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Abstract—This article presents MAPS2: a distributed algo-
rithm that allows multi-robot systems to deliver coupled tasks
expressed as Signal Temporal Logic (STL) constraints. Classical
control theoretical tools addressing STL constraints either adopt
a limited fragment of the STL formula or require approximations
of min/max operators, whereas works maximising robustness
through optimisation-based methods often suffer from local min-
ima, relaxing any completeness arguments due to the NP-hard
nature of the problem. Endowed with probabilistic guarantees,
MAPS2 provides an anytime algorithm that iteratively improves
the robots’ trajectories. The algorithm selectively imposes spatial
constraints by taking advantage of the temporal properties of
the STL. The algorithm is distributed, in the sense that each
robot calculates its trajectory by communicating only with its
immediate neighbours as defined via a communication graph.
We illustrate the efficiency of MAPS2 by conducting extensive
simulation and experimental studies, verifying the generation of
STL satisfying trajectories.

I. INTRODUCTION

AUTONOMOUS robots possess the capability to solve
significant problems when provided with a set of guide-

lines. These guidelines can be derived from either the physical
constraints of the robot, such as joint limits, or imposed as
human-specified requirements, such as pick-and-place objects.
An efficient method of imposing such guidelines is the utili-
sation of logic-based tools, which enable reasoning about the
desired behaviour of robots. These tools help us describe the
behaviour of a robot at various levels of abstraction, such
as interactions between its internal components to the overall
high-level behaviour of the robot [1]. This strong expressivity
helps us efficiently encode complex mission specifications into
a logical formula. Recent research has focused on utilising
these logic-based tools to express maximal requirements on the
behaviour of robots. Once these requirements are established,
algorithms are developed to generate trajectories that satisfy
them.

Examples of logic-based tools include formal languages,
such as Linear Temporal Logic (LTL), Metric Interval Tem-
poral Logic (MITL), and Signal Temporal Logic (STL). The
main distinguishing feature between these logics is their
ability to encode time. While LTL operates in discrete-time
and discrete-space domain, MITL operates in continuous-time

*This work was supported by the ERC CoG LEAFHOUND, the Swedish
Research Council (VR), the Knut och Alice Wallenberg Foundation (KAW)
and the H2020 European Project CANOPIES.

M. Sewlia and D. V. Dimarogonas are with Division of Decision and
Control, School of EECS, KTH Royal Institute of Technology, 100 44
Stockholm, Sweden. {sewlia, dimos}@kth.se

Christos K. Verginis is with Division of Signals and Systems, De-
partment of Electrical Engineering, Uppsala University, Uppsala, Sweden.
christos.verginis@angstrom.uu.se

x1

x2
x3

e1 e2

base1

base2 base3

arm1 arm2

Figure 1: Experimental setup with three mobile bases and two
6-dof manipulators

domain but only enforces qualitative space constraints. On the
other hand, STL allows for the expression of both qualitative
and quantitative semantics of the system in both continuous-
time and continuous-space domains [2]. STL thus provides a
natural and compact way to reason about a robot’s motion as
it operates in a continuously evolving space-time environment.
Although STL presents certain challenges, such as not being
able to cast into a discrete-time discrete-space paradigm for
which tractable planning algorithms already exist, we consider
STL-based tasks due to the additional logical structures pro-
vided by STL over continuous-time signals and the availability
of a robustness metric to determine the degree of satisfaction
of a formula [3].

Another important property of autonomous robots is their
ability to coordinate and work in teams. The use of multiple
robots is often necessary in situations where a single robot
is either insufficient, the task is high-energy demanding, or
unable to physically perform certain tasks. However, multi-
robot systems present their own set of challenges, such as
communication overload, the need for a central authority for
commands, and high computational demands. The challenge,
therefore, is to derive solutions for multi-robot problems util-
ising logic-based tools, ensuring the achievement of specified
high-level behaviour. The problem becomes more complex
when interdependent constraints are imposed between the
robots. This complexity is amplified when using a purely
distributed approach, i.e., when each robot computes its own
actions by communicating only with its neighbours, without
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access to the actions of other robots. Such an approach is
necessary to prevent communication network congestion and
minimise computational overheads.

In this article, we propose an algorithm that addresses
the multi-robot motion planning problem subject to coupled
STL tasks. The algorithm encodes these constraints into an
optimisation function and selectively activates them based
on the temporal requirements of the STL formula. While
doing so, each robot only communicates with its neighbours
and iteratively searches for STL satisfying trajectories. The
algorithm proposed is called MAPS2 - Multi-Robot Anytime
Motion Planning under Signal Temporal Logic Specifications.
The article’s contributions are summarised as follows:

• The algorithm ensures distributed trajectory generation to
satisfy STL formulas that consist of coupled constraints
for multiple robots.

• It reduces conservatism by eliminating the need for
approximations, samples in continuous time to avoid
abstractions, and achieves faster convergence by warm
starting with initial trajectories.

• It incorporates a wide range of coupled constraints (both
linear and nonlinear) into the distributed optimisation
framework, enabling the handling of diverse tasks such
as pick-and-place operations and time-varying activities
like trajectory tracking.

• We present extensive simulation and hardware experi-
ments that demonstrate the execution of complex tasks
using MAPS2.

Additionally, the algorithm presented is sound, meaning that
it produces a trajectory that meets the STL formula and is
complete, meaning that it will find such a trajectory if one
exists.

In our prior study [4], we addressed the STL motion
planning problem for two coupled agents. There, we extended
the conventional Rapidly-exploring Random Trees (RRT) al-
gorithm to sample in both the time and space domains. Our ap-
proach incrementally built spatio-temporal trees through which
we enforced space and time constraints as specified by the
STL formula. The algorithm employed a sequential planning
method, wherein each agent communicated and waited for the
other agent to build its tree. In contrast, the present work ad-
dresses the STL motion planning problem for multiple robots.
Here, our algorithm adopts a distributed optimisation-based
approach, where spatial and temporal aspects are decoupled to
satisfy the STL formula. Instead of constructing an incremental
tree, as done in the previous work, we introduce a novel metric
called the validity domain and initialise the process with an
initial trajectory. In the current research, we only incorporate
the STL parse tree and the Satisfaction variable tree from our
previous work (Section III-B here). Additionally, we present
experimental validation results and introduce a novel STL
verification architecture.

The rest of the paper is organised as follows. Section II
presents the related work, Section III presents the notations and
necessary preliminaries, Section IV formulates the problem of
this work, Section V presents the STL inclusion along with
the underlying assumptions and important definitions, Section
VI presents the main algorithm MAPS2 along with analyses

of the algorithm, Section VIII presents the experimental vali-
dation on a real multi-robot setup, while Section VII presents
simulations. Finally, Section IX concludes the paper.

II. RELATED WORK

In the domain of single-agent motion planning, different
algorithms have been proposed to generate safe paths for
robots. Sampling-based algorithms, such as CBF-RRT [5],
have achieved success in providing a solution to the motion
planning problem in dynamic environments. However, they
do not consider high-level complex mission specifications.
Works that impose high-level specifications in the form of
LTL, such as [6]–[9], resort to a hybrid hierarchical control
regime resulting in abstraction and explosion of state-space.
While a mixed integer program can encode this problem
for linear systems and linear predicates [10], the resulting
algorithm has exponential complexity, making it impractical
for high-dimensional systems, complex specifications, and
long duration tasks. To address this issue, [11] proposes a
more efficient encoding for STL to reduce the exponential
complexity in binary variables. Additionally, [12] introduces a
new metric, discrete average space robustness, and composes
a Model Predictive Control (MPC) cost function for a subset
of STL formulas.

In multi-agent temporal logic control, works such as [13],
[14] employ workspace discretisation and abstraction tech-
niques, which we avoid in this article due to it being com-
putationally demanding. Some approaches to STL synthesis
involve using mixed-integer linear programming (MILP) to
encode constraints, as previously explored in [15]–[17]. How-
ever, MILPs are computationally intractable when dealing with
complex specifications or long-term plans because of the large
number of binary variables required in the encoding process.
The work in [18] encodes a new specification called multi-
agent STL (MA-STL) using mixed integer linear programs
(MILP). However, the predicates here depend only on the
states of a single agent, can only represent polytope regions,
and finally, temporal operations can only be applied to a
single agent at a time. In contrast, this work explores coupled
constraints between robots and predicates are allowed to be of
nonlinear nature.

As a result, researchers have turned to transient control-
based approaches such as gradient-based, neural network-
based, and control barrier-based methods to provide algorithms
to tackle the multi-robot STL satisfaction problem [11]. Such
approaches, at the cost of imposing dynamical constraints
on the optimisation problem, often resort to using smooth
approximations of temporal operators at the expense of com-
pleteness arguments or end-up considering only a smaller
fragment of the syntax [19]–[22]. STL’s robust semantics are
used to construct cost functions to convert a synthesis problem
to an optimisation problem that benefits from gradient-based
solutions. However, such approaches result in non-smooth and
non-convex problems and solutions are prone to local minima
[23]. In this work, we avoid approximations and consider
the full expression of the STL syntax. The proposed solution
adopts a purely geometrical approach to the multi-robot STL
planning problem.



III. NOTATIONS AND PRELIMINARIES

The set of natural numbers is denoted by N and the set of
real numbers by R. With n ∈ N, Rn is the set of n-coordinate
real-valued vectors and Rn

+ is the set of real n-vector with
non-negative elements. The cardinality of a set A is denoted
by |A|. If a ∈ R and [b, c] ∈ R2, the Kronecker sum is defined
as a⊕[b, c] = [a+b, a+c] ∈ R2. We further define the Boolean
set as B = {⊤,⊥} (True, False). The acronym DOF stands
for degrees of freedom.

A. Signal Temporal Logic (STL)

Let x : R+ → Rn be a continuous-time signal. Signal
temporal logic [2] is a predicate-based logic with the following
syntax:

φ = ⊤ | µh | ¬φ | φ1U[a,b]φ2 | φ1 ∧ φ2 (1)

where φ1, φ2 are STL formulas and U[a,b] encodes the
operator until, with 0 ≤ a < b < ∞; µh is a predicate of
the form µh : RN → B defined by means of a vector-valued
predicate function h : RN → R as

µh =

{
⊤ h(x(t)) ≤ 0

⊥ h(x(t)) > 0
. (2)

The satisfaction relation (x, t) |= φ indicates that signal x
satisfies φ at time t and is defined recursively as follows:

(x, t) |= µh ⇔ h(x(t)) ≤ 0

(x, t) |= ¬φ ⇔ ¬((x, t) |= φ)

(x, t) |= φ1 ∧ φ2 ⇔ (x, t) |= φ2 ∧ (x, t) |= φ2

(x, t) |= φ1U[a,b]φ2 ⇔ ∃t1 ∈ [t+ a, t+ b] s.t. (x, t1) |= φ2

∧ ∀t2 ∈ [t, t1], (x, t2) |= φ1.

We also define the operators disjunction, eventually, and
always as φ1 ∨φ2 ≡ ¬(¬φ1 ∧¬φ2), F[a,b]φ ≡ ⊤U[a,b]φ, and
G[a,b]φ ≡ ¬F[a,b]¬φ, respectively. Each STL formula is valid
over a time horizon defined as follows.

Definition 1 ( [24] ). The time horizon th(φ) of an STL
formula φ is recursively defined as,

th(φ) =





0, if φ = µ

th(φ1), if φ = ¬φ1

max{th(φ1), th(φ2)}, if φ = φ1 ∧ φ2

b+max{th(φ1), th(φ2)}, if φ = φ1U[a,b]φ2.
(3)

In this work, we consider only time bounded temporal oper-
ators, i.e., when th(φ) < ∞. In the case of unbounded STL
formulas, it is only possible to either falsify an always operator
or satisfy an eventually operator in finite time, thus we consider
only bounded time operators.
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Figure 2: STL parse tree and satisfaction variable tree for the
formula in (4).

B. STL Parse tree

An STL parse tree is a tree representation of an STL formula
[4]. It can be constructed as follows:

• Each node is either a temporal operator node {GI ,FI},
a logical operator node {∨,∧,¬}, or a predicate node
{µh}, where I ⊂ R is a closed interval;

• temporal and logical operator nodes are called set nodes;
• a root node has no parent node and a leaf node has no

child node. The leaf nodes constitute the predicate nodes
of the tree.

A path in a tree is a sequence of nodes that starts at a
root node and ends at a leaf node. The set of all such paths
constitutes the entire tree. A subpath is a path that starts at
a set node and ends at a leaf node; a subpath could also
be a path. The resulting formula from a subpath is called
a subformula of the original formula. In the following, we
denote any subformula of an STL formula φ by φ̄. Each set
node is accompanied by a satisfaction variable τ ∈ {+1,−1}
and each leaf node is accompanied by a predicate variable
π = µh where h is the corresponding predicate function. A
signal x satisfies a subformula φ̄ if τ = +1 corresponding
to the set node where the subpath of φ̄ begins. Subsequently,
τ(root) = +1⇔ (x, t) |= φ where root is the root node of φ.
An analogous tree of satisfaction and predicate variables can
be drawn, called satisfaction variable tree. The satisfaction
variable tree borrows the same tree structure as the STL parse
tree. Each set node from the STL parse tree maps uniquely to
a satisfaction variable τi and each leaf node maps uniquely to
a predicate variable πi, where i is an enumeration of the nodes
in the satisfaction variable tree. An example of construction
of such trees is shown below.

Example 1. The STL parse tree and the satisfaction variable
tree for the STL formula

φ = FI1

(
µh1 ∨ GI2(µh2)

)
∧ GI3FI4(µ

h3) ∧ GI5(µh4). (4)

are shown in Figure 2. From the trees, one obtains the
implications τ2 = +1 =⇒ (x, t) |= FI1

(
µh1 ∨ GI2(µh2)

)
,

and τ7 = +1 =⇒ (x, t) |= GI5(µh4).



IV. PROBLEM FORMULATION

We start by presenting the multi-robot system and defining
the types of constraints, followed by presenting the topology
and finally stating the problem being addressed.

A. Multi-robot system

Consider a multi-robot system with states x =
[x⊤

1 ,x
⊤
2 , . . . ]

⊤ where each robot i ∈ V = {1, . . . ,N} consists
of states xi ∈ Rni subject to state constraints xi ∈ Xi ⊆ Rni .
Some robots further need to satisfy coupled state constraints
xi ∈ Xij(xj). Then, we call the robot j a neighbour of the
robot i and write j ∈ Ni where Ni is the set of all such
neighbours of robot i. These state constraints are the task
specifications derived from the STL formula i.e., they represent
tasks to be executed by the robots. Additionally, these con-
straints can entail obstacle avoidance and are therefore outlined
within the STL formula. The state constraints are defined by
the inequalities

αhi(xi) ≤ 0, α ∈ {1, 2, . . . , ri}
βhij(xi,xj) ≤ 0, j ∈ Ni, β ∈ {1, 2, . . . , si}

(5)

where αhi and βhij are continuous functions; αhi : Rni → R
specifies constraints on robot i and ri is the number of such
constraints, and, βhij : Rni × Rnj → R specifies coupled
constraints between robots i and j with si being the number
of such constraints. The state constraint sets are then defined
as,

Xi := {xi ∈ Rni |αhi(xi) ≤ 0}
Xij(xj) := {xi ∈ Rni |βhij(xi,xj) ≤ 0}.

We further consider that βhij(xi,xj) =βhji(xj ,xi). The
inequalities αhi and βhij are predicate function inequalities of
the form (2). A predicate function inequality h(xi(t)) ≤ 0 cor-
responds to state constraint αhi(xi) ≤ 0 and h(xi(t),xj(t)) ≤
0 corresponds to the state constraint βhij(xi,xj) ≤ 0. Next,
we state a common assumption regarding the STL formula.

Assumption 1. The STL formula is in positive normal form
i.e., it does not contain the negation operator.

The above assumption does not cause any loss of expression
of the STL syntax (1). As shown in [17], any STL formula
can be written in positive normal form by moving the negation
operator to the predicate.

B. Graph topology

The coupled state constraints βhij define an undirected
graph over the multi-robot system. The graph is given by
G = {V,E} where E = {(i, j)|j ∈ Ni} is the set of edges;
E defines the communication links between the robots in V.

C. Problem statement

Let W ⊂ R
∑

i ni be defined as the workspace in which
the robots operate, and let S ⊆ W be a compact set where a
trajectory y : [0, th(φ)]→ S satisfies the STL formula (as in
(1)). The set S is referred to as the satisfiable set. It is assumed

that obstacles are defined in the STL formula, making S the
free space and ensuring that any continuous trajectories within
S satisfies the STL formula. Moreover, we have the following
feasibility assumption:

Assumption 2. The set S is nonempty, i.e., S ≠ ∅.
We consider the following problem formulation.

Problem 1. Given an STL formula φ that specifies tasks
in a multi-robot system with N robots, design a distributed
algorithm to find the trajectory y = [y⊤

1 ,y
⊤
2 , . . . ,y

⊤
N]⊤ :

[0, th(φ)] → S for each robot i ∈ {1, . . . , N}, by only
communicating with neighbours j ∈ Ni.

V. STL INCLUSION

This section presents the STL inclusion within our problem
framework. First, we delve into including spatial constraints in
Section V-A, followed by temporal inclusion in Section V-B.

A. Distributed Optimisation
The planning problem is solved in a distributed way where

each robot maximises a local optimality criterion. All robots
solve their local optimisation problem by communicating with
their neighbours. For robot i, the constraints (5) are cast into
the cost function F i as

F i =

ri∑

α=1

1

2
max

(
0, αhi

)2

+

si∑

β=1

1

2
max

(
0, βhij

)2

, (6)

and the resulting optimisation problem takes the form

minF i (7)

whose solution x⋆
i satisfies F i(x⋆

i ) = 0. The robots solve their
respective optimisation problem cooperatively in a distributed
manner via inter-neighbour communication. This makes the
problem distributed, as every interaction between robots is
part of the communication graph. The optimisation problem
will be used in the main algorithm presented in Section VI
ALgorithm 1, where we detail the approach to solve (7). Given
the nature of the optimisation problem, there is a trade off
between robustness and optimisation performance: since x⋆

converges to the boundaries imposed by the STL formula
constraints making it vulnerable to potential perturbations.
However, introducing a slack variable into the equation can
enhance robustness, albeit at the cost of sacrificing complete-
ness arguments.

Example 2. Consider a system with 3 agents and the cor-
responding states {x1, x2, x3}, and let the STL formula be:
φ = (∥x1 − x2∥ > 5) ∧ (∥x2 − x3∥ < 2); then, the functions
F i, for i ∈ {1, 2, 3}, are,

F 1 =
1

2
max(0, 5− ∥x1 − x2∥)2

F 2 =
1

2
max(0, 5− ∥x1 − x2∥)2 +

1

2
max(0, ∥x2 − x3∥ − 2)2

F 3 =
1

2
max(0, ∥x2 − x3∥ − 2)2.

Note that the optimisation problem here only considers the
spatial aspect and temporal inclusion is discussed below.



B. Validity Domain

We now introduce the concept of validity domain, a time
interval associated with every predicate and defined for every
path in the STL formula. This interval represents the time
domain over which each predicate applies and is defined as
follows:

Definition 2. The validity domain vd(φ̄) of each path φ̄ of
an STL formula φ, is recursively defined as

vd(φ̄) =





0, if φ̄ = µh

vd(φ̄1), if φ̄ = ¬φ̄1

[a, b], if φ̄ = G[a,b]µh

a⊕ vd(φ̄1), if φ̄ = G[a,b]φ̄1, φ̄1 ̸= µh

t⋆ + T ⋆ ⊕ vd(φ̄1), if φ̄ = F[a,b]φ̄1.
(8)

where T ⋆ ∈ [a, b] and t⋆ = {t | (φ̄, t) |= F[a,b]φ̄1} is
a variable with initial value 0 that changes over time and
captures the last instance of satisfaction for the eventually
operator. This is necessary due to the redundancy of the
eventually operator. We must ascertain the specific instances
where the eventually condition is met to ensure finding a fea-
sible trajectory. Additionally, we need to maintain the history
of t⋆ for nested temporal operators which require recursive
satisfaction. The validity domain is determined for each path
of an STL formula in a hierarchical manner, beginning at the
root of the tree, and each path has a distinct validity domain.
The number of leaf nodes in an STL formula is equivalent
to the total number of validity domains. In Definition 2, we
do not include the operators ∧ and ∨ because they do not
impose temporal constraints on the predicates and thus inherit
the validity domains of their parent node. If there is no parent
node, operators ∧ and ∨ inherit the validity domains of their
child node.

The validity domain is specially defined in the following
cases. If a path contains only predicates, the validity domain
of µh is equal to the time horizon of φ (i.e., vd(µh) = th(φ)).
Furthermore, if a path contains nested formulas with the
same operators, such as φ̄ = G[1,10]G[0,2]µh, then the validity
domain of φ̄ is equal to the time horizon of the path (i.e.,
vd(φ̄) = th(φ̄)). For example, vd(G[1,10]G[0,2]µh) = th(φ̄) =
[1, 12].

Example 3. Consider the following examples of the validity
domain:

• φ1 = G[5,10]µh, then vd(φ1) = [5, 10], which is the
interval over which µh must hold.

• φ2 = F[5,10]µ
h, then t⋆ = 0 , T ⋆ ∈ [5, 10] and vd(µh) =

0. Therefore, vd(φ2) = T ⋆ ∈ [5, 10] is the instance when
µh is required to hold.

• φ3 = F[5,10]G[0,2]µh, then t⋆ = 0, T ⋆ ∈ [5, 10],
vd(G[0,2]µh) = [0, 2]. Therefore, vd(φ3) = 0 + T ⋆ ⊕
[0, 2] = [T ⋆, T ⋆ +2] is the interval over which µh needs
to hold such that φ3 is satisfied.

• φ4 = G[2,10]F[0,5]µ
h, then a = 2 and vd(φ4) =

2 ⊕ vd(F[0,5]µ
h) = 2 + 0 + T ⋆ where T ⋆ ∈ [0, 5]. For

example, if T ⋆ = 1, then vd(φ4) = 3 is the time instance

when µh needs to hold. Once µh = ⊤, then t⋆ = T ⋆ and
the new vd(φ4) = 2 + 1 + T ⋆ where T ⋆ ∈ [0, 5].

• φ5 = F[0,100]G[5,10]F[0,1]µ
h, then t⋆ = 0, T ⋆ ∈ [0, 100]

and vd(φ5) = T ⋆+a⊕vd(F[0,1]µ
h). Suppose T ⋆ = 50,

then vd(φ5) = 55⊕ vd(F[0,1]µ
h) and so on.

Regarding the STL formula in equation (4), the va-
lidity domains are defined for the following paths:
FI1µ

h1

, FI1GI2µh2

, GI3FI4µ
h3

, and GI5µh4

.

We use the following notational convenience in this work:
if a parent node of a leaf node of a path φ is an eventually
operator we denote the corresponding validity domain by
vdF (), and, if the parent node of a leaf node of a path φ is an
always operator we denote the corresponding validity domain
by vdG(). The notation vdF () indicates that the predicate
needs to hold at some instance in the said interval, and
vdG() indicates that the predicate needs to hold throughout
the interval.

In the next Section, we present how to integrate the validity
domain with the optimisation problem in (7), completing thus
the spatial and temporal integration.

VI. MAIN RESULTS

In this section, we present the algorithm for generating
continuous trajectories that meet the requirements of a given
Signal Temporal Logic (STL) formula φ. The algorithm is
executed by the robots offline in a distributed manner, in the
sense that they only communicate with their neighbouring
robots. The algorithm builds a tree Ti = {Vi, Ei} for robot
i where Vi is the vertex set and Ei is the edge set. Each vertex
z ∈ R+ × Rni is sampled from a space-time plane.

In what follows, we give a high-level description of the
algorithm. The general idea is to start with an initial trajectory
that spans the time horizon of the formulas th(φ), then
repeatedly sample random points along the trajectory and use
gradient-based techniques to find solutions that satisfy the
specification at these points. More specifically, the algorithm
begins by connecting the initial and final points zi0 = {0,xi

0}
and zif = {tif ,xi

f} with a single edge E0i = (zi0, z
i
f ). The

algorithm then randomly selects a time instant t0 ∈ [0, tf(φ)]
and uses linear interpolation to determine the states of each
robot at that time, denoted by x0. The robots then solve the
distributed optimisation problem (7) to find new positions
x⋆ that meet the specification at time t0. The algorithm
then repeats this process at a user-specified time density,
updating the trajectories as necessary. The result is a trajectory
that asymptotically improves the task satisfaction of the STL
formula.

Example 4. Before we get into the technical details, let us
consider an example of 4 agents, represented by the colours
blue, green, yellow and magenta, to illustrate the procedure.
Suppose, at a specific instance in time, say t0, the STL formula
requires agent 1 (blue) and agent 2 (green) to be more than
6 units apart and agent 3 (yellow) and agent 4 (magenta) to
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Figure 3: Illustration of the proposed algorithm

be closer than 6 units i.e., for ϵ > 0,

G[t0−ϵ,t0+ϵ]

(
(blue and green are farther than 6 units apart)∧

(yellow and magenta are closer than 6 units)
)

We begin the process by connecting the initial and final points
zi0 and zif with an initial trajectory for all agents, as shown
in Figure 3a. Each agent’s vertex set is Vi and consists of the
start and end points denoted by zi0 and zif respectively, while
its edge set is Ei which contains only one edge connecting the
start and end points. The initial trajectory of agent i is the tree
Ti = {Vi, Ei}. From the initial line trajectory, the algorithm
randomly selects a point at time instance t0 from the entire
time domain and use linear interpolation to determine the state
of each agent at that time. The agents solve (7) using the initial
position x0 to find new position x⋆, as seen in Figure 3b. As
shown in Figure 3c, the distributed optimisation problem (7) is
solved, resulting in a solution x⋆, in which agent 1 and agent
2 are positioned so that they are more than 6 units apart and
agent 3 and agent 4 remain undisturbed. The latter is the
result of using functions of the form 1/2max(0, hij)

2, and
since agent 3 and agent 4 already satisfy the requirements,
i.e., hij < 0, the function is valued 0. The newly determined
positions of agents 1 and 2 are added to the tree, allowing the
trajectory to be shaped to meet the requirements. The updated
trajectory can be seen in Figure 3d. This process of randomly
selecting a point in time, determining the state of the agents
and updating their positions is repeated for a user-defined
number of times L, to ensure that the trajectory satisfies the
STL formula φ throughout the time horizon.

A. The overall algorithm

Here, we provide the main algorithm used to solve the
problem at hand. The algorithm is called MAPS2 (short for
‘multi-robot anytime motion planning under signal temporal
logic specifications’) and consists of the following functions: a
function called GradientDescent() that addresses equa-
tion (7), a function called SatisfactionVariable()
which calculates the satisfaction variables discussed in Section
III-B, and a function called ValidityDomain() which
calculates the intervals during which a predicate function is
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Figure 4: Architecture of the provided algorithm

active. The algorithm is executed independently by each robot.

The architecture of the algorithm is depicted in Figure 4
and proceeds as follows: first, the algorithm starts with an
STL formula φ, along with the initial and final conditions.
The initial conditions zi0 = {ti0,xi

0} depend on the robot’s
initial position and time. The final condition is chosen to be
zif = {th(φ)+ ϵ,xi

f} where ϵ > 0 and xi
f ∈ Rni is a random

vector. This allows the algorithm to enforce STL tasks at a time
instance th(φ). Additionally, all robots initialise a random
seed, and determine their neighbours based on the coupled
constraints. The algorithm requires a maximum number of
nodes, step size and stopping criterion for the optimisation
problem.

1) MAPS2: The algorithm is presented in Algorithm 1; it
starts with an initial trajectory connecting zi0 and zf0 (see
lines 1-3) and takes a random seed as input. Such a seed
allows all robots to pick the same random number over



the time horizon of the formula. It continues by repeatedly
sampling a time point, interpolating states, using gradient
descent to find a satisfactory solution, and expanding the
tree with new vertices until the total number of vertices L
is reached, see lines 5-14. In line 7, the SearchSort()

Algorithm 1: MAPS2

Input: Initial condition zi0 = {ti0,xi
0}, Final condition

zif = {tif ,xi
f}, Maximum number of nodes L,

random seed, step size δ, stopping criterion η
Output: Ti

1 Vi ← Vi ∪ zi0 ∪ zif ;
2 Ei ← Ei ∪ {zi0, zif};
3 Ti ← {Vi, Ei};
4 j ← 0;
5 while j ≤ L and τ(root) ̸= +1 do
6 t0 ← generate random number in [ti0, t

i
f ];

7 index← SearchSort(Vi, t0) ;
8 ziinter ← Interpolate(Vi, index);
9 ziopt, τ ← GradientDescent(ziinter, δ, L′, η);

10 Vi ← Vi ∪ ziopt ;
11 Ei ← Ei \ {ziindex, z

i
index+1};

12 Ei ← Ei ∪ {ziindex, z
i
opt};

13 Ei ← Ei ∪ {ziopt, z
i
index+1};

14 Ti ← {Vi, Ei};
15 j ← j + 1;
16 if j = L then j ← 0, and ∀F , τ(F) = −1;

function separates the vertices Vi into two sets based on
their time values: one set with time values lower than t0

(the vertex with the highest time in this set is indexed with
‘index’), and another with values greater than t0 (the vertex
with the lowest time in this set is indexed with ‘index + 1’).
The corresponding vertices are ziindex = {tiindex,x

i
index} and

ziindex+1 = {tiindex+1,x
i
index+1}. Then, the algorithm linearly

interpolates in line 8 via the function Interpolate() to
obtain the vertex ziinter = {t0,xi

inter}. This is obtained by
solving for xi

inter element-wise as the solution of

xi
inter =

(xi
index+1 − xi

index

tiindex+1 − tiindex

)
(t0 − tiindex) + xi

index.

The vertex ziinter is the initial condition to solve the optimi-
sation problem (7); and once a solution ziopt is obtained, it
is added to the vertex set Vi in line 10. The edge set Ei is
reorganised to include ziopt in lines 11-13. Additionally, as a
safeguard, if no solution is found after L iterations , line 16
resets the satisfaction variable of all eventually operators to
−1 and begins the search again.

2) GradientDescent: The function is
presented in Function 2, and as the name suggests,
GradientDescent() computes the optimal value, zopt,
by solving the problem presented in equation (7). This
allows the robots to compute vertices that locally satisfy the
STL formula. In lines 17-21, we implement the standard
gradient descent algorithm with a step size of δ and a
stopping criterion of η, as described in Algorithm 9.3 of

Function 2: GradientDescent
Input: ziinter = {t0,xi

inter}, step size δ,
maximum iterations L′, stopping criterion η

Output: ziopt, τ

1 Receive neighbour states xj
neigh for all j ∈ Ni;

2 forall φ̄ in φ do
3 vdij(φ̄)’s ← ValidityDomain (φ̄, t⋆, t0);

4 k ← 0;
5 λij = 0, ∀j;
6 case t0 ∈ vdFij(φ̄) do
7 λij = 1;

8 case t0 ∈ vdGij(φ̄) do
9 λij = 1;

10 case t0 ∈ ⋂
k vd

F
ik(φ̄) do

11

{
λij = 1 for any one j = k

λij = 0 otherwise

12 case t0 ∈ ⋂
k vd

G
ik(φ̄) do

13 λik = 1 for all k;

14 F i =
∑

j λij max(0, hij)
2;

15 ∇F i ← GradientComputation(xi
inter,x

j
neigh);

16 ∆xi = −∇F i;
17 while F i ≥ η do
18 xi := xi + δ∆xi;
19 Receive neighbour states xj for all j ∈ Ni;
20 ∇F i ← GradientComputation(xi,xj);
21 ∆xi = −∇F i;
22 k ← k + 1;
23 if k > L′ then break;

24 ziopt = {t0,xi};
25 forall φ̄ in φ do
26 if t0 ∈ vdij(φ̄) then
27 if F i(xi) ≥ 0 then
28 node = leaf(φ̄);
29 τ(leaf) = +1;
30 while node ̸= root(φ̄) do
31 node = parent(node);
32 τ(node), t⋆ ←

SatisfactionVariable
(node,ziopt);

33 else reset τ(φ̄), t⋆;

34 return ziopt, τ(φ)

[25]. To evaluate the gradient, which depends on the states
of the neighbouring robots, each robot communicates with
its neighbours, as demonstrated in lines 1 and 19. This is
the only instance of communication in the algorithm. In line
20, the function GradientComputation() computes
the gradient, either analytically or numerically. Once zopt is
determined, the satisfaction variables are updated in Function
3. An additional stopping criterion is implemented in line
23 in case the problem does not converge when there are
conflicting predicates at a specific time instance. This occurs,



for example, if φ = F[0,5]G[0,5]µ1 ∧ G[5,10]µ2, and there is
a conflict between µ1 and µ2. In such cases, it becomes
necessary for µ1 to be true exclusively within the interval
[0, 5][s], and for µ2 to hold exclusively within the interval
[5, 10][s].

Based on the validity domain, the algorithm determines
which predicate functions are active in (6) at every sampled
time instance. The Function ValidityDomain() in line 3
calculates the validity domains based on Definition 2. Among
the set of predicate functions {hij |∀j ∈ Ni} associated with a
robot, a binary variable λij ∈ {0, 1} is assigned to determine
whether a predicate function is active or not. It is set to 1 if the
predicate is active and 0 otherwise. We distinguish three cases:
if the sampled point belongs to the validity domain of a single
eventually operator and/or a single always operator, λij = 1. If
the sampled point belongs to the validity domain of multiple
eventually operators, we activate only one of them, that is,
λij = 1 only for one of them. This avoids enforcing conflicting
predicates as it is can happen that multiple eventually operators
may not be satisfied at the same time instance; see lines 6-13.

In lines 25-33, the algorithm updates the satisfaction vari-
able of all paths in the STL formula that impose restrictions on
agent i’s states. The algorithm goes bottom-up, starting from
the leaf node to the root node. First, it determines if ziopt is the
desired minimum in line 27, and in lines 28-32, the algorithm
updates the satisfaction variable of all nodes in the path φ̄
through the function SatisfactionVariable(). If ziopt
is not the desired minimum, then all the satisfaction variables
of the path φ̄ are reset to −1 in line 34. This could result from
conflicting predicates at the same time instance.

Function 3: SatisfactionVariable
Input: φ̄, ziopt = {t0,xi}
Output: τ, t⋆

1 case FI do
2 τ(FI) = +1;
3 t⋆ = t0;
4 return τ, t⋆;
5 case GI do
6 if robust(GI ) ≥ 0 then
7 τ(GI) = +1;
8 return τ, t⋆

9 case ∧ do
10 τ(∧) = +1;
11 return τ, t⋆

3) SatisfactionVariable: This function, presented
in Function 3, updates the satisfaction variable tree, τ . The
aforementioned procedure decides if the satisfaction variable
corresponding to each node listed is +1 (satisfied) or −1 (not
yet satisfied). Considering the premise that the predicate is
true, as indicated in line 27 of Function 2, we evaluate the
satisfaction variable as follows:

• FI : The satisfaction variable of the eventually operator
is updates along with the t⋆. This updated t⋆ is used to
determine the new validity domains, see Example 3 for
an illustration of this procedure.
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Figure 5: Disjunction representation for disjunctive compo-
nents using STL parse tree.

• GI : Unlike the eventually operator, determining τ(GI)
necessitates the computation of robustness over the entire
validity domain of the operator. The function robust()
uses the robust semantics of the STL presented in [2].
Particularly, it samples a user-defined number of points
in the interval vdGij() and computes inft∈vdG

ij
hij(x

i(t)).
If the robustness is non-negative, indicating satisfaction
of the task, the value of τ(GI) is updated to +1.

• ∧: This set node returns the satisfaction variable as +1
since it does not impose spatial or temporal restrictions.

B. Disjunctions

In our approach, we handle disjunctions as follows. Given
an STL formula of the form φ =

∨
i∈{1,...,K} ϕi i.e. φ =

∨(ϕ1, ϕ2, . . . , ϕK), we split it into K STL formulae and indi-
vidually solve the planning problem for all φ = ϕ1, φ = ϕ2,
. . . , φ = ϕK . As an example, consider the STL formula (4);
we branch into two STL formulae φ = FI1µ1∧GI3FI4(µ3)∧
GI5(µ4) and φ = FI1GI2(µ2) ∧ GI3FI4(µ3) ∧ GI5(µ4), as
illustrated in Figure 5. Condition τ(root) ̸= +1 on line 5
of Algorithm 1 terminates the search once any branch of
disjunction is satisfied.

C. Analysis

In this section, we provide arguments for probabilistic
completeness of the algorithm along the lines of [26]. Let
a trajectory y be located on the boundary of the set S,
the satisfiable set, dividing W into a feasible set S and an
infeasible set W\S .

Starting with an initial linear trajectory in the augmented
time-space domain, each uniformly sampled time point t0

corresponds to a position xinter either in S or W\S . If
xinter ∈ S, we leave it unchanged as it meets the requirements.
But if xinter /∈ S, we use gradient descent to reach a point on
y, since it lies on the boundary of the constraints’ set.

Next, divide the trajectory y : [0, th(φ)] → S into L + 1
points xi, where 0 ≤ i ≤ L and y(th(φ)) = xf = xL by
dividing the time duration into equal intervals of δt. Without
loss of generality, assume that the points xi and xi+1 are
separated by δt in time. With Lδt = th(φ), the probability of
sampling a point in an interval of length δt can be calculated
as p = δt

th(φ) . If δt << th(φ), then p < 1/2. Denote the
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sequential covering class1 of trajectory y as Yδt(xi). The
length of Yδt(xi) is δt in the time domain and is centered at
xi. See Figure 6 for reference. A trial is counted as successful
if we sample a point t0 within the interval δt/2 on either side
of xi, that is, within Yδt(xi). If there are L successful trials,
the entire trajectory y is covered, and the motion planning
problem is solved. Consider k total samples, where k ≫ L,
and treat this as k Bernoulli trials with success probability p
since each sample is independent with only two outcomes. We
are now ready to state the following proposition.

Proposition 1. Let a constant L and probability p such that
p < 1

2 . Further, let k represent the number of samples taken by
the MAPS2 algorithm. Then, the probability that MAPS2 fails
to find a path after k samples is at most (k−L)p

(kp−L)2 .

Proof. The probability of not having L successful trials after
k samples can be expressed as:

P[Xk ≤ L] =

L−1∑

i=0

(
k

i

)
pi(1− p)k−i

and according to [27], if p < 1
2 , we can upper bound this

probability as:

P[Xk ≤ L] ≤ (k − L)p

(kp− L)2
.

As p and L are fixed and independent of k, the expression
(k−L)p
(kp−L)2 approaches 0 with increasing k. Therefore, with
uniform sampling, the algorithm MAPS2 is probabilistically
complete.

The effectiveness of MAPS2 has been demonstrated through
its ability to locate a solution if it exists, which makes
it probabilistically complete. Furthermore, every position x
added to the tree is guaranteed to be in S, affirming the
soundness of the algorithm.

VII. SIMULATIONS

In this section, we present simulations of various scenarios
encountered in a multi-robot system. Restrictions are imposed
using an STL formula and MAPS2 is utilised to create trajec-
tories that comply with the STL formula. In the following we
consider 4 agents, with δ = 0.1, η = 0.01 and L = L′ = 100.
The simulations were run on an 8 core Intel® Core™ i7 1.9GHz
CPU with 16GB RAM.

1Meaning y ⊂
⋃L

x=i Yδt (xi)

1) Collision avoidance: We begin with a fundamental re-
quirement in multi-robot systems: avoiding collisions. In this
scenario, it is assumed that all agents can communicate or
sense each other’s positions. The following STL formula is
used to ensure collision avoidance in the interval 20[s] to 80[s]:

φ = G[20,80](∥xi − xj∥ ≥ 1)

where {i, j} ∈ {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}.
As depicted in Figure 7a, all four agents maintain a distance of
at least 1 unit from each other during the interval [20, 80][s].
The maximum computation time by any agent is 0.1143[s].

2) Rendezvous: The next scenario is rendezvous. We use
the eventually operator to express this requirement. The STL
formula specifies that agents 1 and 3 must approach each
other within 1 distance unit during the interval [40, 60][s] and
similarly, agents 2 and 4 must meet at a minimum distance of
1 unit during the same interval. The STL formula is:

φ = F[40,60](∥x1 − x3∥ ≤ 1 ∧ ∥x2 − x4∥ ≤ 1).

As seen in Figure 7b, agents 1 and 3 and agents 2 and 4
approach each other within a distance of 1 unit during the spec-
ified interval. It’s worth noting that the algorithm randomly
selects the specific time t⋆ within the continuous interval
[40, 60][s] at which the satisfaction occurs. The maximum
computation time by any agent is 0.0637[s].

3) Stability: The last task is that of stability, which is
represented by the STL formula F[a1,b1]G[a2,b2]µ. This formula
requires that µ must always hold within the interval [t⋆ +
a2, t

⋆ + b2], where t⋆ ∈ [a1, b1]. This represents stability, as it
requires µ to always hold within the interval [t⋆+a2, t

⋆+ b2],
despite any transients that may occur in the interval [a1, t⋆).
Figure 7c presents a simulation of the following STL formula:

φ = F[0,100] G[0,20]
(
(1.9 ≤ x1 ≤ 2.1) ∧ (3.9 ≤ x2 ≤ 4.1)

∧ (5.9 ≤ x3 ≤ 6.1) ∧ (7.9 ≤ x4 ≤ 8.1)
)

where t⋆ = 63.97[s]. The maximum computation time by any
agent is 0.0211[s].

4) Recurring tasks: The next scenario is that of recurring
tasks. This can be useful when an autonomous vehicle needs
to repeatedly survey an area at regular intervals, a bipedal
robot needs to plan periodic foot movements, or a ground
robot needs to visit a charging station at specified intervals.
The STL formula to express such requirements is given by
G[a1,b1]F[a2,b2]µ, which reads as ‘beginning at a1[s], µ must
be satisfied at some point in the interval [a1 + a2, a1 + b2][s]
and this should be repeated every [b2 − a2][s].’ A simulation
of the following task is shown in Figure 7d:

φ = G[0,100]F[0,20](∥x1 − x3∥ ≤ 1).

Every 20[s], the condition |x1 − x3| ≤ 1 is met. It’s worth
noting that the specific time t⋆ at which satisfaction occurs is
randomly chosen by the algorithm. The maximum computation
time by any agent is 0.2017[s].
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Figure 7: Simulation results of MAPS2 with four agents.
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5) Overall case study: In this case study, we demonstrate
the application of the aforementioned scenarios by setting up
the following tasks:

• Agent 1 is always stays above 8 units.
• Agents 2 and 4 are required to satisfy the predicate x2

2+
x2
4 ≤ 2 within the time interval [10, 30][s].

• Agent 3 is required to track an exponential path within
the time interval [20, 60][s].

• Agent 2 is required to repeatedly visit Agent 1 and Agent
3 every 10s within the interval [30, 50][s].

• Agent 1 is required to maintain at least 1 unit dis-
tance from the other three agents within the interval
[80, 100][s].

The STL formula of the above tasks is as follows:

φ = (x1 ≥ 8) ∧ G[10,30](x2
2 + x2

4 ≤ 2)∧
G[20,60](∥x3 − 50 exp(−0.1t)∥ ≤ 0.05)∧
G[30,50]F[0,10]

(
(∥x2 − x1∥ ≤ 0.5) ∧ (∥x2 − x3∥ ≤ 0.5)

)
∧

F[79.9,80.1]G[0,20]
(
(∥x1 − x2∥ ≥ 1) ∧ (∥x1 − x3∥ ≥ 1)

∧ (∥x1 − x4∥ ≥ 1)
)

The parameter L was increased to 1000 and η was decreased
to 0.001. In Figure 8, we show the resulting trajectories of each
agent generated by MAPS2 satisfying the above STL formula.
The maximum computation time by any agent is 4.611[s].

Remark 1. To guarantee completeness, our focus in this
work is directed towards the planning problem, specifically
the generation of trajectories that fulfil a specific criterion,
rather than the mechanics of how the agent moves or the
precise control techniques used to execute the trajectory. This
approach leads to the production of non-smooth trajectories,
as seen in the simulations. To address this, we can apply a
smoothing procedure to the trajectories using B-Splines, taking
into account the velocity and acceleration constraints of the
robots, see [28]. Furthermore, to the best of our knowledge,
there has been no prior study that tackles the distributed
multi-robot STL planning problem under nonlinear, nonconvex
coupled constraints; thus a comparison study is not in order.

VIII. EXPERIMENTS

We now present an experimental demonstration of the pro-
posed algorithm. The multi-robot setup involves three robots,
as shown in Figure 1, and consists of 3 mobile bases and two
6-DOF manipulator arms. The locations of the three bases are
denoted as x1 ∈ R2, x2 ∈ R2, and x3 ∈ R2, respectively. Base
2 and base 3 are equipped with manipulator arms, whose end-
effector positions are represented as e1 ∈ R3 and e2 ∈ R3,
respectively.

The STL formula defining the tasks is the following,

φ = ∥x1 − x2∥ ≥ 0.6 ∧ ∥x2 − x3∥ ≥ 0.6 ∧ ∥x3 − x1∥ ≥ 0.6∧
G[10,125]∥x1 − 1.8[− cos 0.0698t, sin(0.0698t)]⊤∥ ≤ 0.05∧
G[30,70]∥e1 − [x⊤

1 , 0.35]
⊤∥ ≤ 0.01∧

G[30,70]∥x2 − 1.1[− cos 0.0698t, sin(0.0698t)]⊤∥ ≤ 0.05∧
G[80,120]∥e2 − [x⊤

1 , 0.35]
⊤∥ ≤ 0.01∧

G[80,120]∥x3 − 1.1[− cos 0.0698t, sin(0.0698t)]⊤∥ ≤ 0.05∧
F[180,200]∥x1 − [0, 0]⊤∥ ≤ 0.05∧
F[180,200]

(
∥x2 − [1,−1]∥ ≤ 0.05 ∧ ∥e1 − [x2, 0.6]∥ ≤ 0.05

)
∧

F[180,200]

(
∥x3 − [−1, 1]∥ ≤ 0.05 ∧ ∥e2 − [x3, 0.6]∥ ≤ 0.05

)
.

The above task involves collision avoidance constraints that
are always active given by the subformula φ̄1 = (∥x1 −
x2∥ ≥ 0.6) ∧ (∥x2 − x3∥ ≥ 0.6) ∧ (∥x3 − x1∥ ≥ 0.6).
Next, in the duration [10, 125][s], base 1 surveils the arena
and follows a circular time varying trajectory given by the
subformula φ̄2 = (G[10,125]∥x1 − c1(t)∥ ≤ 0.05) where
c1(t) is the circular trajectory. In the duration [30, 70][s],
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Figure 9: Experimental verification of MAPS2 with the setup in Figure 1.

end-effector 1 tracks a virtual point 0.35[m] over base 1 to
simulate a pick-and-place task, given by the subformula φ̄3 =
G[30,70]∥e1−[x⊤

1 , 0.35]
⊤∥ ≤ 0.01∧G[30,70]∥x2−c2(t)∥ ≤ 0.05

where c2(t) is the circular trajectory. Similarly, in the duration
[80, 120][s], end-effector 2 takes over the task to track a
virtual point 0.35[m] over base 1, given by the subformula
φ̄4 = G[80,120]∥e2 − [x⊤

1 , 0.35]
⊤∥ ≤ 0.01 ∧ G[80,120]∥x3 −

c2(t)∥ ≤ 0.05. Finally, eventually in the duration [180, 200][s],
the robots assume a final position given by the subformula
φ̄5 = F[180,200]∥x1 − [0, 0]⊤∥ ≤ 0.05 ∧ F[180,200]

(
∥x2 −

[1,−1]∥ ≤ 0.05∧∥e1− [x2, 0.6]∥ ≤ 0.05
)
∧F[180,200]

(
∥x3−

[−1, 1]∥ ≤ 0.05 ∧ ∥e2 − [x3, 0.6]∥ ≤ 0.05
)
.

The results are shown in Figure 9, where the x-axis
represents time in seconds, and the y-axis represents the
predicate functions defined by (5). The dashed line in the plots
represents the predicate functions of the trajectories obtained
by solving the optimisation problem (7), while the solid line
represents the predicate functions of the actual trajectories by
the robots. In the context of (5), negative values indicate task
satisfaction. However, due to the lack of an accurate model of
the robots and the fact that the optimisation solution converges
to the boundary of the constraints, the tracking is imperfect,
and we observe slight violations of the formula by the robots
in certain cases. Nonetheless, the trajectories generated by
the algorithm do not violate the STL formula. The coloured
lines represent the functions that lie within the validity domain
of the formula. Figure 9a shows that the collision constraint
imposed on all 3 bases is not violated, and they maintain a
separation of at least 60 cm. In Figure 9b, base 1 tracks a

circular trajectory in the interval [10, 125] seconds. In Figures
9c and 9d, the end effectors mounted on top of bases 2 and
3 track a virtual point over the moving base 1 sequentially.
In the last 20 seconds, the bases and end effectors move to
their desired final positions, as seen in Figures 9e and 9f. The
maximum computation time by any robot is 3.611[s]. Figure
10 shows front-view and side-view at different time instances
during the experimental run2.

IX. CONCLUSION

This work proposed MAPS2, a distributed planner that
solves the multi-robot motion-planning problem subject to
tasks encoded as STL constraints. By using the notion of
validity domain and formulating the optimisation problem as
shown in (7), MAPS2 transforms the spatio-temporal problem
into a spatial planning task, for which efficient optimisation
algorithms already exist. Task satisfaction is probabilistically
guaranteed in a distributed manner by presenting an optimi-
sation problem that necessitates communication only between
robots that share coupled constraints. Extensive simulations
involving benchmark formulas and experiments involving var-
ied tasks highlight the algorithms functionality. Future work
involves incorporating dynamical constraints such as velocity
and acceleration limits into the optimisation problem.
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