithm 3, by showing that, for each i ∈ N̄, the iterator
j in Algorithm 2, indicating the number of hj computed,
reaches at most 2n+1. We first define the sets Sij := {x ∈
C̄ ∩ Cl(Cv,µv ) : ĝi(x)>∇x2

hj(x) = 0} Si
j :=

⋂j
q=1 Siq,

for all i ∈ N̄, j ∈ {1, . . . , 2n}, for which we impose the
following assumption.

Algorithm 3 SafetyControl(ε̄, ε)

1: i← 1;
2: ĝi ← rand(n,m);
3: while True do
4: while NoNewMeasurement do
5: SafetyAdaptation(ĝi, h, ε̄, ε)

6: i← i+ 1;
7: ĝi ← Approximate(ẋ(ti), x(ti), u(ti));

Assumption 5 Let i ∈ N̄. The sets Sij, Si
j are man-

ifolds satisfying dim(Sij) ≤ 2n − 1, ∀j ∈ {1, . . . , 2n},
and codim(Si

j ∩ Sij+1) ≥ codim(Si
j) + codim(Sij+1),

∀j ∈ {1, . . . , 2n− 1}.

Assumption 5 first states that Sij are lower-dimension
manifolds (e.g., lines on the plane or planes in 3D space),
which is common for curves like ĝi(x)>∇x2

hj(x) = 0.
The dimension condition is essentially a mild transver-
sality condition on the manifolds Sij [43], which implies

that dim(Si
j ∩ Sij+1) ≤ dim(Si

j) + dim(Sij+1)− 2n. We
are now ready to state the main result of this section.

Theorem 4 Let a system evolve according to the dy-
namics (2) and control law (17). Let also a set C satis-
fying x1(t0) ∈ Int(C) for a positive t0 ≥ 0. Let Tµ and it
as defined in Theorem 2.

Assume there exists µ′v ∈ (0, µv) such that the following
holds: for each t ∈ Tµ′v , there exist r := r(t, µ′v) > 0,
ε < 1, for which the following conditions hold:

Br(x(t)) ⊂ Cv (19a)

‖g̃it(y)‖‖∇x2hj(y)‖ < εσµv (µ′v), (19b)

for all y ∈ Br(x(t)), where j is the iterator variable of
Algorithm 2, signifying ρj = 1, and ρι = 0, if ι 6= j. Let
Ass. 1, 3, and 5 hold. Then, under sufficiently large γ2n+1

and sufficiently small ε̄, it holds that x1(t) ∈ Int(C), and
all closed-loop signals are bounded, for all t ≥ t0.

We now briefly elaborate on the practical implications
and complexity of Algorithm 2. Note that almost all op-
erations the algorithm executes are standard multiplica-
tions and conditionals that can be evaluated almost in-
stantaneously. The main computational bottleneck con-
sists of that of the derivation of the new barrier functions
hj+1 in line 6. We acknowledge that an efficient compu-
tation of hj+1 such that it allows the online execution
of the algorithm is a challenging problem. One can em-
ploy standard optimization techniques to derive a con-
servative solution. An example consists of maximizing
the distance ‖ĝi(xc)>∇x2

hj+1(xc)‖ − γn+1 (third prop-
erty in line 6) subject to the constraints C(hj+1) ⊂ C(hj)
and hj+1(xc) > 0 (first two properties in line 6), or for-
mulating a convex, more conservative version that fa-
vors computational efficiency. In the simulation results
of Section 6, we employ a nonlinear optimization proce-
dure that yields low enough computation time to allow
for the online execution of the algorithm.

The efficient computation of hj+1 is even more impor-
tant because of the fact that Algorithm 2 is reset at ev-
ery ti, i ∈ N̄. Therefore, small ∆ti = ti+1 − ti, required
for the accurate approximation of g(x) (see Lemma 3),
might hinder the successful computation of hj+1 and,
consequently, the execution of Algorithm 2. A possible,
practical solution would be to maintain the execution of
Algorithm 2 until a significant change on ĝi(x) occurs,
i.e., until ‖ĝi(x) − ĝi−1(x)‖ becomes large enough, in-
stead of resetting it at every time instant ti, i ∈ N̄.

6 Simulation Results

We validate the proposed algorithm with a simulation
example. More specifically, we consider an underactu-
ated unmanned aerial vehicle (UAV) with state variables
x = [x1, . . . , x6] = [px, py, φ, vx, vy, ω]> evolving subject

to the dynamics ṗx = vx, ṗy = vy, φ̇ = ω, and

mv̇x = −CvDvx − u1 sin(φ)− u2 sin(φ)

mv̇y = −(mg + CvDvy) + u1 cos(φ) + u2 cos(φ)

2Iω̇ = −CφDω − lu1 + lu2,

where m = 1.25, I = 0.03 are the quadrotor’s mass and
moment of inertia, respectively, g = 9.81 is the gravity
constant, l = 0.5 is the arm length, and CvD = 0.25,

CφD = 0.02255 are aerodynamic constants. We consider
that the UAV aims to track the helicoidal trajectory
pxr := 1

2 sin( 3
2 t), pyr := 1

2 sin( 3
4 t) via an appropriately

designed nominal control input un. We wish to bound the
position (px, py) of the UAV through the sphere h(x) =
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Fig. 3. From left to right: The reference trajectory (pxr (t), pyr (t)) (red), and the system trajectory (px(t), py(t)) (blue), along
with the boundaries h(x) = 0 (black) and h(x) = 0.1 (green). The velocity error signal e2(x(t)) (blue) and the boundary
hv(x) = 0 (red). The evolution of ρ1(t) ∈ {0, 1}. The evolution of the control inputs u1(t) (red) and u2(t) (blue).

0.36 − ‖[px, py]>‖2. We use the local safety controller
(17), with β = 1

h , µx = 0.2, κx = 0.1, hv(x) = 100− e2
2,

βv := 1
hv

, µv = 0.1, κv = 0.1, while setting ε = 0.05,
ε̄ = 5 in Algorithm 2. The data measurement and hence
the execution of Algorithm 1 occurs every 0.1 seconds.
For the case when ‖ĝi(xc)>∇x2hj(xc)‖ ≤ ε for some
xc, we use an optimization solver that aims to find an
ellipsoidal hj+1(x) such that Cj+1 ⊂ Cj and maximize
the value ‖ĝi(xc)>∇x2hj+1(xc)‖. The computation time
used by the solver does not exceed 0.01 seconds, allowing
the online execution of Algorithm 2.

The simulation results from the initial condition
[0, 0.2, 0,−0.3, 0, 0]> are illustrated in Fig. 3 for
t ∈ [0, 8.5] seconds. The figure depicts the reference
(red) and the system trajectory (blue) along with the
boundaries of the barrier h(x) = 0 (black) and local
barrier function h(x) = µ = 0.1 (green). One can ver-
ify that the system position is successfully confined
in the set Int(C) defined by h(x) > 0, verifying thus
the theoretical findings. The figure further depicts the
evolution of the error e2(x(t)) = [e21(x(t)), e22(x(t))],
which is successfully confined in the sphere imposed by
h2(x). Finally, the figure depicts the evolution of ρ1(t)
and the required control input. It is concluded that
‖gi(x)>∇x2

hv(x)‖ falls below ε several times and a new
function h2(x) is found, as per Algorithm 2. While h2 is
activated, however, ‖gi(x)>∇x2

h2(x)‖ is always above
ε, not requiring thus a new h3(x).

7 Conclusion and Future Work

We consider the safety problem for a class of 2nd-order
nonlinear unknown systems. We propose a two-layered
control solution, integrating approximation of dynam-
ics from limited data with closed-form nonlinear control
laws using reciprocal barriers. Future efforts will be de-
voted towards relaxing the assumption on the approx-
imation error g̃i(x), establishing persistence of excita-
tion conditions, and extending the proposed framework
to stabilization/tracking with input constraints.
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A Proofs

Proof of Lemma 1: By the definition of Gikl, given by
the output Ei of Algorithm 1 and Lemma 2 of [4], we
have for any x ∈ Ā that

Gik`(x) = inf
⋂

(xj ,·,CjGk` )∈Ei

{
CjGk` + ḡk`||x− xj ||[−1, 1]

}
,

Ḡik`(x) = sup
⋂

(xj ,·,CjGk` )∈Ei

{
CjGk` + ḡk`||x− xj ||[−1, 1],

}
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for all k ∈ {1, . . . , n} and ` ∈ {1, . . . ,m}. Thus, one can
observe that Gik`(x) and Ḡik`(x) can be also written as

Gik`(x) = inf
(xj ,·,CjGk` )∈Ei

{
mu(xj) + gk`||x− xj ||

}
,

Ḡik`(x) = sup
(xj ,·,CjGk` )∈Ei

{
ml(x

j)− ḡk`||x− xj ||
}
,

whereml(x
j) := inf CjGk` andmu(xj) := supCjGk` . Using

the inequality |||x|| − ||y||| ≤ ||x − y|| for any two vec-
tors x, y ∈ Rn, we conclude that the functions hj : x 7→
mu(xj) + gk`||x − xj || and lj : x 7→ ml(x

j) − ḡk`||x −
xj || are Lipschitz continuous in Ā with ḡk` as the Lips-
chitz constant in Ā. Similarly, and by using max{l, h} =
0.5(l+ h+ |l− h|), and min{l, h} = 0.5(l+ h− |l− h|),
we can deduce by induction that x 7→ supj∈{1,...,i} lj(x)

and x 7→ infj∈{1,...,i} hj(x) are also Lipschitz continu-

ous owing to the Lipschitz continuity of lj and hj for all
j ∈ {1, . . . , n}. Thus, one obtains that x 7→ Ḡik`(x) and

x 7→ Gik`(x) are also Lipschitz continuous, from which
we conclude the Lipschitz continuity of ĝk`.

Proof of Lemma 2 The closed-loop system ẋ = f(x)+
g(x)u(x, t) is piecewise continuous in t ≥ t0, for each
fixed x ∈ Int(C̄) ∩ Int(Cv), and, in view of Lemma 1,
locally Lipschitz in x ∈ Int(C̄) ∩ Int(Cv) for each fixed
t ≥ t0. Hence, since Cv is designed such that x(t0) ∈
Int(Cv), we conclude from [44, Theorem 2.1.3] the exis-
tence of a unique, maximal, and absolutely continuous
solution x(t), satisfying x(t) ∈ Int(C̄) ∩ Int(Cv), for all
t ∈ [t0, tmax), for a positive constant tmax > t0.

Proof of Theorem 2 According to Lemma 2, it holds
that x(t) ∈ Int(C̄) ∩ Int(Cv), for all t ∈ [t0, tmax) for
a tmax > t0. Assume now that limt→tmax

h(x1(t)) = 0,
i.e., the system converges to the boundary of C as t →
tmax, implying limt→tmax

β(h(x1(t))) = ∞. Let t′x ∈
[t0, tmax) and µ′x ∈ (0, µx) such that x1(t) ∈ Int(Cµ′x) ⊂
Int(Cµx) for all t ∈ [t′x, tmax), and x1(t) ∈ C̃x := {x1 ∈
Rn : h(x1) ≥ mint∈[t0,t′]{h(x1(t))} > 0}, for all t ∈
[t0, t

′
x] 2 . Hence, it holds 0 < h(x1(t)) ≤ µ′x < µx and

σµx(h(x1(t))) > σµx(µ′x) > 0, for all t ∈ [t′x, tmax). In

view of (9) and (10), β̇ becomes

β̇ =βd∇h(x1)>e2 − κxσµx(h(x1))β2
d‖∇h(x1)‖2.

In view of the definition of hv and since x(t) ∈ Int(Cv) for
t ∈ [t0, tmax), we conclude that ‖e2(x(t)))‖ < B̄2, for t ∈
[t0, tmax). Moreover, since µ′x < µx < νh, Assumption
3 suggests that ‖∇h(x1(t))‖ ≥ εh for all t ∈ [t′x, tmax).

Therefore, β̇ becomes

β̇ ≤− κxσµx(µ′x)ε2
h|βd|

(
|βd| −

B̄2h̄x
κvσµx(µ′x)ε2

h

)
(A.1)

2 Note that such t′x, µ′x exist since limt→tmax h(x1(t)) = 0.

for all t ∈ [t′x, tmax), where h̄x := supx1∈Cµ′x
‖∇h(x1)‖

is a finite constant, since h(x1) is continuously differen-

tiable. Therefore, β̇ < 0 when |βd| > B̄2h̄x
κxσµx (µ′x)ε2

h

.

We claim now that (A.1) implies the boundedness of β.
Since we have assumed that limt→tmax

β(h(x1(t))) =∞,
(7) and (8) imply that limt→tmax

|βd(t)| =∞. Hence, for
every positive constant γ > 0, there exists a time in-
stant tγ ∈ [t′x, tmax) such that |βd(t)| > γ for all t > tγ .
Consequently, we conclude from (A.1) that there exists
a time instant t′ ∈ [t′x, tmax) such that β(h(x1(t))) < 0
for all t > t′, which leads to a contradiction. We con-
clude, therefore, that there exists a constant β̄ such that
β(h(x1(t)) ≤ β̄, for all t ∈ [t0, tmax), implying h(x1(t)) ≥
h := α−1

1

(
1
β̄

)
, for all t ∈ [t0, tmax), which dictates the

boundedness of x1 in a compact set x1(t) ∈ C̃ ⊂ Int(C),
for all t ∈ [t0, tmax). Moreover, (9) also suggests the
boundedness of x2,r(x1(t)), which, via the boundedness
of e2 by B̄2, implies the boundedness of x2(t), for all
t ∈ [t0, tmax). By differentiating (9) and using the bound-
edness of x1, x2,r, and (8), (10), we also conclude the
boundedness of ẋ2,r(x1(t))), for all t ∈ [t0, tmax).

We proceed next to prove the boundedness of βv. Follow-
ing the same line of proof, assume that limt→tmax

hv(x(t)) =
0, i.e., the system converges to the boundary of Cv
as t → tmax, implying limt→tmax

βv(hv(x(t))) = ∞.
Given the constant µ′v ∈ (0, µv), let any t′v ∈ [t0, tmax)
such that x(t) ∈ Int(Cv,µ′v ) ⊂ Int(Cv,µv ) for all

t ∈ [t′v, tmax), and x(t) ∈ C̃v := {x ∈ R2n : hv(x) ≥
mint∈[t0,t′]{hv(x(t))} > 0}, for all t ∈ [t0, t

′
v]. Hence,

it holds 0 < hv(x(t)) ≤ µ′v < µv and σµv (hv(x(t))) >
σµv (µ′v) > 0, for all t ∈ [t′v, tmax). Since σµv (hv) ≤ 1

and hv(·) is a function of e2, β̇v becomes

β̇v ≤βv,dfn(x)− κvσµv (hv)β2
v,d + κvβ

2
v,d

g̃i(x)>∇x2hv(x)

‖ĝi(x)>∇x2hv(x)‖

for t ∈ [t′v, tmax), where fn(x) := ∇x1
hv(x)>x2 +

∇x2
hv(x)(f(x) + g(x)un(x)) and we used g(x) =

ĝi(x) − g̃i(x). Since f, g, un are continuous, ẋ2,r has
been proven bounded, and x(t) ∈ Int(C̄) ∩ Int(Cv) for
t ∈ [t0, tmax), there exists a constant f̄n, independent of
tmax, satisfying |fn(x(t))| ≤ f̄n, for t ∈ [t0, tmax). Fur-
ther, since x(t) ∈ Int(Cv,µ′v ) for t ∈ [t′v, tmax), it holds
that [t′v, tmax) ⊂ Tµ′v . Hence, in view of (13), we obtain

β̇ ≤ −κvσµv (µ′v)
(
1− ε

)
|βv,d|

(
|βv,d| −

f̄n

κvσµv (µ′v)(1− ε)

)
for all t ∈ [t′v, tmax), where we define ε := ε2

ε1
< 1 . There-

fore, β̇v < 0 when |βv,d| > f̄n
κvσµv (µ′v)(1−ε) . By invoking

similar arguments as in the case of (A.1) and β, we con-

clude that x(t) ∈ C̃ ⊂ Int(C̄) ∩ Int(Cv). By also using

x(t) ∈ C̃v, for all t ∈ [t0, t
′
v] and the compactness of C̃v, we
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conclude the boundedness of x(t) and βv(hv(x(t))), for
all t ∈ [t0, tmax). From [44, Th. 2.1.4], we conclude that
tmax = ∞, and the boundedness of x(t), β(h(x1(t))),
u(x(t), t) for all t ∈ [t0,∞).

Proof of Theorem 3 The proof follows similar steps
as in the proof of Theorem 2 and only a sketch is
given. Firstly, we establish a unique, continuously dif-
ferentiable, and maximal solution x : [t0, tmax) →
Int(C̄) ∩ Int(Cv), for some tmax > t0. By differentiating
β, we obtain (A.1), which guarantees the boundedness
of β as β(h(x1(t)) ≤ β̄ and the boundedness of x1, x2,
x2,r, and ẋ2,r for all t ∈ [t0, tmax).

Proceeding similarly as in the proof of Theorem 2, we
assume that limt→tmax

hv(x(t)) = 0 and consider a con-
stant t′v ∈ [t0, tmax) such that x(t) ∈ Cv,µ′v for all t ∈
[t′v, tmax), implying σµv (hv(x(t))) > σµv (µ′v) > 0, for all
t ∈ [t′v, tmax). Next, we define the continuous function
fn(x) := ∇x1hv(x)>x2 + ∇x2hv(x)(f(x) + g(x)un(x)),
which is bounded by a constant f̄n, for t ∈ [t′v, tmax).
Further, since x(t) ∈ Cµ′v ⊂ Cµv for t ∈ [t′v, tmax), it
holds that ‖∇x2hv(x)‖ ≥ εv > 0. Finally, by using the
identity g(x) = 1

2 (g(x) + g(x)>) + 1
2 (g(x)− g(x)>), and

employing the skew symmetry of g(x) − g(x)> and the
positive definiteness of g(x) + g(x)>, we obtain

β̇v ≤ −εvκvgσµv (µ′v)|βv,d|
(
|βv,d| −

f̄n

εvκvgσµv (µ′v)

)
,

where g is the minimum eigenvalue of g(x)+g(x)>, which
is positive for all t ∈ [t′v, tmax). Therefore, we conclude

that β̇v > 0 when |βv,d| > f̄n
εvκvgσµv (µ′v) . By proceedings

similarly to the proof of Theorem 2, the proof follows.

To prove Lemma 3, we need the following result
from [42].

Theorem 5 ([42], Theorem 2) Let the current state
be xi, the bounded admissible set of control values between
time ti and ti+1 = ti + ∆ti be U i ∈ IRm, with a time
step size ∆ti > 0. Assume that (

√
nδi)∆t < 1, where

δi :=
√∑n

k=1(fk +
∑m
`=1 gk`|U il |)2, and f̄k, ḡk` are the

known locally Lipschitz constants (see Assumption 2).
Then, the future state value xi+1 = x(ti+1) satisfies

xi+1 ∈ xi + h(xi,U i)∆t+ (J f + J gU i)h(Si,U i)∆t2i
2

Note that, with a slight abuse of notation, F and G are
re-defined in Theorem 5 to take both real vectors and in-
terval quantities as arguments, as expressed by h(xi,U i)
and h(Si,U i). To achieve this, one can straightforwardly
extend the ‖ · ‖ operator to the domain of intervals [4].

We are now ready to prove Lemma 3.

Proof of Lemma 3 By definition of ĝk`(x) ∈ Gk`(x),
we have

‖ĝk`(xi+1)− gk`(xi+1)‖ ≤ wd(Gk`(x
i+1)) (A.2)

since we know by construction that gk`(x
i+1) ∈

Gk`(x
i+1) for all k ∈ {1, . . . , n} and ` ∈ {1, . . . ,m}. As

a consequence, by construction of Gk` in Theorem 1
and Lemma 2 of [4], we can deduce that

wd(Gk`(x
i+1)) ≤ wd(CiGk` + ḡk`‖xi+1 − xi‖)][−1, 1]).

(A.3)

In view of Theorem 5,

‖xi+1 − xi‖ ∈
∥∥∥∥h(xi,U i)∆ti + (J f + J gU i)h(Si,U i)∆t2i

2

∥∥∥∥ .
(A.4)

Then, using the definition of Si from (14), we have that

F k(Si) ⊆ CiFk + f̄k
∆ti‖h(xi,U i)‖∞

1−
√
n∆tiδi

[−
√
n,
√
n],

Gk,l(Si) ⊆ CiGk` + ḡk`
∆ti‖h(xi,U i)‖∞

1−
√
n∆tiδi

[−
√
n,
√
n].

Hence, h(Si,U i) ⊆ h(xi,U i)+ ∆ti‖h(xi,Ui)‖∞
1−
√
n∆tiδi

Hi, which,

after merging with (A.4), and plugging the result
into (A.3) and then (A.2), enables to obtain (15).

We next proceed to prove Theorem 4. Given the sets Sij ,
Si
j , we first define the inflated sets and their intersections

S̃ij(ε̄) := {x ∈ C̄ ∩ Cl(Cv,µv ) : ‖ĝi(x)>∇x2hj(x)‖ ≤ ε̄}
and S̃i

j(ε̄) :=
⋂j
q=1 S̃iq(ε̄), for j ∈ {1, . . . , 2n}. We note

that, based on the defined maximal solution, x(t) evolves
in Int(C̄) ∩ Cv,µv ⊂ C̄ ∩ Cl(Cv,µv ) for t ∈ [t0, tmax). Nev-
ertheless, we employ the closed set C̄ ∩ Cl(Cv,µv ) in the
aforementioned definitions to ease the following techni-
cal presentation and avoid notational jargon.

Similar to (12), (17) implies that the safety controller is
activated close to the boundary of Cv, i.e., in Cv,µv . In
what follows, we focus on the solution parts that belong
to Int(C̄) ∩ Cv,µv . In particular, let an i ∈ N̄ and τ1, τ2,
such that τ1 ≥ ti, τ2 ∈ (τ1, ti+1) and x(t) ∈ Int(C̄)∩Cv,µv
for all t ∈ [τ1, τ2). Note that τ2 can either be smaller
than tmax, implying that the system navigates, at t = τ2,
to Int(C̄) ∩ (Cv\Cv,µv ), or τ2 = tmax, implying that the
system converges to the system boundary as t → tmax.
That is, we examine the part of the solution that belongs
to the set Int(C̄)∩Cv,µv between two consecutive updates.

Let the solution restriction x̃(t) := x(t) for t ∈ [τ1, τ2).
Then it holds that x̃(t) ∈ Int(C̄)∩Cv,µv , and x̃(t) can be
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decomposed based on the iterator j of Algorithm 2 as

x̃(t) =



y1,I1(t), t ∈ T1,1 = [l1,I1 , r1,I1),

y1,I1+1(t), t ∈ T1,I1+1 = [l1,I1+1, r1,I1+1),

. . .

y1,F1(t), t ∈ T1,F1 = [l1,F1 , r1,F1),

y2,I2(t), t ∈ T2,I2 = [l2,I2 , r2,I2),

y2,I2+1(t), t ∈ T2,I2+1 = [l2,I2+1, r2,I2+1),

. . .

y2,F2
(t), t ∈ T2,F2

= [l2,F2
, r2,F2

),

y3,I3(t), t ∈ T3,I3 = [l3,I3 , r3,I3),

y3,I3+1(t), t ∈ T3,I3+1 = [l3,I3+1, r3,I3+1),

. . .

(A.5)

with l1,I1 = τ1, I1 = 1. The signal y`,j(t) stands for the
solution when hj(x) is active after the (` − 1)th reset
of the SafetyAdaptation algorithm in line 15 3 . Note also
that ` is finite due to the hysteresis mechanism and the
fact that γj > ε; We denote by ¯̀its maximum value. The
indices F`, I` are the last and first values of j (defining
hj(x)) at the (`−1)th reset (with I1 = 1). The respective
time intervals are defined as

r`,j = l`,j+1 := inf{t ∈ T`,j :

‖ĝi(x(t))>∇x2
hj(x(t))‖ ≤ ε},∀j ∈ {I`, . . . , F` − 1}

r`,F` = l`+1,I`+1
:= inf{t ∈ T`,F` :

∃ι ∈ {1, . . . , F`} s.t. ‖ĝi(x(t))>∇x2hι(x(t))‖ > ε̄},

with l1,I1 = τi, I1 = 1. Note that ι from the definition of
r`,F` is equal to I`+1 (see line 11 of Algorithm 2).

It holds that T`,j ⊂ [τ1, τ2) for all ` ∈ {1, . . . , ¯̀}, j ∈
[I`, . . . , F`]. Moreover, it holds that y`,j(t) ∈ S̃i

j−1(ε̄),

∀t ∈ T`,j , for all ` ∈ {1, . . . , ¯̀}, j ∈ {I`, . . . , F`}, where

S̃i
0(ε̄) := C̄ ∩ Cl(Cv,µv )\

⋃
j∈{1,...,2n} S̃ij(ε̄).

In view of Assumption 5 and since Int(C̄) ∩ Cv,µv is

bounded, S̃i
j(ε̄) are constituted by the union of a fi-

nite number (at least 1) of connected components, where
‖ĝi(x)>∇x2

hι(x)‖ ≤ ε̄ holds for all ι ∈ {1, . . . , j}, i.e.,

S̃i
j(ε̄) :=

⋃
q∈Li

j

K̃i,jq (ε̄)

for a finite index set Lij ⊂ N, j ∈ {1, . . . , 2n}. Since

K̃i,jq are closed, there exists a λ∗ such that K̃i,jq1 (λ∗) ∩
K̃i,jq2 (λ∗) = ∅, for q1, q2 ∈ Lij , q1 6= q2, j ∈ {1, . . . , 2n}.

3 The 0th reset corresponds to the initial time period when
no reset has occurred.

We show now that, by choosing a small enough ε̄, each

trajectory part y`,j(t) lies only in one of the K̃`,jq , for
j ∈ {1, . . . , 2n}.

Proposition 1 Let ` ∈ {1, . . . , ¯̀}, j ∈ {I`, . . . , F`},
I` ≥ 1 and assume that F` ≤ 2n + 1. Then the choice
ε̄ < λ∗√

2n
guarantees that there exists a q∗ ∈ Lij−1 such

that y`,j(t) ∈ K̃i,j−1
q∗ (λ∗), implying y`,j(t) /∈ K̃i,j−1

q (λ∗),

∀q ∈ Lij−1\{q∗}.

PROOF. Note first that
∑j−1
ι=1 ‖ĝi(y`,j(t))>∇x2

hι(y`,j(t))‖2
≤ (j − 1)ε̄2, since the latter forms the circumscribed

hyperellipsoid of the rectangular cuboid S̃i
j−1(ε̄) =⋂j−1

q=1 S̃iq(ε̄). Since j ≤ 2n + 1, by choosing ε̄ ≤ λ∗√
2n
≤

λ√
j−1

, we guarantee that
∑j−1
ι=1 ‖ĝ(y`,j(t))

>∇x2
hι(y`,j(t))‖2

≤ (λ∗)2, which is the inscribed hyperellipsoid of the

cuboid S̃i
j−1(λ∗). Hence, ‖ĝi(y`,j(t))>∇x2

hι(y`,j(t))‖
≤ λ∗, for all ι ∈ {1, . . . , j − 1}. Since K̃i,j−1

q (λ∗) are

disjoint, y`,j(t) belongs to only one K̃i,j−1
q∗ (λ∗), for some

q∗ ∈ Lij−1, and y`,j(t) /∈ K̃i,j−1
q (λ∗), ∀q ∈ Lij−1\{q∗}.

By using Proposition 1 and Assumption 5, we prove next
that by choosing a sufficiently large γn+1, we guarantee
that the iterator variable j of Algorithm 2 is bounded.

Proposition 2 There exist positive constants γ, ω such
that, if ε̄ < ω and γ2n+1 ≥ γ, there are no t ≥ t0 and
j ≥ 2n+ 1 such that ‖gi(x(t))>∇x2hj(x(t))‖ ≤ ε.

PROOF. Let j = 2n+ 1 in Algorithm 2, i.e.,

x(t) = y`,2n+1(t) ∈ S̃i
2n(ε̄) =

2n⋂
q=1

S̃iq(ε̄), t ∈ T`,2n+1

(A.6)
for some ` ∈ {1, . . . , ¯̀}. Assume that Si

2n = ∅. Since
Siq are closed, it can be concluded that there exists

a positive constant ω such that S̃i
2n(ω) = ∅. Hence,

by choosing ε̄ ≤ ω, we guarantee that S̃i
2n(ε̄) = ∅,

which contradicts (A.6). Hence, we conclude that
Si

2n 6= ∅, which, in view of Assumption 5, implies
that dim(Si

2n) = 0. Therefore, the set Si
2n is a zero-

dimensional manifold consisting of a finite set of points

{p1, p2, . . . , pm} of R2n for some m ∈ N. The set S̃i
2n(ε̄)

is the intersection of C̄ ∩ Cl(Cv,µv ) with a union of
closed rectangular hypercuboids around these points.
In particular, based on the discussion prior to Prop. 1,

S̃i
2n(ε̄) =

⋃
q∈Li2n

K̃i,2n
q (ε̄), where K̃i,2nq (ε̄) are the inter-

sections of these closed hypercuboids with C̄ ∩Cl(Cv,µv ).
According to Prop. 1, by choosing ε̄ small enough,

K̃i,2n
q (ε̄) are disjoint, and hence y`,2n+1(t) evolves in
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Fig. A.1. Illustration of Proposition 2. When x(t) navigates

to S̃i
2(ε̄) = S̃i1(ε̄)∩ S̃i2(ε̄), through the set S̃i1(ε̄), Algorithm 2

computes a new function h3(x). By choosing a small enough ε̄

and a large enough γ3, S̃i3(ε̄) = {x : ‖ĝi(x)>∇x2hj(x)‖ ≤ ε̄}
does not intersect S̃i

2(ε̄).

the intersection of C̄ ∩ Cl(Cv,µv ) with the hypercuboid
around one pη, for some η ∈ {1, . . . ,m}. By considering
the circumscribed hyperellipsoid of the hypercuboid,
we conclude that y`,2n+1(t) evolves in the intersection
of C̄ ∩ Cl(Cv,µv ) with the closed hyperellipsoid defined
by
∑n
ι=1 ‖ĝi(y`,2n+1(t))>∇x2

hι(y`,2n+1(t))‖2 ≤ 2nε̄2,
which we denote by E(pη, ε̄).

Let now xc := y`,2n+1(l`,2n+1) = y`,2n(r`,2n), i.e., the
first point when ‖ĝi(y`,2n(t))∇x2h2n(y`,2n(t))‖ ≤ ε
occurs, where it holds that ‖ĝi(xc)∇x2

h2n+1(xc)‖ ≥
γ2n+1. Consider a x ∈ E(pη, ε̄), representing the solution
y`,2n+1. By adding and subtracting ĝi(x)∇x2h2n+1(x)
to ‖ĝi(xc)∇x2

h2n+1(xc)‖, we obtain

‖ĝi(xc)∇x2h2n+1(xc)± ĝi(x)∇x2h2n+1(x)‖ ≤
‖ĝi(xc)∇x2h2n+1(xc)− ĝi(x)∇x2h2n+1(x)‖+

‖ĝi(x)∇x2h2n+1(x)‖ ≤ L̃i,2n+1‖xc−x‖+‖ĝi(x)∇x2h2n+1(x)‖,

where L̃i,2n+1 is the Lipschitz constant of the function
ĝi(x)∇x2h2n+1(x) in E(pη, ε̄). Since x, xc ∈ E(pη, ε̄),
there exists a constant ε̃ satisfying ‖xc−x‖ ≤ ε̃. By also
using ‖ĝi(xc)∇x2h2n+1(xc)‖ ≥ γ2n+1, we obtain

γ2n+1 ≤ 2L̃i,2n+1ε̃+ ‖ĝi(x)∇x2
h2n+1(x)‖.

By choosing γ2n+1 ≥ γ := 2L̃i,2n+1ε̃ + ε + χ, where
χ is an arbitrary positive constant, we guarantee that
‖ĝi(x)∇x2

h2n+1(x)‖ ≥ ε + χ, for all x ∈ E(pη, ε̄).

Therefore, since S̃i
2n(ε̄) ⊂ E(pη, ε̄), it holds that

S̃i
2n(ε̄)

⋂
S̃i2n+1(ε̄) = ∅, implying that the condition of

line 4 in Algorithm 2, which would lead to j = 2n + 2,
cannot be satisfied when j = 2n + 1, leading to the
conclusion of the proof.

Proposition 2 is illustrated in Fig. A.1 for a 2-
dimensional case.

Proof of Theorem 4: By following the first part of
the proof of Theorem 2, we obtain the boundedness of
β(h(x1(t))) ≤ β̄ for a constant β̄ and t ∈ [t0, tmax),
implying the boundedness of x1(t) in a compact set

C̃ ⊂ Int(C), and the boundedness of x2,r, e2, and ẋ2,r

for t ∈ [t0, tmax). Assume now that tmax is finite and
limt→tmax hv(x(t)) = 0, i.e., limt→tmax βv(hv(x(t))) =
∞, which we aim to contradict.

Let ī := itmax = max{i ∈ N̄ : ti < tmax}, and let t′ :=
inf{t′′ ≥ t̄i : x(t) ∈ Cv,µ′v ,∀t ∈ [t′′, tmax)}. Then it holds

that x(t) ∈ Cv,µ′v for all t ∈ [t′, tmax), and x(t) ∈ C̃v :=

{x ∈ R2n : hv(x) ≥ mint∈[t0,t′]{h(x(t))} > 0}, for all
t ∈ [t0, t

′]. Moreover, σµv (hv(x(t))) > σµv (µ′v) > 0, for
all t ∈ [t′, tmax). Let the solution restriction x(t), for
t ∈ [t′, tmax), which can be decomposed, as in (A.5), as

x(t) =



y1,I1(t), t ∈ T1,1 = [t′, r1,I1),

. . .

y1,F1
(t), t ∈ T1,F1

= [l1,F1
, r1,F1

),

y2,I2(t), t ∈ T2,I2 = [l2,I2 , r2,I2),

. . .

y2,F2
(t), t ∈ T2,F2

= [l2,F2
, r2,F2

),

. . .

with I` ≤ F` ∈ {1, . . . , 2n + 1}, for all ` ∈ {1, . . . , ¯̀}.
Moreover, T`,j ⊆ [t′, tmax), j ∈ {I`, . . . , F`}. Further, it
holds that fj,n(x) := ∇x1

hj(x)>x2 + ∇x2
hj(x)(f(x) +

g(x)un(x)) is bounded by a constant ‖fj,n(y`,j(t))‖ ≤
f̄j,n due to the continuity of hj(·), f(·), g(·), un(·), and
the boundedness of y(`, j) for t ∈ T`,j . Hence, by using
(19), we obtain

β̇j ≤ −κvσµv (µ′v)(1− ε)|βj,d|
(
|βj,d| −

f̄j,n
κvσµv (µ′v)(1− ε)

)
,

for all t ∈ T`,j . Therefore, it holds that β̇j < 0 when

|βj,d| >
√

f̄j,n
κvσµv (µ′v)(1−ε) . By invoking similar argument

as in the proof of Theorem 2, we conclude the bounded-
ness of βj(hj(y`,j(t))) < β̄j for all t ∈ T`,j . At the switch-
ing time instants l`,j = r`,j−1 it holds that hj(x(l`,j)) > 0
and hence the functions βj are well-defined. Since hj(·) <
hv(·), we conclude that βv(y`,j(t)) < β̄j(hj(y`,j(t))),
for all t ∈ T`,j , j ∈ {I`, . . . , F`}, which implies
that there exists a finite constant β̄v such that
βv(hv(x(t))) ≤ β̄v, for all t ∈ [t′, tmax), which con-
tradicts limt→tmax

βv(hv(x(t))) = ∞. By also using

x(t) ∈ C̃v, for all t ∈ [t0, t
′] and the compactness of C̃v,

we conclude the boundedness of x(t) and βv(hv(x(t))),
for all t ∈ [t0, tmax). By further invoking [44, Th. 2.1.4],
we conclude that tmax = ∞, and the boundedness of
x(t), β(h(x1(t))), u(x(t)) for all t ∈ [t0,∞).
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