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Non-Parametric Neuro-Adaptive Formation Control
Christos K. Verginis, Zhe Xu, and Ufuk Topcu

Abstract—We develop a learning-based algorithm for the
distributed formation control of networked multi-agent systems
governed by unknown, nonlinear dynamics. Most existing algo-
rithms either assume certain parametric forms for the unknown
dynamic terms or resort to unnecessarily large control inputs in
order to provide theoretical guarantees. The proposed algorithm
avoids these drawbacks by integrating neural network-based
learning with adaptive control in a two-step procedure. In the first
step of the algorithm, each agent learns a controller, represented
as a neural network, using training data that correspond to
a collection of formation tasks and agent parameters. These
parameters and tasks are derived by varying the nominal agent
parameters and a user-defined formation task to be achieved,
respectively. In the second step of the algorithm, each agent incor-
porates the trained neural network into an online and adaptive
control policy in such a way that the behavior of the multi-
agent closed-loop system satisfies the user-defined formation task.
Both the learning phase and the adaptive control policy are
distributed, in the sense that each agent computes its own actions
using only local information from its neighboring agents. The
proposed algorithm does not use any a priori information on the
agents’ unknown dynamic terms or any approximation schemes.
We provide formal theoretical guarantees on the achievement of
the formation task.

Note to Practitioners—This paper is motivated by control of
multi-agent systems, such as teams of robots, smart grids, or wire-
less sensor networks, with uncertain dynamic models. Existing
works develop controllers that rely on unrealistic or impractical
assumptions on these models. We propose an algorithm that
integrates offline learning with neural networks and real-time
feedback control to accomplish a multi-agent task. The task
consists of the formation of a pre-defined geometric pattern by the
multi-agent team. The learning module of the proposed algorithm
aims to learn stabilizing controllers that accomplish the task from
data that are obtained from offline runs of the system. However,
the learned controller might result in poor performance owing to
potential data inaccuracies and the fact that learning algorithms
can only approximate the stabilizing controllers. Therefore, we
complement the learned controller with a real-time feedback-
control module that adapts on the fly to such discrepancies. In
practise, the data can be collected from pre-recorded trajectories
of the multi-agent system, but these trajectories do need to
accomplish the task at hand. The real-time feedback-control is a
closed-form function of the states of each agent and its neighbours
and the trained neural networks and can be straightforwardly
implemented. The experimental results show that the proposed
algorithm achieves greater performance than algorithms that use
only the trained neural networks or only the real-time feedback-
control policy. Our future research will address the sensitivity of
the algorithm to the quality and quantity of the employed data
as well as to the learning performance of the neural networks.
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I. INTRODUCTION

During the last decades, decentralized control of networked
multi-agent systems has attracted significant attention due to
the great variety of its applications, including multi-robot
systems, transportation, multi-point surveillance as well as bio-
logical systems [1]–[3]. In such systems, each agent calculates
its own actions based on local information, as modeled by
a connectivity graph, without relying on any central control
unit. This absence of central control and global information
motivates leader-follower architectures, where a team of agents
(followers) aims at following a pre-assigned leader agent that
holds information about the execution of a potential task.
The coordination problem of leader–follower architectures has
been the focus of many works [4]–[9] because of its numer-
ous applications in various disciplines including autonomous
vehicles coordination (satellite formation flying, cooperative
search of unmanned aerial vehicles and synchronization of
Euler–Lagrange systems), systems biology (control and syn-
chronization in cellular networks), and power systems (control
of renewable energy microgrids).

Although many works on distributed cooperative control
consider known and simple dynamic models, there exist many
practical engineering systems that cannot be modeled accu-
rately and are affected by unknown exogenous disturbances.
Thus, the design of control algorithms that are robust and
adaptable to such uncertainties and disturbances is important.
For multi-agent systems, ensuring robustness is particularly
challenging due to the lack of global information and the
interacting dynamics of the individual agents. A promising
step towards the control of systems with uncertain dynamics is
the use of data obtained a priori from system runs. However,
engineering systems often undergo purposeful modifications
(e.g., substitution of a motor or link in a robotic arm or
exposure to new working environments) or suffer gradual
faults (e.g., mechanical degradation), which might change the
systems’ dynamics or operating conditions. Therefore, one
cannot rely on the aforementioned data to provably guarantee
the successful control of the system. On the other hand, the
exact incorporation of these changes in the dynamic model,
and consequently, the design of new model-based algorithms,
can be a challenging and often impossible procedure. Hence,
the goal in such cases is to exploit the data obtained a priori
and construct intelligent online policies that achieve a user-
defined task while adapting to the aforementioned changes.

A. Contributions

This paper addresses the distributed coordination of net-
worked multi-agent systems governed by unknown nonlinear
dynamics. Our main contribution lies in the development of
a distributed learning-based control algorithm that provably
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guarantees the accomplishment of a given multi-agent forma-
tion task without any a priori information on the underlying
dynamics. The algorithm draws a novel connection between
distributed learning with neural-network-based representations
and adaptive feedback control, and consists of the following
steps. Firstly, it trains a number of neural networks, one
for each agent, to approximate controllers for the agents
that accomplish the given formation task. The data used
to train the neural networks consist of pairs of states and
control actions of the agents that are gathered from runs of
the multi-agent system. Secondly, it uses an online adaptive
feedback control policy that guarantees accomplishment of
the given formation task. Both steps can be executed in a
distributed manner in a sense that each agent uses only local
information, as modeled by a connectivity graph. Our approach
builds on a combination of controllers trained offline and
online adaptations, which was recently shown to significantly
enhance performance with respect to single use of the offline
part [10]. Numerical experiments show the robustness and
adaptability of the proposed algorithm to different formation
tasks, interactions among the agents, and system dynamics.
That is, the proposed algorithm is able to achieve the given
formation task even when the neural networks are trained with
data that correspond to different multi-agent dynamic models
(resembling a change in the dynamics of the agents), as well
as different formation tasks and interactions among the agents.
This paper extends our preliminary version [11] by providing
(1) formal guarantees on the theoretical correctness of the
proposed algorithm, and (2) a larger variety of experimental
results.

B. Related Work
Robust and adaptive control: A large class of works

on multi-agent coordination with uncertain dynamics falls in
the category of robust and adaptive control [6], [12]–[22].
Standard adaptive-control methodologies, however, assume
certain linear parametric forms for the unknown terms of
the dynamics, limiting the dynamic uncertainties to unknown
constant terms [12]–[15]. Additionally, many works that do
not employ parametric assumptions consider dynamic uncer-
tainties and disturbances that are uniformly bounded [16], [17]
or satisfy growth conditions [6], [18], [19]. The works [20],
[21] use functions in the control design that are larger than the
upper bounds of the unknown dynamic terms; such a condition
requires some a priori information on these terms. The work
[22] assumes that the unknown drift terms of the dynamics
are passive, which is then exploited in the stability analysis.
Multi-agent coordination with unknown nonlinear continuous
dynamics has been also tackled in the literature by using the
so-called funnel control, without using dynamic approxima-
tions [5], [23]–[25]. Nevertheless, funnel controllers depend on
so-called reciprocal time-varying barrier functions that drive
the control input unbounded when the error approaches a
pre-specified funnel, creating thus unnecessarily large control
inputs that cannot be realized by the system’s actuators. In this
paper, we develop a distributed control algorithm that does not
employ such reciprocal terms and whose correctness does not
rely on any of the aforementioned assumptions.

Learning-based control: A large variety of works focus
on distributed learning-based control to achieve multi-agent
coordination under uncertain dynamics [26]–[32]. Such works
resort to neural-network approximations of the unknown dy-
namic terms. In particular, they assume that the unknown
functions of the dynamics are approximated arbitrarily well as
a single-layer neural network with known radial-basis activa-
tion functions and a vector of unknown but constant weights.
However, the accuracy of such approximations depends on
the size of that vector, i.e., the number of neural-network
neurons, implying that an arbitrarily small approximation error
might require arbitrarily many weights. Additionally, there
are no guidelines for choosing the activation functions in
practice. Multi-agent coordination with unknown dynamics
has also been tackled via cooperative reinforcement learning
with stochastic processes [33]–[43]. However, such works
usually adopt the conservative assumption that the agents
have access to the states and actions of all other agents in
the learning, execution, or both phases [36], [37]. Moreover,
these works exhibit scalability problems with respect to the
number of agents [35], or assume the availability of time
or state discretizations of the underlying continuous-time and
continuous-state models. Additionally, the related works on
multi-agent cooperative reinforcement learning usually con-
sider common or team-average reward functions for the agents
[33], [39], which cannot be easily extended to account for
inter-agent formation specifications that we account for. When
relative inter-agent formation specifications are considered, the
environment becomes non-stationary creating problems in the
theoretical convergence analysis [33].

In this work, we develop a distributed neuro-adaptive control
algorithm for the formation control of continuous-time and -
state multi-agent systems with unknown nonlinear dynamics.
In contrast to the related works in the literature, we do not
assume linear parametrizations [12], [13], neural-network ap-
proximations [26], [27], global boundedness or growth condi-
tions [6], [16], [18], passivity properties [22], or known upper
bounds [20], [21] for the unknown dynamic terms. According
to the best of our knowledge, the distributed formation-control
problem with unknown dynamics has not been solved in the
absence of the aforementioned assumptions.

The rest of the paper is organized as follows. Section II
describes the considered problem. We provide our theoretical
results in Section III, and Section IV verifies the proposed
methodology through experimental evaluation. Finally, Section
V concludes the paper.

II. PROBLEM FORMULATION

Consider a networked multi-agent group comprised of a
leader, indexed by i = 0, and N followers, with N :=
{1, . . . , N}. The leading agent acts as an exosystem that gen-
erates a desired command/reference trajectory for the multi-
agent group. The followers, which have to be controlled,
evolve according to the 2nd-order dynamics

ẋi,1 = xi,2 (1a)
ẋi,2 = fi(xi, t) + gi(xi, t)ui (1b)
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where xi := [x>i,1, x
>
i,2]> ∈ Rn × Rn is the ith agent’s

state, assumed available for measurement by agent i, fi :
R2n × [0,∞) → Rn, gi : R2n × [0,∞) → Rn are unknown
functions modeling the agent’s dynamics, and ui is the ith
agent’s control input. The vector fields fi(·) and gi(·) are
assumed to be locally Lipschitz in xi over R2n for each fixed
t ≥ 0, and uniformly bounded in t over [t0,∞) for each fixed
xi ∈ R2n, for all i ∈ N . In contrast to the works of the
related literature, we do not assume any knowledge of the
structure, Lipschitz constants, or bounds of fi(·) and gi(·),
and we do not use any scheme to approximate them. The
lack of such assumptions renders the multi-agent coordination
problem significantly difficult, since there is no apparent way
to counteract the effect of the unknown drift terms fi().
Moreover, in contrast to the funnel-based schemes, we do not
resort to the use of reciprocal-like terms to dominate fi().
Nevertheless, we do require the following assumption on the
control directions gi(·):

Assumption 1. The matrices gi(xi, t) are positive definite, for
all xi ∈ Ωi, t ≥ 0, where Ωi ⊂ R2n are compact sets, i ∈ N .

Assumption 1 is a sufficiently controllability condition for
(1) and is adopted in numerous related works (e.g., [5],
[24], [29], [44]). The dynamics (1), subject to Assumption 1,
comprise a large class of nonlinear dynamical systems that
capture contemporary engineering problems in mechanical,
electromechanical and power electronics applications, such as
rigid/flexible robots, induction motors and DC-to-DC convert-
ers, to name a few. Systems not covered by (1) or Assumption
1 consist of underactuated or non-holonomic systems, such as
unicycle robots, underactuated aerial or underwater vehicles.
Such systems require special attention and their study consist
part of our future work. Finally, the 2nd-order model (1) can be
easily extended to account for higher-order integrator systems
[45].

We use an undirected graph G := (N , E) to model the
communication among the agents, with N being the index
set of the agents, and E ⊆ N ×N being the respective edge
set, with (i, i) /∈ E (i.e., simple graph). The adjacency matrix
associated with the graph G is denoted byA := [aij ] ∈ RN×N ,
with aij ∈ {0, 1}, i, j ∈ {1, . . . , N}. If aij = 1, then
agent i obtains information regarding the state xj of agent
j (i.e., (i, j) ∈ E), whereas if aij = 0 then there is no state-
information flow from agent j to agent i (i.e., (i, j) /∈ E).
Furthermore, the set of neighbors of agent i is denoted by
Ni := {j ∈ N : (i, j) ∈ E}, and the degree matrix is defined
as D := diag{|N1|, . . . , |NN |}. Since the graph is undirected,
the adjacency is a mutual relation, i.e., aij = aji, rendering
A symmetric. The Laplacian matrix of the graph is defined as
L := D−A and is also symmetric. The graph is connected if
there exists a path between any two agents. For a connected
graph, it holds that L1̄ = 0, where 1̄ is the vector of ones of
appropriate dimension.

Regarding the leader agent, we denote its state variables
by x0 := [x>0,1, x0,2]> ∈ R2n, and consider the 2nd-order

dynamics

ẋ0,1(t) = x0,2(t)

ẋ0,2(t) = u0(t)

where u0 : [0,∞) → Rn is a bounded command signal.
However, the leader provides its state only to a subgroup
of the N agents. In particular, we model the access of the
follower agents to the leader’s state via a diagonal matrix
B := diag{b1, . . . , bN} ∈ RN×N ; if bi = 1, then the ith
agent has access to the leader’s state, whereas it does not if
bi = 0, for i ∈ N . Thus, we also define the augmented graph
as Ḡ := (N ∪ {0}, Ē), where Ē := E ∪ {(0, i) : bi = 1}. We
further define

H := (L+ B)⊗ In,

where ⊗ denotes the Kronecker product, as well as the stacked
vector terms

x1 := [x>1,1, . . . , x
>
N,1]> ∈ RNn

x2 := [x>1,2, . . . , x
>
N,2]> ∈ RNn

x := [x>1 , . . . , x
>
N ]> ∈ R2Nn

x̄0,1 := [x>0,1, . . . , x
>
0,1]> ∈ RNn

x̄0,2 := [x>0,2, . . . , x
>
0,2]> ∈ RNn

x̄0 := [x̄>0,1, x̄
>
0,2]> ∈ R2Nn.

By further defining

f(x, t) := [f1(x1, t)
>, . . . , fN (xN , t)

>]> ∈ RNn

g(x, t) := diag{g1(x1, t), . . . , gN (xN , t)} ∈ RNn×Nn,
u := [u>1 , . . . , u

>
N ]> ∈ RNn,

the dynamics (1) can be written as

ẋ1 = x2 (2a)
ẋ2 = f(x, t) + g(x(t), t)u. (2b)

The goal of this work is to design a distributed control
algorithm, where each agent has access only to its neighbors’
information, to achieve a pre-specified geometric formation of
the agents in Rn. More specifically, consider for each agent
i ∈ N the constants cij , j ∈ {0} ∪ Ni prescribing a desired
offset that agent i desires to achieve with respect to the leader
(j = 0), and its neighbors (j ∈ Ni). That is, each agent i ∈ Ni
aims at achieving xi,1 = xj,1 − cij , for all j ∈ Ni, and if
bi = 1 (i.e., the agent obtains information from the leader),
xi,1 = x0,1 − ci0. Note that, in the case of undirected graph,
cij = −cji, for all (i, j) ∈ E , and we assume that the set

{x̄1 ∈ RNn :xi,1 − xj,1 + cij = 0,∀(i, j) ∈ E ,
bi(xi,1 − x0,1 + ci0) = 0,∀i ∈ N}

is non-empty in order for the formation specification to be
feasible.

Furthermore, we impose the following assumption on the
graph connectivity:

Assumption 2. The graph G is connected and there exists at
least one i ∈ N such that bi = 1.
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The aforementioned assumption dictates that L + B is an
irreducibly diagonally dominant M-matrix []. An M-matrix is
a square matrix having its off-diagonal entries non-positive
and all principal minors nonnegative, thus L + B is positive
definite [].

We define now the error variables for each agent as

ei,1 :=
∑
j∈Ni

(xi,1 − xj,1 + cij) + bi(xi,1 − x0,1 + ci0) (3)

for i ∈ N , and the respective stack vector

e1 := [e>1,1, . . . , e
>
N,1]>.

Next, by employing the multi-agent graph properties, noticing
that (L⊗In)x̄0,1 = 0, and assuming that (L+B) is invertible,
(3) can be written as

e1 := H(x1 − x̄0,1 + c̄), (4)

where

c :=

 c1...
cN

 := H−1


∑
j∈N1

c1j + b1c10

...∑
j∈NN

cNj + bNcN0

 (5)

stacks the relative desired offsets ci of the ith agent with
respect to the leader, as dictated by the desired formation
specification. In this way, the desired formation is expressed
with respect to the leader state, and is thus achieved when the
state xi,1 of each agent approaches the leader state x0,1 with
the corresponding offset ci, i ∈ N . Therefore, the formation
control problem is solved if the control algorithm drives the
disagreement vector

δ1 :=

δ1,1...
δN,1

 := x1 − x̄0,1 + c (6)

to zero. However, the disagreement formation variables δi,1,
are global quantities and thus cannot be measured distribu-
tively by each agent based on the local measurements, as they
involve information directly from the leader as well as from
the whole graph topology via employing the inverse of L+B
in (5). Nevertheless, from (4), under the assumption that L+B
is invertible, one obtains

‖δ1‖ ≤
‖e1‖

σmin(H)
(7)

where σmin(·) denotes the minimum singular value. Therefore,
convergence of e1 to zero, which we aim to guarantee, implies
convergence of δ1 to zero. We further define the augmented
errors for each agent

ei,2 := ėi,1 + k1ei,1 (8)

where k1 is a positive constant, the respective stacked vector

e2 := [e>i,2, . . . , e
>
N,2]> ∈ RnN

and the total error vector e := [e>1 , e
>
2 ]>. By using (4), the

total error dynamics can be written as

ė1 = −k1e1 + e2 (9a)

ė2 = H(f(x(e), t) + g(x(e), t)u− ¨̄x0,1)− k2
1e1 + k1e2,

(9b)

where, with a slight abuse of notation, we express x as a
function of e through (4).

Before proceeding, we define the tuple

F := (x0(t), f, g, c, Ḡ, x(0)) (10)

as the “formation instance”, characterized by the leader profile,
the agent dynamics, the desired formation offsets, the graph
topology, and the initial conditions of the agents.

III. MAIN RESULTS

This section describes the proposed algorithm, which con-
sists of two steps. The first step consists of offline learning of
distributed controllers, represented as neural networks, using
training data derived from runs of the multi-agent system.
In the second step, we design an adaptive feedback control
policy that uses the neural networks and provably guarantees
achievement of the formation specification.

A. Neural-network learning

As discussed in Section I, we are inspired by cases where
systems undergo changes that modify their dynamics and
hence the underlying controllers no longer guarantee the
satisfaction of a specific task. In such cases, instead of carrying
out the challenging and tedious procedure of identification of
the new dynamic models and design of new model-based con-
trollers, we aim to exploit data from offline system trajectories
and develop a distributed online policy that is able to adapt
to the aforementioned changes and achieve the formation task
expressed via the offsets cij , (i, j) ∈ Ē . Consequently, we
assume the existence of data gathered from a finite set of T
trajectories J generated by a priori runs of the multi-agent
system. More specifically, we consider that J is decomposed
as J = (J1, . . . ,JN ), where Ji is the set of trajectories of
agent i ∈ N . Since the proposed control scheme is distributed,
we consider that each agent i has access to the data from its
own set of trajectories Ji, which comprises the finite set

Ji =
{
xki (t), {xj}j∈Nk

i
, uki

(
xki (t), {xj}j∈Nk

i
, t
)}

t∈Ti

where Ti is a finite set of time instants, xki ∈ R2n is the state
trajectory of agent i for trajectory k, N k

i are the neighbors of
agent i in trajectory k, with {xj}j∈Nk

i
being their respective

state trajectories (which agent i has access to, being their
neighbor), and uki (xki (t), {xj}j∈Nk

i
, t) ∈ Rn is the control

input trajectory of agent i, which is a function of time and of
its own and its neighbors’ states. Note that the agents’ state
and control input trajectories are compliant with the dynamics
(1).

Each agent i ∈ N uses the data to train a neural network
in order to approximate a controller that accomplishes the
formation task. More specifically, each agent uses the tuples
{xki (t), {xj}j∈Nk

i
}t∈Ti

as input to a neural network, and
uki
(
xki (t), {xj}j∈Nk

i
, t
)
t∈Ti

as the respective output targets,
for all T trajectories. For the inputs corresponding to agents
that are not neighbors of agent i in a trajectory k, we disable
the respective neurons. For a given x ∈ R2Nn, we denote by
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ui,nn(x) the output of the neural network of agent i ∈ N , and
unn(x̄) := [u1,nn(x)>, . . . , uN,nn(x)>]>.

We stress that we do not require the training trajectories J
to correspond to the formation instance F specified in (10).
That is, each trajectory k might be derived from the execution
of a formation instance Fk = (xk0 , f

k, gk, ck, Ḡk, xk(0)) that
is different than the one specified in (10), i.e., different leader
profile xk0 , agent dynamics fk, gk, formation offsets ck,
communication graph Ḡk, and initial agent conditions xk(0),
for all k ∈ K and some index set K ⊂ N.

Since the training trajectories are produced by the instances
Fk, which are different from F , we do not expect the
neural networks to learn how to achieve the formation task at
hand, but rather to be able to adapt to the entire collection
of tasks. The motivation for training the neural networks
with different tasks and dynamics is the following. Since
the tasks correspond to bounded trajectories, the respective
stabilizing controllers compensate successfully the dynamics
in (1). Therefore, the neural networks aim to approximate
“average” distributed controllers the retain this property, i.e.,
the boundedness of the multi-agent dynamics (1). By us-
ing such approximation, the online feedback-control policy,
which is illustrated in the next section, is able to guarantee
achievement of the formation task at hand, without using any
explicit information on the dynamics. We explicitly model the
aforementioned approximation via the following assumption
on the closed-loop system trajectory that is driven the by
neural networks’ output.

Assumption 3. There exists r > 0 such that the stacked vector
of outputs unn(x) of the trained neural networks satisfies

e>2 H(f(x(e), t) + g(x(e), t)unn(x)− ¨̄x0,1) ≤ κ‖e2‖2 (11)

for all e satisfying ‖e‖ ≤ r, where κ is a positive constant.

Assumption 3 is a sufficient condition for the prevention
of finite-time escape of the the error trajectory e(t) when
the agents apply only the neural-network controllers, i.e., of
the solution of the differential equation ë2 = H(f(x, t) +
g(x, t)unn(x)− ¨̄x0,1)− k2

1e1 + k1e2. Indeed, when the multi-
agent system is driven solely by the neural-network con-
trollers and satisfies (11), one can find a Lyapunov function
V (e) = e>Ge, for a suitable constant matrix G ∈ R2nN×2nN ,
satisfying1 λmin(G)‖e‖2 ≤ V (e) ≤ λmax(G)‖e‖2 and V̇ ≤
α‖e‖2 ≤ α

λmin{G}V , for all ‖e‖ ≤ r and a positive constant
α. Therefore, we conclude that λmin(G)‖e(t)‖2 ≤ V (e(t)) ≤
V (e(0)) exp

(
α

λmin{G} t
)

, which prevents any finite-time es-
cape of e(t). Further note that the constants r and κ in (11)
are unknown.

Assumption 3 is motivated by (i) the property of neural
networks to approximate a continuous function arbitrarily well
in a compact domain for a large enough number of neurons
and layers [46], and (ii) the fact that the neural networks
are trained with bounded trajectories. As mentioned before,
the collection of tasks that the neural networks are trained
with correspond to bounded trajectories. Hence, in view of

1λmin and λmax denote the minimum and maximum eigenvalues, respec-
tively.

the similarity of the dynamic terms, the neural networks are
expected to approximate a control policy that maintains the
boundedness of the state trajectories as per (11). Contrary to
the related works (e.g., [4], [44], [47]–[50]), however, we do
not adopt approximation schemes for the system dynamics.
In fact, a standard assumption in the related literature is the
approximation of an unknown function by a single-layer neural
network as Θ(x)ϑ+ε, where Θ(x) is a known matrix of radial
basis function, ϑ is a vector of unknown constants, and ε
is a constant error assumed sufficiently small. Nevertheless,
Assumption 3 is a less strict assumption; it does not require
sufficiently good neural-network approximation through a suf-
ficiently small error ε or knowledge of any radial-basis term
Θ(x). Moreover, Assumption 3 does not imply that the neural-
network outputs ui,nn(x, t) guarantee accomplishment of the
formation task. It is merely a growth condition on the the
solution of the system driven by unn(x). In practice, (11) can
be achieved by rich exploration of the state space by the leader
agent xk0 in the training data Fk. In the numerical experiments
of Section IV, we show that (11) holds true along the executed
trajectories of the multi-agent system.

We note that the neural-network controllers unn can be
replaced by other learning methodologies, as long as As-
sumption 3 holds. Nevertheless, the rich structure of neural
networks makes them great candidates for approximating a
control policy that satisfies (11).

B. Distributed Control Policy

We now design a distributed, adaptive feedback control
policy to accomplish the formation task dictated by the graph
topology Ḡ, the leader profile x0(t), and offsets cij , (i, j) ∈ Ē ,
given in Section II.

We define the adaptation variables d̂i,1 for each agent
i ∈ N , with d̂1 := [d̂1,1, . . . , d̂N,1]> ∈ RN , and design the
distributed control policy as

ui = ui,nn(x)− (k2 + d̂i,1)ei,2 (12a)

where k2 is a positive constant. We further design the updates
of the adaptation variables d̂i,1 as

˙̂
di,1 := µi,1‖ei,2‖2 (12b)

with d̂i,1(0) > 0 and µi,1 are positive constants, for all i ∈ N .

Remark 1. The control design is inspired by adaptive control
methodologies [51], where the time-varying coefficients d̂i,1
adapt, in coordination with the neural-network controllers,
to the unknown dynamics in order to ensure closed-loop
stability. In particular, by inspecting the proof of Theorem
1, it can be concluded that d̂i,1 aims to counteract the term
k1‖H−1‖
λmin(gi)

+ κ
λmin(gi)

, i ∈ N . Intuitively, d̂i,1 increases according
to (12b) until it dominates the aforementioned term, leading
to convergence of ei,2 to zero, for all i ∈ N .

Note further that agent i’s control policy (12) does not use
any information on its own or its neighbors’ dynamic terms
fi(·), gi(·), or the constants r, κ of (11). Additionally, note
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Fig. 1. Snapshots of the first experiment in the x-y plane. The agents converge to the desired formation (see bottom-middle and bottom-right plots) around
the leader, which follows a pre-specified trajectory (continuous blue line). The black lines represent the communication edge set Ē of the agents.

that each agent uses only relative feedback from its neighbors,
as can be verified by (3), (8) and (12).

The following theorem, whose proof is given in the ap-
pendix, guarantees the accomplishment of the formation task.

Theorem 1. Let a multi-agent system evolve subject to the
dynamics (1) under an undirected communication graph Ḡ.
Under Assumptions 1-3, there exists a set Ω̄x̂ ⊂ RN(2n+1)

such that, if
(
e(0), d̂1(0)

)
∈ Ω̄x̂, the distributed control

mechanism guarantees limt→∞(ei,1, ei,2) = 0, for all i ∈ N ,
as well as the boundedness of all closed-loop signals.

Contrary to the works in the related literature (e.g., [5],
[25]) we do not impose reciprocal terms in the control input
that grow unbounded in order to guarantee closed-loop sta-
bility. The resulting controller is essentially a simple linear
feedback on e1, e2 with time-varying adaptive control gains,
accompanied by the neural network output that ensures the
boundedness condition (11).

IV. NUMERICAL EXPERIMENTS

We consider N = 5 follower aerial vehicles in R3 with
dynamics of the form (1), with

fi(xi, t) =
1

mi
(ḡr + di,1(t) + di,2(xi))

gi(xi, t) =
‖xi‖+ 0.5 sin(0.1t) + 1

mi

where ḡr = [0, 0, 9.81]> is the gravity vector and mi ∈ R is
the mass of agent i ∈ N . Furthermore, di,1(t), di,2(xi) are
chosen as

di,1(t) =

Ai,1 sin(ηi,1t+ φi,1)
Ai,2 sin(ηi,2t+ φi,2)
Ai,3 sin(ηi,3t+ φi,3)


di,2(xi) = Fiyi

with yi = [x2
i,21

, x2
i,22

, x2
i,23

, xi,21xi,22 , xi,21xi,23 , xi,22 , xi,23 ],
and we further use the notation xi,2 = [xi,21

, xi,22
, xi,23

]>

for all i ∈ N . The terms mi, Ai,`, ηi,`, φi,` are constants
that take values in (0, 1); similarly, Fi ∈ R3×6 is a constant
matrix whose elements take values in (0, 1). We evaluate the
proposed algorithm in three test cases. In all of these cases, we
choose the control gains of (12) as k1 = 0.1, k2 = µi,1 = 0.5.

The first case consists of the stabilization of the followers
around the leader, which is assigned with the tracking of a
reference time-varying trajectory profile x0(t). We consider a
communication graph modeled by the edge set Ē = { (1, 2),
(2, 3), (3, 4), (4, 5), (1, 0), (3, 0), (5, 0) }, i.e., agents 1, 3, and
5 have access to the information of the leader. The stabilization
is dictated by the formation constants c1,2 = −c2,1 =
[1, 1, 0]>, c2,3 = −c3,2 = [1,−1, 0]>, c3,4 = −c4,3 =
[0,−2, 0]>, c4,5 = −c5,4 = [−2, 0, 0]>, c1,0 = [1,−1, 0]>,
c3,0 = [−1,−1, 0]>, c5,0 = [1, 1, 0]>. The aforementioned
parameters, along with the agents’ initial conditions, specify
the first task’s formation instance F := (x0, f, g, c, Ḡ, x(0)).
We generate data from 100 trajectories that correspond to
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Fig. 2. Evolution of the error signals ‖ei,1(t)‖ + ‖ėi,1(t)‖, and ‖ei,2(t)‖,
for i ∈ {1, . . . , 5}, and t ∈ [0, 55], in the first experiment.
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Fig. 3. Left: The evolution of the adaptation signals d̂i,1(t) for i ∈
{1, . . . , 5}, in the first experiment. Right: The evolution of CH(t) in the
first experiment.
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Fig. 4. The evolution of the control inputs ui(t) and the neural-network
controllers ui,nn(t), for i ∈ {1, . . . , 5}, in the first experiment.

different f , g, x(0) than in F , but with the same leader profile
x0 and inter-agent formation offsets c and communication
graph Ḡ. The differences in f and g are created by assigning
random values, in (0, 1), to the constants mi, Ai,`, ηi,`, φi,`,
and Fi, for all i ∈ N . We further assign the initial conditions
for each agent as xi,1(0) = x0,1(0) + rand(−4, 4)[1, 1, 1]>,
and xi,2(0) = rand(−2, 2)[1, 1, 1]>, i ∈ N ; we set the leader
agent’s initial condition as x0,1(0) = [5, 2, 10]>, x0,2(0) =
[0.0039,−09836, 0]> for all trajectories. We use the generated
data to train 5 neural networks, one for each agent. More
details regarding the training can be found at the end of
the section. We test the control policy (12) using the task’s
formation instance F . The results are depicted in Figs. 1-4;
Fig. 1 depicts snapshots of the multi-agent formation in the
x-y plane and Fig. 2 shows the evolution of the error signals
‖ei,1(t)‖ + ‖ėi,1(t)‖ and ‖ei,2(t)‖ for i ∈ {1, . . . , 5}. Fig. 3
shows the evolution of the adaptation variables d̂i,1(t), i ∈ N ,
and the signal CH(t) = e2(t)>H(f(x(t), t)+g(x(t), t)u(t)−
¨̄x0,1(t)) − 100‖e2‖, which is always negative, verifying thus
Assumption 3 for κ = 100. Finally, Fig. 4 depicts the evolution
of the control inputs ui(t), ui,nn(t), i ∈ {1, . . . , 5}. One
concludes that the multi-agent system converges successfully
to the pre-specified formation, whose x-y shape is depicted in
the bottom-right plot of Fig. 1.

The second case comprises a surveillance task, where
the agents need to periodically surveil three areas in the
environment. We choose the same communication graph as
in the first case. Each area consists of 6 spherical regions of
interest; the regions of interest of the first area are centered
at [−50,−50,−10]>, [−70,−50, 10]>, [−60,−40, 10]>,
[−40,−40, 10]>, [−40,−60, 10]>, [−60,−60, 10]; the regions
of interest of the second area are centered at [50, 50, 10]>,
[40, 40, 10]>, [40, 60, 10]>, [50, 60, 10]>, [60, 50, 10]>

[50, 40, 10]>; and the regions of interest of the third area are
centered at [50,−50, 10]>, [40,−40, 10]>, [60,−40, 10]>,
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Fig. 5. Snapshots of the second experiment (top) and their zoomed-in versions (bottom) in the x-y plane. The agents converge to the desired formation around
the leader at t = 50, t = 150, and t = 225, which implies the visit of the regions of interest in the three areas. The black lines represent the communication
edge set Ē of the agents. The initial positions of the agents are depicted with “ + ” in the top-left plot.

[60,−50, 10]>, [40,−60, 10]>, [40,−50, 10]>. The leader
agent navigates sequentially to one of the regions in
the areas, and by setting the constants cij , (i, j) ∈ Ē ,
according to the geometry of the regions, the followers
aim to visit the remaining five regions in each area.
More specifically, we set the formation constants as
c1,2 = −c2,1 = [10, 10, 0]>, c2,3 = −c3,2 = [20, 0, 0]>,
c3,4 = −c4,3 = [0,−20, 0]>, c4,5 = −c5,4 = [−20, 0, 0]>,
c1,0 = [20, 0, 0]>, c3,0 = [−10,−10, 0]>, c5,0 = [10, 10, 0]>

for the first area, c1,2 = −c2,1 = [0, 20, 0]>,
c2,3 = −c3,2 = [10, 0, 0]>, c3,4 = −c4,3 = [10,−10, 0]>,
c4,5 = −c5,4 = [−10,−10, 0]>, c1,0 = [10, 10, 0]>,
c3,0 = [0,−10, 0]>, c5,0 = [10, 10, 0]> for the second area,
and c1,2 = −c2,1 = [20, 0, 0]>, c2,3 = −c3,2 = [0,−10, 0]>,
c3,4 = −c4,3 = [−20,−10, 0]>, c4,5 = −c5,4 = [0, 10, 0]>,
c1,0 = [10,−10, 0]>, c3,0 = [−10, 0, 0]>, c5,0 = [10, 0, 0]>

for the third area.

Similarly to the first case, we generate data from 100 trajec-
tories that correspond to different f , g, x(0) than in the task’s
formation instance F ; the differences in f , g are created by
assigning random values, in (0, 1), to the constants mi, Ai,`,
ηi,`, φi,`, and Fi, for all i ∈ N . The initial conditions of the
agents are set as xi,1(0) = x0,1(0) + rand(−10, 10)[1, 1, 1]>,
and xi,2(0) = rand(−2, 2)[1, 1, 1]>, i ∈ N , and of the leader
agent as x0,1 = [0, 0, 10]>, x0,2 = [0, 0, 0]>. We use the data

to train 5 neural networks, one for each agent. We test the
control policy (12) on F , giving the results depicted in Figs. 5-
8; Fig. 5 depicts snapshots of the agents’ visit to the three areas
(at t = 50, t = 150, and t = 225 seconds, respectively), and
Fig. 6 depicts the evolution of the signals ‖ei,1(t)‖+‖ėi,1(t)‖
and ‖ėi,2(t)‖, for all agents i ∈ {1, . . . , 5}. Fig. 3 shows
the evolution of the adaptation variables d̂i,1(t), i ∈ N , and
the signal CH(t) = e2(t)>H(f(x(t), t) + g(x(t), t)u(t) −
¨̄x0,1(t)) − 100‖e2‖, which is always negative, verifying thus
Assumption 3 for κ = 100. Finally, Fig. 4 depicts the evolution
of the control inputs ui(t), ui,nn(t), i ∈ {1, . . . , 5}. As
illustrated in the figures, the agents converge successfully
to the three pre-specified formations, visiting the regions of
interest in the three areas.

The first two cases considered training data that correspond
to the exact formation task, defined by the leader profile
x0 and the constants cij , and communication graph Ḡ. In
the third case, we generate 120 different formation instances
Fk := (xk0 , f

k, gk, ck, Ḡk, xk(0)), k ∈ {1, . . . , 120}, i.e.,
different trajectory profiles for the leader, different terms fk

and gk for the agents, different communication graphs Ḡ,
different formation constants cij , for (i, j) ∈ Ē , and different
initial conditions for the agents. In every instance k, we set
the parameters in fk, and gk as in the previous two cases,
we set randomly the communication graph Ḡk such that it
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Fig. 7. Left: The evolution of the adaptation signals d̂i,1(t) for i ∈
{1, . . . , 5}, in the second experiment. Right: The evolution of CH(t) in
the second experiment.

satisfies Assumption 2, we set random offsets cij in the
interval (−5, 5)1̄3, for (i, j) ∈ Ē , and the initial conditions
of the agents as xi,1(0) = rand(−10, 10)1̄3, xi,2(0) =
rand(−2.5, 2.5)1̄3, for all i ∈ {1, . . . , 5}. Finally, the leader
trajectory x0 is set for each instance k ∈ {1, . . . , 120} as
follows: we create four points in R3 randomly in (−10, 10)
in the x- and y- directions, and in (1, 20) in the z direction.
We then create a random sequence of these points, and set the
leader trajectory as a smooth path that visits them according
to that sequence, with a duration of 40 seconds.

We separate the 120 instances into 100 training and 20
test instances. We train next 5 neural networks, one for
each agent, using data from system runs that correspond to
the 100 first training instances Fk, k ∈ {1, . . . , 100}. We
test the control policy on the 20 first training instances Fk,

Fig. 8. The evolution of the control inputs ui(t) and the neural-network
controllers ui,nn(t), for i ∈ {1, . . . , 5}, in the second numerical experiment.

k ∈ {1, . . . , 20}, as well as on the 20 test instances that were
not used in the training, i.e., Fk, k ∈ {101, . . . , 120}. In
addition, we compare the performance of the proposed control
algorithm with a no-neural-network (no-NN) control policy,
i.e., a policy that does not employ the neural network, (term
ui,nn in (12a)) and with a non-adaptive control control policy
ui = ui,nn−k2ei,2, i.e., without the adaptation terms d̂i,1, d̂i,2.
The comparison results are given in Fig. 9, which depicts the
mean and standard deviation of the signal ‖ē1(t)‖ + ‖ ˙̄e1(t)‖
for the 20 of the training instances (top), and for the 20
test instances (bottom). In both cases, the proposed control
algorithm outperforms the other two policies, which, in many
of the instances, resulted in unstable closed-loop systems.

We now provide more details regarding the collection of
data and the training of the neural networks for the aforemen-
tioned experiments. For the execution of the trajectories that
are used in the training of the neural networks, we use the
control policies

ui = gi(xi, t)
−1(u0(t)− ei,2 − fi(xi, t)),

for all i ∈ N . The data for the training of the neural
networks consist of 100 system trajectories, sampled at 500
points, making a total of 50000 points. The neural networks
we use consist of 4 fully connected layers of 512 neurons;
each layer is followed by a batch-normalization module and a
ReLU activation function. For the training, we use the adam
optimizer, the mean-square-error loss function, and learning
rate of 10−3. Finally, we use a batch size of 256, and we train
the neural networks until an average (per batch) loss of the
order of 10−4 is achieved.

V. CONCLUSION AND FUTURE WORK

We develop a learning-based control algorithm for the
formation control of networked multi-agent systems with



10

0 10 20 30 40

20

40

60

80

100

120

140
Training Instances

0 10 20 30 40

0

5

10

15

20

25

30

35
Training Instances

0 10 20 30 40

0

20

40

60

80

100

120
Test Instances

0 10 20 30 40

0

10

20

30

40

Test Instances
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unknown nonlinear dynamics. The algorithm integrates dis-
tributed neural-network-based learning and adaptive control.
We provide formal guarantees and perform extensive numer-
ical experiments. Future efforts will focus on relaxing the
considered assumptions and extending the proposed method-
ology to account for directed and time-varying communication
graphs as well as underactuated systems.
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APPENDIX

We provide here the proof of Theorem 1.

Proof of Theorem 1. Let the continuously differentiable func-
tion

V1 :=
k2

1

2g
e>1 H

−1e1 +
1

2g
e>2 H

−1e2. (13)

By differentiating V1 and using (9), one obtains

V̇1 =− k3
1

g
e>1 H

−1e1 +
k2

1

g
e>1 H

−1e2

+
1

g
e>2 (f(x, t) + g(x, t)u− ¨̄x0,1)

− k2
1

g
e>2 H

−1e1 +
k1

g
e>2 H

−1e2

and by further using (12a),

V̇1 ≤− k3
1e
>
1 H
−1e1 +

k1‖H−1‖
g

∑
i∈N
‖ei,2‖2

− 1

g

∑
i∈N

e>i,2gi(xi, t)(k2 + d̂i,1)ei,2

+
1

g
e>2 (f(x, t) + g(x, t)unn(x)− ¨̄x0,1)

By using the positive definiteness of gi(xi, t), the fact that
g = mini∈N {λmin(gi)}, and the fact that d̂i,1(t) is positive,
i ∈ N , we obtain

V̇1 ≤− k3
1e
>
1 H
−1e1 +

k1‖H−1‖
g

∑
i∈N
‖ei,2‖2

−
∑
i∈N

(k2 + d̂i,1)‖ei,2‖2

+
1

g
e>2 (f(x, t) + g(x, t)unn(x)− ¨̄x0,1)

and in view of Assumption 3, for ‖e‖ ≤ r,

V̇1 ≤− k3
1e
>
1 H
−1e1

−
∑
i∈N

(
k2 + d̂i,1 −

k1‖H−1‖
g

− κ

g

)
‖ei,2‖2 (14)

By further defining d1 := k1‖H−1‖
g + κ

g , (14) becomes

V̇1 ≤− k3
1e
>
1 H
−1e1 −

∑
i∈N

(k2 + d̂i,1 − d1)‖ei,2‖2 (15)

In view of the aforementioned expression, the individual
adaptation variables d̂i,1 aim to approximate d1. Therefore,
we define the adaptation errors d̃1 := [d̃1,1, . . . , d̃N,1]> :=
d̂1−d̄1 := [d̂1,1−d1, . . . , d̂N,1−d1]>, and the overall state x̃ :=

[e>1 , e
>
2 , d̃

>
1 ]> ∈ RN(2n+1). Let the continuously differentiable

function

V2(x̃) := V1(x̃) +
1

2
d̃>1 M

−1
1 d̃1,

where M1 := diag{µ1,1, . . . , µN,1}. Note that V2(x̃) satisfies
Wm(x̃) ≤ V2(x̃) ≤ Wm̄(x̃), where Wm(x̃) := m‖x̃‖2,
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Wm̄(x̃) := m̄‖x̃‖2 for some positive constants m, m̄. By
differentiating V2 and using (15), we obtain

V̇2 ≤− e>1 K2
1H
−1K1e1 −

∑
i∈N

(ki,2 + d̂i,1 − d1)‖ei,2‖2

+
∑
i∈N

1

µi,1
d̃i,1

˙̂
di,1

and by substituting (12b),

V̇2 ≤− k3
1e
>
1 H
−1e1 −

∑
i∈N

k2‖ei,2‖2 =: −WQ(x̃)

Therefore, V2(t) ≤ V2(0), implying the boundedness of e1(t),
e2(t), and d̃1(t), for all t ≥ 0. In view of (12), we also
conclude the boundedness of u(t) and ˙̂

d1(t), for all t ≥ 0.
By differentiating V̇2 and using (9) and (12), we further
conclude the boundedness of V̈2(t), t ≥ 0, which implies the
uniform continuity of V2. By employing Barbalat’s Lemma
(Theorem 8.4 of [52]), we conclude that limt→∞ e1(t) =
limt→∞ e2(t) = 0.

In view of Assumptions 1 and 3, the aforementioned results
hold under the conditions x ∈ Ωx := Ω1 × · · · × ΩN and
‖e‖ ≤ r. Therefore, we need to establish that the proposed
control algorithm and initial conditions do not force e(t) to
grow larger than r at any point in time t ≥ 0. Alternatively, we
need to establish that, for x̃(0) ∈ Ω̄, it holds that x(t) ∈ Ωx
and ‖e(t)‖ ≤ r, for all t ≥ 0. Let the set

M :={x̃ ∈ RN(2n+1) : V2(x̃) ≤ V0},

where we choose V0 as the largest constant for which M ⊆
{x̃ ∈ RN(2n+1) : x̃ ∈ Ωx, ‖e‖ ≤ r, d̃1 ≤ V2(x̃(0))}. Then, for
all x̃(0) ∈ Ω̄, where Ω̄ ⊆ M, it follows that V2 is bounded
from above by V2(x̃(0)), which implies that x̃ ∈ Ωx and
‖e(t)‖ ≤ r, for all t ≥ 0. Since x̃ = [e>, d̃1]> = [e>, d̂1 −
d̄1]> and d̄1 is constant, x̃(0) ∈ Ω̄ implies [e(0)>, d̂1(0)>]> ∈
Ω̄x̂ := {[e>, d̂>1 ]> ∈ RN(2n+1) : x̃ ∈ Ωx}, leading to the
conclusion of the proof.
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