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Abstract— This paper addresses the problem of cooperative
transportation of an object rigidly grasped by N robotic agents.
In particular, we propose a Nonlinear Model Predictive Control
(NMPC) scheme that guarantees the navigation of the object
to a desired pose in a bounded workspace with obstacles,
while complying with certain input saturations of the agents.
Moreover, the proposed methodology ensures that the agents do
not collide with each other or with the workspace obstacles as
well as that they do not pass through singular configurations.
The feasibility and convergence analysis of the NMPC are
explicitly provided. Finally, simulation results illustrate the
validity and efficiency of the proposed method.

I. INTRODUCTION

Over the last years, multi-agent systems have gained a
significant amount of attention, due to the advantages they
offer with respect to single-agent setups. In the case of
robotic manipulation and object transportation, difficult tasks
involving heavy payloads as well as challenging maneuvers
necessitate the employment of multiple robots. Fig. 1 de-
picts a system of two robotic mobile manipulators (KUKA
youBots), each comprising of a moving base and a robotic
arm of 5 Degrees of Freedom (DOF).

Early works related to cooperative manipulation develop
control architectures where the robotic agents communicate
and share information with each other as well as completely
decentralized schemes, where each agent uses only local
information or observers, avoiding potential communication
delays [1]–[7]. Impedance and force/motion control consti-
tutes the most common methodology used in the related
literature [1], [8]–[16]. However, most of the aforementioned
works employ force/torque sensors to acquire knowledge of
the manipulator-object contact forces/torques, which, how-
ever, may result to performance decline due to sensor noise
or mounting difficulties. Recent technological advances allow
to manipulator grippers to grasp rigidly certain objects (see
e.g., [17]), which, as shown in this work, can render the use
of force/torque sensors unnecessary.

Furthermore, in manipulation tasks, such as pose/force
or trajectory tracking, collision with obstacles of the envi-
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Fig. 1: Two ground vehicles (KUKA youBots) consisting of
a moving base and a attached manipulator with 5 DOF.

ronment has been dealt with only by exploiting the extra
degrees of freedom that appear in over-actuated robotic
agents. Potential field-based algorithms may suffer from local
minima and navigation functions [18] cannot be extended to
multi-agent second order dynamical systems in a trivial way.
Moreover, these methods usually result in high control input
values near obstacles that need to be avoided, which might
conflict the saturation of the actual motor inputs.

Another important property that concerns robotic manipu-
lators is the singularities of the Jacobian matrix, which maps
the joint velocities of the agent to a 6D vector of general-
ized velocities. Such singular kinematic configurations, that
indicate directions towards which the agent cannot move,
must be always avoided, especially when dealing with task-
space control in the end-effector [19]. In the same vein,
representation singularities can also occur in the mapping
from coordinate rates to angular velocities of a rigid body.

In this work, we aim to address the problem of cooperative
manipulation of an object in a bounded workspace with
obstacles. In particular, given N agents that rigidly grasp
an object, we design control inputs for the navigation of the
object to a final pose, while avoiding inter-agent collisions
as well as collisions with obstacles. Moreover, we take
into account constraints that emanate from control input
saturation as well kinematic and representation singularities.

For the design of a stabilizing feedback control law for
each robot, such that the desired specifications are met,
while satisfying constraints on the controls and the states,
one would ideally look for a closed loop solution for the
feedback law satisfying the constraints while optimizing the
performance. However, typically the optimal feedback law



cannot be found analytically, even in the unconstrained case,
since it involves the solution of the corresponding Hamilton-
Jacobi-Bellman partial differential equations. One approach
to circumvent this problem is the repeated solution of an
open-loop optimal control problem for a given state. The first
part of the resulting open-loop input signal is implemented
and the whole process is repeated. Control approaches using
this strategy are referred to as Nonlinear Model Predictive
Control (NMPC) (see e.g. [20]–[29]) which we aim to use
in this work for the problem of the constraint cooperative
manipulation of an object which is rigidly grasped by N
agents. To the best of the authors’ knowledge, this problem
has not been addressed in the related literature.

The remainder of the paper is structured as follows.
Section II provides preliminary background. The system
dynamics and the formal problem statement are given in
Section III. Section IV discusses the technical details of the
solution and Section V is devoted to a simulation example.
Finally, conclusions and future work are discussed in Section
VI.

II. NOTATION AND PRELIMINARIES

The set of positive integers is denoted as N and the real
n-coordinate space, with n ∈ N, as Rn; Rn≥0 and Rn>0 are
the sets of real n-vectors with all elements nonnegative and
positive, respectively. The notation Rn×n≥0 and Rn×n>0 , with
n ∈ N, stands for positive semi-definite and positive definite
matrices, respectively. Moreover, ‖x‖ is the Euclidean norm
of a vector x ∈ Rn. Given a set S, we denote by |S| its
cardinality and by SN = S × · · · × S its N -fold Cartesian
product. Given the sets S1, S2, the set difference and the
Minkowski addition are denoted by \,⊕, respectively, and
are defined by S1\S2 = {s : s ∈ S1 and s2 /∈ S2} and
S1 ⊕ S2 = {s1 + s2 : s1 ∈ S1, s2 ∈ S2}, respectively.
The n × n identity matrix and the n ×m matrix with zero
entries, are denoted by In, 0n×m and 1n, respectively, with
n,m ∈ N. The largest singular value of matrix A ∈ Rn×m
is denoted as σmax(A).

The vector connecting the origins of coordinate frames
{A} and {B} expressed in frame {C} coordinates in 3-
D space is denoted as pCB/A = [xB/A, yB/A, zB/A]> ∈ R3.
Given a ∈ R3, S(a) is the skew-symmetric matrix defined
according to S(a)b = a × b. We further denote as ηA/B =
[φA/B, θA/B, ψA/B]> ∈ T3 ⊆ R3 the x-y-z Euler angles
representing the orientation of frame {A} with respect to
frame {B}, with φA/B, ψA/B ∈ [−π, π] and θA/B ∈ [−π2 ,

π
2 ],

where T3 is the 3-D torus; Moreover, RB
A ∈ SO(3) is

the rotation matrix associated with the same orientation and
SO(3) is the 3-D rotation group. The angular velocity of
frame {B} with respect to {A}, expressed in frame {C}
coordinates, is denoted as ωCB/A ∈ R3 and it holds that
ṘB
A = S(ωAB/A)RB

A . We further define the sets M = R3×T3,
N = {1, . . . , N}. We define also the set

Oz , O(cz, β1,z, β2,z, β3,z)

=
{
p ∈ R3 : (p− cz)>P (p− cz) ≤ 1

}
,

Fig. 2: Two robotic arms rigidly grasping an object with the
corresponding frames.

as the set of an ellipsoid in 3D, where cz ∈ R3 is the center
of the ellipsoid, β1,z, β2,z, β3,z ∈ R>0 the lengths of its
three semi-axes and z ≥ 1 is an index term. The eigenvector
of matrix P define the principal axes of the ellipsoid, and
the eigenvalues of P are: β−21,z , β

−2
2,z and β−23,z . For notational

brevity, when a coordinate frame corresponds to an inertial
frame of reference {I}, we will omit its explicit notation
(e.g., pB = pIB/I , ωB = ωIB/I , RA = RI

A, etc.). Finally, all
vector and matrix differentiations will be with respect to an
inertial frame {I}, unless otherwise stated.

Definition 1. ([30]) A continuous function f : [0, α] →
R≥0, α ∈ R>0 is said to belong to class K, if is strictly
increasing and f(0) = 0.

Lemma 1. ([31]) Let γ be a continuous, positive definite
function and x be an absolutely continuous function on R.
If the following holds:
• ‖x(·)‖ <∞, ‖ẋ(·)‖ <∞,

• lim
t→∞

∫ t

0

γ(x(s))ds <∞.

Then, limt→∞ ‖x(t)‖ = 0.

III. PROBLEM FORMULATION

Consider a bounded and convex workspace W ⊆ R3

consisting of N robotic agents rigidly grasping an object, as
shown in Fig. 2, and Z obstacles described by the ellipsoids
Oz, z ∈ Z = {1, . . . , Z}. The free space is denoted as
Wfree =W\

⋃
z∈Z Oz . The agents are considered to be fully

actuated and they consist of a base that is able to move
around the workspace (e.g., mobile or aerial vehicle) and a
robotic arm. The reference frames corresponding to the i-
th end-effector and the object’s center of mass are denoted
with {Ei} and {O}, respectively, whereas {I} corresponds
to an inertial reference frame. The rigidity of the grasps
implies that the agents can exert any forces/torques along
every direction to the object. We consider that each agent
i knows the position and velocity only of its own state
as well as its own and the object’s geometric parameters.
Moreover, no interaction force/torque measurements or on-
line communication is required.

A. System model



1) Robotic Agents: We denote by qi : R≥0 → Rni
the joint space variables of agent i ∈ N , with ni =
nαi + 6, qi(t) = [p>Bi(t), η

>
Bi

(t), α>i (t)]>, where pBi =

[xBi , yBi , zBi ]
> : R≥0 → R3, ηBi = [φBi , θBi , ψBi ]

> :
R≥0 → T3 ⊆ R3 is the position and Euler-angle orientation
of the agent’s base, and αi : R≥0 → Rnαi , nαi > 0, are the
degrees of freedom of the robotic arm. The overall joint space
configuration vector is denoted as q = [q>1 , . . . , q

>
N ]> ∈ Rn,

with n =
∑
i∈N ni. In addition, we denote as pEi : Rni →

R3, ηEi : Rni → T3 ⊆ R3 the position and Euler-angle
orientation of agent i’s end-effector. Let also vi : Rni ×
Rni → R6 denote the velocity of agent i’s end-effector, with
vi(qi, q̇i) = [ṗ>Ei , ω

>
Ei

]>, whereas ṗBi , ωBi : Rni×Rni → R3

are the linear and angular velocity, respectively, of the agent’s
base.

We consider that each agent i ∈ N has access to its own
state qi as well as ṗBiBi , ω

Bi
Bi

, and α̇i via on-board sensors.
Then, ṗBi , ωBi can be obtained via ṗBi = RBi(ηBi)ṗ

Bi
Bi

,
ωBi = RBi

(ηBi)ω
Bi
Bi

, where RBi
: T3 → SO(3) is the

rotation matrix of the agent i’s base. Moreover, η̇Bi is related
to ωBi via ωBi = JBi(ηBi)η̇Bi , where JBi : T3 → R3×3,
with

JBi(ηBi) =

1 0 sin(θBi)
0 cos(φBi) − cos(θBi) sin(φBi)
0 sin(φBi) cos(θBi) cos(φBi)

 .
The pose of the ith end-effector can be computed via

pEi(qi) = pBi +RBi
(ηBi)kpi(αi),

ηEi(qi) = kηi(ηBi , αi),

where kpi : Rnαi → R3, kηi : T3 × Rnαi → T3 are the
forward kinematics of the robotic arm [19]. Then, vi can be
computed as

vi(qi, q̇i) =

[
ṗEi(qi, q̇i)
ωEi(qi, q̇i)

]
=

[
ṗBi − S(RBi

kpi)ωBi +RBi

∂kpi
∂αi

ωBi +RBi
JAi α̇i

]
, (1)

where JAi : Rnαi → R3×nαi is the angular Jacobian of the
robotic arm with respect to the agent’s base. The differential
kinematics (1) can be written as

vi(qi, q̇i) =

[
ṗEi(qi, q̇i)
ωEi(qi, q̇i)

]
= Ji(qi)q̇i, (2)

where Ji : Rni → R6×ni is the agent Jacobian matrix, with

Ji(qi) =[
I3 −S(RBi

(ηBi)kpi(αi))JBi(ηBi) RBi
(ηBi)

∂kpi (αi)

∂αi
03×3 JBi(ηBi) RBi

(ηBi)JAi(qi)

]
.

Remark 1. Note that JBi becomes singular at representation
singularities, when θBi = ±π2 and Ji becomes singular at
kinematic singularities defined by the set

Qi = {qi ∈ Rni : det(J>i Ji) = 0}, i ∈ N .

In the following, we will aim at guaranteeing that qi will
always be in the closed set:

Q̃i = {qi ∈ Rni : |det(J>i Ji)| ≥ ε > 0}, i ∈ N ,

for a small positive constant ε.

The joint-space dynamics for agent i ∈ N can be com-
puted using the Lagrangian formulation:

Bi(qi)q̈i +Ni(qi, q̇i)q̇i + gqi(qi) = τi − J>i λi, (3)

where Bi : Rni → Rni×ni is the joint-space positive definite
inertia matrix, Ni : Rni × Rni → Rni×ni represents the
joint-space Coriolis matrix, gqi : Rni → Rni is the joint-
space gravity vector, λi ∈ R6 is the generalized force vector
that agent i exerts on the object and τi ∈ Rni is the vector of
generalized joint-space inputs, with τi = [λ>Bi , τ

>
αi ]
>, where

λBi = [f>Bi , µ
>
Bi

]> ∈ R6 is the generalized force vector on
the center of mass of the agent’s base and ταi ∈ Rnαi is
the torque inputs of the robotic arms’ joints. By inverting
(3) and using (2) and its derivative, we can obtain the task-
space agent dynamics [19]:

Mi(qi)v̇i + Ci(qi, q̇i)vi + gi(qi) = ui − λi, (4)

with the corresponding task-space terms:

Mi(qi) =
[
Ji(qi)B

−1
i (qi)J

>
i (qi)

]−1
,

Ci(qi, q̇i)Ji(qi)q̇i = Mi(qi)
[
Ji(qi)B

−1
i (qi)Ni − J̇i(qi)

]
q̇i,

gi(qi) = Mi(qi)Ji(qi)B
−1
i (qi)gqi(qi).

The task-space input wrench ui can be translated to the
joint space inputs τi ∈ Rni via τi = J>i (qi)ui + (Ini −
J>i (qi)J̄

>
i (qi))τi0 , where J̄i is a generalized inverse of Ji

[19]. The term τi0 concerns over-actuated agents and does
not contribute to end-effector forces.

We define by Ai(qi) , Oi, i ∈ N , the ellipsoid that
bounds the i th agent’s volume with the corresponding
centers ci and semi-axes βi,1, βi,2, βi,3, i.e., the workspace
of the arm of agent i [19] enlarged so that it includes the
ith base. Note that Ai depends on qi and can be explicitly
found.

2) Object Dynamics: Regarding the object, we denote
as xO : R≥0 → M, vO : R≥0 → R6 the pose and
velocity of the object’s center of mass, with xO(t) =
[p>O (t), η>O (t)]>, pO(t) = [xO(t), yO(t), zO(t)]>, ηO(t) =
[φO(t), θO(t), ψO(t)]> and vO(t) = [ṗ>O (t), ω>O (t)]>. The
second order dynamics of the object are given by:

ẋO(t) = J−1Or
(xO)vO(t), (5a)

λO = MO(xO)v̇O(t) + CO(xO, vO)vO(t) + gO(xO), (5b)

where MO : M → R6×6 is the positive definite inertia
matrix, CO : M × R6 → R6×6 is the Coriolis matrix,
gO : M → R6 is the gravity vector, which are derived
from the Newton-Euler formulation. In addition, JOr :
M→ R6×6 is the object representation Jacobian JOr (xO) =



diag{I3, JOr,θ (xO)}, with

JOr,θ (xO) =

1 0 sin(θO)
0 cos(φO) − cos(θO) sin(φO)
0 sin(φO) cos(θO) cos(φO)

 ,
which is singular when θO = ±π2 . Finally, λO ∈ R6 is
the force vector acting on the object’s center of mass. Also,
similarly to the robotic agents, we define by CO(xO) , OO,
as the bounding ellipsoid of the object.

3) Coupled Dynamics: Consider N robotic agents rigidly
grasping an object. Then, the coupled system object-agents
behaves like a closed-chain robot and we can express the
object’s pose and velocity as a function of qi and q̇i, ∀i ∈ N .
In view of Fig. 2, we have that

pEi(qi(t)) = pO(t) + pEi/O(qi)

= pO(t) +REi
(t)p

Ei
Ei/O

, (6a)
ηEi(qi(t)) = ηO(t) + ηEi/O, (6b)

∀i ∈ N , where pEiEi/O represents the constant distance and
ηEi/O the relative orientation offset between the ith agent’s
end-effector and the object’s center of mass, which are
considered known. The grasp rigidity implies that ωEi = ωO,
∀i ∈ N . Therefore, by differentiating (6a), we obtain

vi(qi, q̇i(t)) = JOi(qi)vO(t), (7)

which, by time differentiation, yields

v̇i(t) = JOi(qi)v̇O(t) + J̇Oi(qi)vO(t), (8)

where JOi : Rn → R6×6 is a smooth mapping representing
the Jacobian from the object to the i-th agent:

JOi(qi) =

[
I3 S(pO/Ei(qi))

03×3 I3

]
,

and is always full rank due to the grasp rigidity.

Remark 2. Since the geometric object parameters p
Ei
Ei/O

and ηEi/O are known, each agent can compute pO, ηO and
vO simply by inverting (6) and (7), respectively, without
employing any sensory data. In the same vein, all agents
can also compute the object’s bounding ellipsoid CO, which
depends on q.

The Kineto-statics duality [19] along with the grasp rigid-
ity suggest that the force λO acting on the object center of
mass and the generalized forces λi, i ∈ N , exerted by the
agents at the contact points are related through

λO = GT (q)λ̄, (9)

where λ̄ = [λ>1 , · · · , λ>N ]> ∈ R6N and G : Rn → R6N×6 is
the grasp matrix, with G(q) = [J>O1

, · · · , J>ON ]>.
Next, we substitute (7) and (8) in (4) and we obtain in

vector form after rearranging terms:

λ̄ = u− M̄(q)G(q)v̇O − (M̄(q)Ġ(q, q̇)

+ C̄(q, q̇)G(q))vO − ḡ(q), (10)

where we have used the stack forms M̄ = diag{[Mi]i∈N },
C̄ = diag{[Ci]i∈N }, ḡ = [g>1 , . . . , g

>
N ]>, and u =

[u>1 , . . . , u
>
N ]>. By substituting (10) and (5) in (9) and by

noticing from (6) that xO depends on q owing to the grasp
rigidity, we obtain the coupled dynamics:

M̃(q)v̇O + C̃(q, q̇)vO + g̃(q) = GT (q)u, (11)

where:

M̃(q) = MO(q) +G>(q)M̄(q)G(q), (12)

C̃(q, q̇) = CO(q) +G>(q)M̄(q)Ġ(q, q̇) +G>(q)C̄(q)G(q),

g̃(q) = gO(q) +G>(q)ḡ(q),

Remark 3. Note that the agents dynamics under considera-
tion hold for generic robotic agents comprising of a moving
base and a robotic arm. Hence, the considered framework can
be applied for mobile, aerial, or underwater manipulators.

We can now formulate the problem considered in this
work:

Problem 1. Consider N robotic agents rigidly grasping an
object, governed by the coupled dynamics (11). Given the
desired pose xO,des, design the control input u : R≥0 → R6N

such that lim
t→∞

xO(t) = xO,des, while ensuring the satisfaction
of the following collision avoidance and singularity proper-
ties:

1) Ai(qi) ∩ Oz = ∅,∀i ∈ N , z ∈ Z ,
2) CO(xO) ∩ Oz = ∅,∀z ∈ Z ,
3) Ai(qi) ∩ Aj(qj) = ∅,∀i, j ∈ N , i 6= j,
4) −π2 < −θ̄ ≤ θO ≤ −θ̄ <

π
2 ,

5) −π2 < −θ̄ ≤ θBi ≤ −θ̄ <
π
2 ,

6) qi ∈ Q̃i.
for a 0 < θ̄ < π

2 , as well as the input and velocity
magnitude and input constraints: |τik | ≤ τ̄i, |q̇ik | ≤ ¯̇qi,∀k ∈
{1, . . . , ni}, i ∈ N , for some positive constants τ̄i, ¯̇qi, i ∈ N .

The aforementioned constraints correspond to the follow-
ing specifications:

• 1) stands for collision avoidance between the agents and
the obstacles.

• 2) stands for collision avoidance between the object and
the obstacles.

• 3) stands for collision avoidance between the agents.
• 4) stands for representation singularity avoidance of the

object.
• 5) stands for representation singularity avoidance of the

agents’ bases.
• 6) stands for kinematic singularity avoidance of the

agents.

In order to solve the aforementioned problem, we need the
following reasonable assumption regarding the workspace:

Assumption 1. (Problem Feasibility Assumption) The dis-
tance between any pair of obstacles is sufficiently large such
that the coupled system object-agents can navigate among
them without collisions.



We also define the following sets for every i ∈ N :

Si,O(q) = {qi ∈ Rni : Ai(qi) ∩ Oz 6= ∅,∀z ∈ Z},
Si,A(q) = {qi ∈ Rni : Ai(qi) ∩ Aj(qj) 6= ∅,∀j ∈ N\{i}},
SO(xO) = {xO ∈M : CO(xO) ∩ Oz 6= ∅}.

associated with the desired collision-avoidance properties.

IV. PROBLEM SOLUTION

In this section, a systematic solution to Problem 1 is
introduced. Our overall approach builds on designing a
Nonlinear Model Predictive control scheme the system of
the manipulators and the object. Nonlinear Model Predictive
Control (see e.g. [20]–[28]) have been proven suitable for
dealing with nonlinearities and state and input constraints.

The coupled agents-object nonlinear dynamics can be
written in compact form as follows:

ẋ = f(x, u) =

f1(x, u)
f2(x, u)
f3(x, u)

 , x(0) = x0, (13)

where x = [x>O , v
>
O , q

>]> ∈ Rn+12, u ∈ R6N and

f1(x, u) = J−1Or
(xO)vO,

f2(x, u) = M̃−1(q)
[
G>(q)u− C̃(q, q̇)vO − g̃(q)

]
,

f3(x, u) = Ĵ(q)JO(q)ĨvO,

where we have also used that:

Ĵ(q) = diag
{[

(J>i Ji)
−1J>i

]
i∈N

}
∈ Rn×6N ,

JO(q) = diag
{[
JOi
]
i∈N

}
∈ R6N×6N ,

Ĩ =
[
I6, · · · , I6

]> ∈ R6N×6 (14)

The expression for f3(x, u) is derived by employing (8) and
(2). Note that f is locally Lipschitz continuous in its domain
since it is continuously differentiable in its domain. Next, we
define the respective errors:

e(t) = x(t)− xdes =

xO(t)
vO(t)
q(t)

−
xO,des

ẋO,des

qdes


=

xO(t)− xO,des

vO(t)
q(t)− qdes

 ∈ Rn+12, (15)

where qdes = [q1,des, . . . , qN,des]
> is appropriately chosen

such that xO(t) = xO,des,∀t s.t. q(t) = qdes (see (6)), and
ẋO,des = q̇des = 0. The error dynamics are then ė(t) =
f(x(t), u(t)), which can be appropriately transformed to be
written as:

ė(t) = fe(e(t), u(t)), e(0) = e0 = x(0)− xdes. (16)

where fe(t) , f(e(t)+xdes, u(t). By ignoring over-actuated
input terms, we have that τi = J>i (qi)ui, which becomes

‖τi‖ ≤ τ̄i ⇔ σmin,i‖ui‖ ≤ τ̄i, (17)

where we have employed the property σmin(J>i )‖ui‖ ≤
‖J>i ui‖, with σmin(J>i ) denoting the minimum singular
value of J>i , which is strictly positive, if the constraint
qi ∈ Q̃i is always satisfied. Hence, the constraint |τik | ≤ τ̄i
is equivalent to

‖ui‖ ≤
τ̄i

σmin(J>i )
,∀i ∈ N . (18)

Let us now define the following set U ⊆ R6N :

U = {u ∈ R6N : ‖ui‖ ≤
τ̄i

σmin(J>i )
,∀i ∈ N}, (19)

as the set that captures the control input constraints of the
error dynamics system (16). Define also the set X ⊆ Rn+12:

X =
{
x ∈ Rn+12 : θO(t) ∈ [θ̄, θ̄], θBi(t) ∈ [θ̄, θ̄],

|q̇ki | ≤ ¯̇qi, qi ∈ Q̃i\ (Si,O(qi) ∪ Si,A(qi)) ,

xO ∈ R3\SO(xO),∀t ∈ R≥0
}
.

The set X captures all the state constraint of the system
dynamics (13). In view of (15), we define the set E ⊆ Rn+12

as:
E = {e ∈ Rn+12 : e ∈ X ⊕ (−xdes)},

as the set that captures all the constraints of the error
dynamics system (16).

The problem in hand is the design of a control input
u(t) ∈ U such that limt→∞ ‖e(t)‖ = 0 while ensuring
e(t) ∈ E,∀t ∈ R≥0. In order to solve the aforementioned
problem, we propose a Nonlinear Model Predictive scheme,
that is presented hereafter.

Consider a sequence of sampling times {ti}i≥0 with a
constant sampling period 0 < h < Tp, where is Tp is the
prediction horizon, such that:

ti+1 = ti + h,∀ i ≥ 0. (20)

In the sampling-data NMPC, a finite-horizon open-loop
optimal control problem (OCP) is solved at discrete sampling
time instants ti based on the current state error information
e(ti). The solution is an optimal control signal û(t), for
t ∈ [ti, ti + Tp]. For more details, the reader is referred
to [21]. The open-loop input signal applied in between the
sampling instants is given by the solution of the following
Optimal Control Problem (OCP):

min
û(·)

J(e(ti), û(·))

= min
û(·)

{
V (ê(ti + Tp)) +

∫ ti+Tp

ti

[
F (ê(s), û(s))

]
ds

}
(21a)

subject to:
˙̂e(s) = fe(ê(s), û(s)), ê(ti) = e(ti), (21b)
ê(s) ∈ E, û(s) ∈ U, s ∈ [ti, ti + Tp], (21c)
ê(ti + Tp) ∈ Ef , (21d)

where the hat ·̂ denotes the predicted variables (internal to
the controller), i.e. ê(·) is the solution of (21b) driven by the



control input û(·) : [ti, ti + Tp] → U with initial condition
e(ti). Note that the predicted values are not necessarily the
same with the actual closed-loop values (see [21]). The term
F : E × U → R≥0, is the running cost, and is chosen as:

F (e(t), u(t)) = e(t)>Qe(t) + u(t)>Ru(t). (22)

The terms V : E → R>0 and Ef are the terminal penalty
cost and terminal set, respectively, and are used to enforce
the stability of the system (see Section 4.2). The terminal
cost is given by V (e(t)) = e(t)>Pe(t). The terms Q ∈
R(n+12)×(n+12)
≥0 , P ∈ R(n+12)×(n+12)

>0 and R ∈ R6N×6N
>0

are chosen as:

Q = diag{q̃1, . . . , q̃n+12},
P = diag{p̃1, . . . , p̃n+12},
R = diag{r̃1, . . . , r̃6N}.

where q̃i ∈ R≥0, p̃i ∈ R>0,∀i ∈ {1, . . . , n + 12} and
r̃j ∈ R>0,∀j ∈ {1, . . . , 6N} are constant weights. For the
running cost, it holds that F (0, 0) = 0, as well as:

m‖e‖2 ≤ m
∥∥∥∥[eu

]∥∥∥∥2 ≤ F (e, u) ≤M
∥∥∥∥[eu

]∥∥∥∥2 ≤M‖e‖2,
(23)

where

m = min{q̃1, . . . , q̃n+12, r̃1, . . . , r̃6N},
M = max{q̃1, . . . , q̃n+12, r̃1, . . . , r̃6N}.

Note that m‖e‖2 is K functions, according to Definition 1.
The solution of the OCP (21a)-(21d) at time ti provides

an optimal control input denoted by û?(t; e(ti)), for t ∈
[ti, ti + Tp]. It defines the open-loop input that is applied to
the system until the next sampling instant ti+1:

u(t; e(ti)) = û?(ti; e(ti)), t ∈ [ti, ti+1). (24)

The corresponding optimal value function is given by:

J?(e(ti)) , J?(e(ti), û
?(·; e(ti))). (25)

where J(·) as is given in (21a). The control input u(t; e(ti))
is a feedback, since it is recalculated at each sampling instant
using the new state information. The solution of (16) starting
at time t1 from an initial condition e(t1), applying a control
input u : [t1, t2] → U is denoted by e(s;u(·), e(t1)), s ∈
[t1, t2]. The predicted state of the system (16) at time ti +
s, s > 0 is denoted by ê(ti+s;u(·), e(ti)) and it is based on
the measurement of the state e(ti) at time ti, when a control
input u(·; e(ti)) is applied to the system (16) for the time
period [ti, ti + s]. Thus, it holds that:

e(ti) = ê(ti;u(·), e(ti)). (26)

We define an admissible control input as:

Definition 2. A control input u : [0, Tp]→ R6N for a state
e0 is called admissible, if all the following hold:

1) u(·) is piecewise continuous;
2) u(s) ∈ U,∀ s ∈ [0, Tp];
3) e(s;u(·), e0) ∈ E,∀ s ∈ [0, Tp];

4) e(Tp;u(·), e0) ∈ Ef ;

Lemma 2. The terminal penalty function V (·) is Lipschitz
continues in Ef , with Lipschitz constant LV = 2ε0σmax(P ),
for all e(t) ∈ Ef .

Proof. The proof can be found in Appendix I.

Through the following theorem, we guarantee the stability
of the system which is the solution to Problem 1.

Theorem 1. Consider the Assumptions 1,2. Suppose also
that:

1) The OCP (21a)-(21d) is feasible for the initial time
t = 0.

2) The terminal set Ef ⊆ E is closed, with 0n+12 ∈ Ef .
3) The terminal set Ef is chosen such that there exists an

admissible control input uf : [0, h]→ U such that for
all e(s) ∈ Ef it holds that:

a) e(s) ∈ Ef ,∀ s ∈ [0, h].

b)
∂V

∂e
fe(e(s), uf (s)) + F (e(s), uf (s)) ≤ 0,∀ s ∈

[0, h].

Then, the closed loop system (16), under the control input
(24), converges to the set Ef for t→∞.

Proof. As usual in predictive control the proof consists
of two parts: in the first part it is established that initial
feasibility implies feasibility afterwards. Based on this result
it is then shown that the error e(t) converges to the terminal
set Ef .

Feasibility Analysis: Consider any sampling time instant ti
for which a solution exists. In between ti and ti+1, the opti-
mal control input û?(s; e(ti)), s ∈ [ti, ti+1) is implemented.
According to (26), it holds that:

e(ti+1) = ê(ti+1; û?(·; e(ti)), e(ti)).

The remaining piece of the optimal control input
û?(s; e(ti)), s ∈ [ti+1, ti + Tp] satisfies the state and input
constraints E,U , respectively. Furthermore,

ê(ti + Tp; û
?(·; e(ti)), e(ti)) ∈ Ef ,

and we know from Assumption 2b of Theorem 1 that for all
e(t) ∈ Ef , there exists at least one control input uf (·) that
renders the set Ef invariant over h. Picking any such input, a
feasible control input ū(·; e(ti+1)), at time instant ti+1, may
be the following:

ū(s; e(ti+1)) ={
û?(s; e(ti)), s ∈ [ti+1, ti + Tp],

uf (ê(ti + Tp;u
?(·), e(ti))), s ∈ [ti + Tp, ti+1 + Tp].

(27)

Thus, from feasibility of û?(s, e(ti)) and the fact that
uf (e(t)) ∈ U , for all e(t) ∈ Ef , it follows that:

ū(s; e(ti+1)) ∈ U,∀ s ∈ [ti+1, ti + Tp].

Hence, the feasibility at time ti implies feasibility at time
ti+1. Therefore, if the OCP (21a) - (21d) is feasible at time
t = 0, it remains feasible for every t ≥ 0.



Convergence Analysis: The second part involves proving
convergence of the state e in the terminal set Ef . In order to
prove this, it must be shown that a proper value function is
decreasing along the solution trajectories starting at a sam-
pling time ti. Consider the optimal value function J?(e(ti)),
as is given in (25). Consider also the cost of the feasible
control input, indicated by:

J̄(e(ti+1)) , J̄(e(ti+1), ū(·; e(ti+1))), (28)

where ti+1 = ti + h, as is given in (20). Define:

u1(s) = ū(s; e(ti+1)), (29)
e1(s) = ē(s;u1(s), e(ti+1)), s > ti+1.

e1(s) stands for the predicted state e at time s, based on
the measurement of the state e at time ti+1, while using the
feasible control input ū(s; e(ti+1)). Let us also define th the
following terms:

u2(s) = û?(s; e(ti)), (30)
e2(s) = ê(s;u2(s), e(ti)), s > ti+1.

(29), (30) form convenient notations for the readability of
the proof hereafter.

By employing (21a), (25) and (28), the difference between
the optimal and feasible cost is given by:

J̄(e(ti+1))− J?(e(ti)) =

V (e1(ti+1 + Tp)) +

∫ ti+1+Tp

ti+1

[
F (e1(s), u1(s))

]
ds

− V (e2(ti + Tp))−
∫ ti+Tp

ti

[
F (e2(s), u2(s))

]
ds

= V (e1(ti+1 + Tp)) +

∫ ti+Tp

ti+1

[
F (e1(s), u1(s))

]
ds+∫ ti+1+Tp

ti+Tp

[
F (e1(s), u1(s))

]
ds− V (e2(ti + Tp))

−
∫ ti+1

ti

[
F (e2(s), u2(s))

]
ds

−
∫ ti+Tp

ti+1

[
F (e2(s), u2(s))

]
ds. (31)

Note that, from (27), the following holds:

ū(s; e(ti+1)) = û?(s; e(ti)),∀ s ∈ [ti+1, ti + Tp]. (32)

By combining (29), (30) and (32), it yields that:

u1(s) = u2(s) = ū(s),∀ s ∈ [ti+1, ti + Tp], (33)

which implies that:

e1(s) = e2(s),∀ s ∈ [ti+1, ti + Tp]. (34)

The combination of (33) and (34) implies that:

F (e1(s), u1(s)) = F (e1(s), u1(s)),∀ s ∈ [ti+1, ti + Tp].

which implies that:∫ ti+Tp

ti+1

[
F (e1(s), u1(s))

]
ds =∫ ti+Tp

ti+1

[
F (e2(s), u2(s))

]
ds. (35)

By employing (35), (31) becomes:

J̄(e(ti+1))− J?(e(ti)) =

V (e1(ti+1 + Tp)) +

∫ ti+1+Tp

ti+Tp

[
F (e1(s), u1(s))

]
ds

− V (e2(ti + Tp))−
∫ ti+1

ti

[
F (e2(s), u2(s))

]
ds. (36)

Due to the fact that ti+1 + Tp − (ti + Tp) = ti+1 − ti = h,
and the Assumption 2b of Theorem 1 holds for one sampling
period h, by integrating this inequality from ti+Tp to ti+1+
Tp and we get the following:∫ ti+1+Tp

ti+Tp

[∂V
∂e

fe(e1(s), u1(s)) + F (e1(s), u1(s))
]
ds ≤ 0

⇔
∫ ti+1+Tp

ti+Tp

[
V̇ (e1(s))

]
ds

+

∫ ti+1+Tp

ti+Tp

[
F (e1(s), u1(s))

]
ds ≤ 0

⇔V (e1(ti+1 + Tp))− V (e1(ti + Tp))

+

∫ ti+1+Tp

ti+Tp

[
F (e1(s), u1(s))

]
ds ≤ 0

⇔V (e1(ti+1 + Tp))− V (e1(ti + Tp))

+

∫ ti+1+Tp

ti+Tp

[
F (e1(s), u1(s))

]
ds ≤

V (e2(ti + Tp))− V (e2(ti + Tp))

⇔V (e1(ti+1 + Tp))+∫ ti+1+Tp

ti+Tp

[
F (e1(s), u1(s))

]
ds− V (e2(ti + Tp)) ≤

V (e1(ti + Tp))− V (e2(ti + Tp)).

By employing the property y ≤ |y|,∀y ∈ R, we get:

V (e1(ti+1 + Tp))+∫ ti+1+Tp

ti+Tp

[
F (e1(s), u1(s))

]
ds− V (e2(ti + Tp)) ≤

|V (e1(ti + Tp))− V (e2(ti + Tp))| . (37)

By employing Lemma 2, we have that:

|V (e1(ti + Tp))− V (e2(ti + Tp))| ≤
LV ‖e1(ti + Tp)− e2(ti + Tp)‖. (38)

By combining (37) and (38) we get:

V (e1(ti+1 + Tp))+∫ ti+1+Tp

ti+Tp

[
F (e1(s), u1(s))

]
ds− V (e2(ti + Tp)) ≤

LV ‖e1(ti + Tp)− e2(ti + Tp)‖ (39)



For s = ti + Tp, (34) gives:

e1(ti + Tp) = e2(ti + Tp). (40)

By combining (40) and (39) we have:

V (e1(ti+1 + Tp))+∫ ti+1+Tp

ti+Tp

[
F (e1(s), u1(s))

]
ds− V (e2(ti + Tp)) ≤ 0. (41)

By combining (36) with (41), the following holds:

J̄(e(ti+1))− J?(e(ti)) ≤ −
∫ ti+1

ti

[
F (e2(s), u2(s))

]
ds.

(42)

By substituting e = e2(s), u = u2(s) in (23) we get:

F (e2(s), u2(s)) ≥ m‖e2(s)‖2

or equivalently:∫ ti+1

ti

[
F (e2(s), u2(s))

]
ds ≥ m

∫ ti+1

ti

‖e2(s)‖2ds

⇔−
∫ ti+1

ti

[
F (e2(s), u2(s))

]
ds ≤ −m

∫ ti+1

ti

‖e2(s)‖2ds.

(43)

By combining (42) and (43) we finally get:

J̄(e(ti+1))− J?(e(ti)) ≤ −m
∫ ti+1

ti

‖e2(s)‖2ds. (44)

It is clear that the optimal solution at time ti+1 i.e.,
J?(e(ti+1)) will not be worse than the feasible one at the
same time i.e. J̄(e(ti+1)). Therefore, (44) implies:

J?(e(ti+1))− J?(e(ti)) ≤ −m
∫ ti+1

ti

‖e2(s)‖2s ≤ 0, (45)

or, by using the fact that
∫ ti

t0

‖e2(s)‖2ds =

i−1∑
j=0

∫ tj+1

tj

‖e2(s)‖2ds, equivalently, we obtain:

J?(e(ti+1))− J?(e(ti)) ≤

−m
∫ ti+1

t0

‖e2(s)‖2ds+m

i−1∑
j=0

∫ tj+1

tj

‖e2(s)‖2ds. (46)

By using induction and the fact that ti = h · i, ti+1 = h · (i+
1),∀i ≥ 0, from (20), (46) is written as:

J?(e(ti))− J?(e(t0)) ≤ −m
∫ ti

t0

‖e2(s)‖2ds. (47)

Since t0 = 0 we obtain:

J?(e(ti)) ≤ J?(e(0))−m
∫ ti

0

‖e2(s)‖2ds. (48)

which implies that:

J?(e(ti)) ≤ J?(e(0)). (49)
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By combining (45), (49), we obtain:

J?(e(ti+1)) ≤ J?(e(ti)) ≤ J?(e(0)),∀ ti = i · h, i ≥ 0.
(50)

Therefore, the value function J?(e(ti)) has proven to be
non-increasing for all the sampling times. Let us define the
function:

V (e(t)) = J?(e(s)) ≤ J?(e(0)), t ∈ R≥0, (51)

where s = max{ti : ti ≤ t}. Since J?(e(0)) is bounded, (51)
implies that V (e(t)) is bounded. Since the signals e(t), u(t)
are bounded (e(t) ∈ E, u(t) ∈ U ), according to (16), it holds
that ė(t) is also bounded. From (48) we have that:

V (e(t)) = J?(e(s)) ≤ J?(e(0))−m
∫ s

0

‖e2(s)‖2ds.

which due to the fact that s ≤ t, is equivalent to:

V (e(t)) ≤ J?(e(0))−m
∫ t

0

‖e2(s)‖2ds, t ∈ R≥0. (52)

From (52), we get:∫ t

0

‖e2(s)‖2ds ≤ 1

m
[J?(e(0))− V (e(t))] , t ∈ R≥0. (53)

Since J?(e(0)), V (e(t)) has been proven to be bounded,

the term
∫ t

0

‖e2(s)‖2ds is also bounded. Therefore, by

employing Lemma 1, we have that ‖e2(t)‖ → 0, as t→∞.
The latter implies that:

lim
t→∞

‖e(t)‖ = 0⇒ lim
t→∞

‖e(t)‖ = Ef ,

and leads to the conclusion of the proof.

V. SIMULATION RESULTS

To demonstrate the efficiency of the proposed control
protocol, we consider a simulation example with N = 2
ground vehicles equipped with 2 DOF manipulators, rigidly
grasping an object with n1 = n2 = 4, n = n1 + n2 = 8.
From (13) we have that x = [x>O , v

>
O , q

>]> ∈ R16, u ∈ R8,
with xO = [p>O , φO]> ∈ R4, vO = [ṗ>O , ωxO ]> ∈ R4, pO =
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[xO, yO, zO]> ∈ R3, q = [q>1 , q
>
2 ]> ∈ R8, qi = [p>Bi , α

>
i ]> ∈

R4, pBi = [xBi , yBi ]
> ∈ R2, αi = [αi1 , αi2 ]> ∈ R2, i ∈

{1, 2}. The manipulators become singular when sin(αi1) =
0}, i ∈ {1, 2}, thus the state constraints for the manipulators
are set to:

ε < α11 <
π

2
− ε,− π

2
+ ε < α12 <

π

2
− ε,

−π
2

+ ε < α21 < −ε,−
π

2
+ ε < α22 <

π

2
− ε.

We also consider the input constraints:

−10 ≤ ui(t) ≤ 10, i ∈ {1, . . . , 8}.

The initial conditions are set to:

xO(0) = [0,−2.2071, 0.9071, 0]>,

vO(0) = [0, 0, 0, 0]>,

q1(0) = [0, 0,
π

4
,
π

4
]>,

q2(0) = [0,−4.4142,−π
4
,−π

4
]>.

The desired goal states are set to:

xO,des = [10, 10, 0.9071, 0]>,

vO(0) = [0, 0, 0, 0]>,

q1(0) = [10, 12.2071,
π

4
,
π

4
]>,

q2(0) = [10, 7.7929,−π
4
,−π

4
]>.

We set an obstacle between the initial and the desired pose
of the object. the obstacle is spherical with center [5, 5, 1]
and radius 2. The sampling time is h = 0.1 sec, the horizon
is 3, and the total simulation time is 80 sec; The matrices
P,Q,R are set to:

P = 10I16×16, Q = 10I16×16, R = 2I8×8.

The simulation results are depicted in Fig. 3- Fig. 8, which
shows that the states of the agents and the object converge
to the desired ones while guaranteeing that the obstacle is
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avoided and all state and input constraints are met. The sim-
ulations were carried out by using the NMPC toolbox given
in [25] and they took 23500 sec in MATLAB Environment
on a desktop with 8 cores, 3.60 GHz SPU and 16GB of
RAM.

VI. CONCLUSIONS AND FUTURE WORK

In this work we proposed a NMPC scheme for the
cooperative transportation of an object rigidly grasped by
N robotic agents. The proposed control scheme deals with
singularities of the agents, inter-agent collision avoidance as
well as collision avoidance between the agents and the object
with the workspace obstacles. We proved the feasibility
and convergence analysis of the proposed methodology and
simulation results verified the efficiency of the approach.
Future efforts will be devoted towards including load sharing
coefficients, internal force regulation, and complete decen-
tralization of the proposed method. Finally, we will try
to decrease the overall complexity and carry out real-time
experiments.
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APPENDIX I
PROOF OF LEMMA 2

Proof. For every e(t) ∈ Ef , the following holds:

|V (e1)− V (e2)| = |e>1 Pe1 − e>2 Pe2|
= |e>1 Pe1 + e>1 Pe2 − e>1 Pe2 − e>2 Pe2|
= |e>1 P (e1 − e2)− e>2 P (e1 − e2)|
≤ |e>1 P (e1 − e2)|+ |e>2 P (e1 − e2)|. (54)

By employing the property that:

|x>Ay| ≤ σmax(A)‖x‖‖y‖,∀ x, y ∈ Rn, A ∈ Rn×n,

(54) is written as:

|V (e1)− V (e2)| ≤ σmax(P )‖e1‖‖e1 − e2‖
+ σmax(P )‖e2‖‖e1 − e2‖

= σmax(P )(‖e1‖+ ‖e2‖)‖e1 − e2‖
≤ σmax(P )(ε0 + ε0)‖e1 − e2‖
= [2ε0σmax(P )] ‖e1 − e2‖.

which completes the proof.
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