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Abstract— We develop a learning-based algorithm for the
control of autonomous systems governed by unknown, nonlinear
dynamics to satisfy user-specified tasks expressed via time-
varying reference trajectories. Most existing algorithms either
assume certain parametric forms for the unknown dynamic
terms or resort to unnecessarily large control inputs in order
to provide theoretical guarantees. The proposed algorithm
addresses these drawbacks by integrating neural-network-
based learning with adaptive control. More specifically, the
algorithm learns a controller, represented as a neural network,
using training data that correspond to a collection of system
parameters and tasks. These parameters and tasks are derived by
varying the nominal parameters and the reference trajectories,
respectively. It then incorporates this neural network into an
online closed-form adaptive control law in such a way that the
resulting behavior satisfies the user-defined task. The proposed
algorithm does not use any a priori information on the unknown
dynamic terms or any approximation schemes. We provide
formal theoretical guarantees on the satisfaction of the task.
Numerical experiments on a robotic manipulator and a unicycle
robot demonstrate the effectiveness of the proposed algorithm
with respect to algorithms that do not employ the neural-network
controller.

I. INTRODUCTION

Learning and control of autonomous systems with uncertain
dynamics is a critical and challenging topic that has been
widely studied during the last decades. One can identify plenty
of motivating reasons, ranging from uncertain geometrical or
dynamical parameters and unknown exogenous disturbances
to abrupt faults that significantly modify the dynamics. There
has been, therefore, an increasing need for developing control
algorithms that do not rely on the underlying system dynamics.
At the same time, such algorithms can be easily implemented
on heterogeneous systems since one does not need to be
occupied with the tedious computation of the dynamic terms.

A promising step towards the control of systems with
uncertain dynamics is the use of data obtained a priori from
system runs. However, engineering systems often undergo
purposeful modifications (e.g., substitution of a motor or link
in a robotic arm or exposure to new working environments)
or suffer gradual faults (e.g., mechanical degradation), which
might change the systems’ dynamics or operating conditions.
Therefore, one cannot rely on the aforementioned data to
provably guarantee the successful control of the system. On
the other hand, the exact incorporation of these changes in
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the dynamic model, and consequently, the design of new
model-based algorithms, can be a challenging and often
impossible procedure. Hence, the goal in such cases is to
exploit the data obtained a priori and construct intelligent
online policies that achieve a user-defined task while adapting
to the aforementioned changes.

There has been a large variety of works that tackle the
problem of control of autonomous systems with uncertain
dynamics, exhibiting, however, certain limitations. Neuro-
adaptive control works draw motivation from the neural
network density property (see, e.g., [1])1 and assume suffi-
ciently small approximation errors and linear parametrizations
of the unknown terms. Similarly, more traditional adaptive
control methodologies assume either linear parametrizations
of the unknown dynamic terms [8]–[17], use known upper-
bound functions [16], or provide local stability results dictated
by the dynamic bounds [17], [18]. Other learning-based
related works include modeling with Gaussian processes [19],
[20], using, however, partial information on the underlying
system dynamics. Control of unknown nonlinear continuous-
time systems has been also tackled in the literature by
using funnel control, without necessarily using off-line data
or dynamic approximations [21]–[23]. Nevertheless, funnel
controllers usually depend on reciprocal time-varying barrier
functions that drive the control input to infinity when the error
approaches a pre-specified funnel, creating thus unnecessarily
large control inputs that might damage the system actuators.

This paper addresses the control of systems with continuous,
unknown nonlinear dynamics subject to tasks expressed via
time-varying reference trajectories. Our main contribution lies
in the development of a learning-based control algorithm that
guarantees the accomplishment of a given task using only
mild assumptions on the system dynamics. The algorithm
draws a novel connection between adaptive control and
learning with neural network representations, and consists of
the following steps. Firstly, it trains a neural network that
aims to learn a controller that accomplishes a given task
from data obtained off-line. Secondly, we develop an online
adaptive feedback control law that uses the trained network
to guarantee convergence to the given reference trajectory
and hence satisfaction of the task. Essentially, our approach
builds on a combination of off-line trained controllers and
on-line adaptations, which was recently shown to significantly
enhance performance with respect to single use of the off-line
part [24].

The rest of the paper is organized as follows. Section

1A sufficiently large neural network can approximate a continuous function
arbitrarily well in a compact set [2]–[7].



II formulates the considered problem. Section III provides
the details of the proposed control algorithm. Section IV
demonstrates the effectiveness of the proposed algorithm
using numerical experiments and Section V concludes the
paper.

II. PROBLEM FORMULATION

Consider a dynamical system governed by the 2nd-order
continuous-time 2nd-order dynamics

ẋ1 = x2 (1a)
ẋ2 = f(x, t) + g(x, t)u, (1b)

where x := [x>1 , x
>
2 ]> ∈ R2n, n ∈ N, is the system state,

assumed available for measurement, and u is the control
input. The terms f(·) and g(·) are nonlinear vector fields
that are locally Lipschitz in x over R2n for each fixed t ≥ 0,
and continuous and uniformly bounded in t over R≥0 for
each fixed x ∈ R2n. The dynamics (1) comprise a large class
of nonlinear dynamical systems that capture contemporary
engineering problems in mechanical, electromechanical and
power electronics applications, such as rigid/flexible robots,
induction motors and DC-to-DC converters, to name a few.
The continuity in time and state provides a direct link to the
actual underlying system, and we further do not require any
time or state discretizations. We consider that f(·) and g(·)
are completely unknown; we do not assume any knowledge
of the structure, Lipschitz constants, or bounds, and we do not
use any scheme to approximate them. Note also that we do
not assume global Lipschitz continuity or global boundedness
of f(·, t) and g(·, t) or the solution x(t) of (1). Nevertheless,
we do assume that g(x, t) is positive definite:

Assumption 1: The matrix g(x, t) is positive definite, for
all (x, t) ∈ R2n × R≥0.
Such assumption is a sufficiently controllability condition for
(1); intuitively, it states that the multiplier of u (the input
matrix g(·)) does not change the direction imposed to the
system by the underlying control algorithm. Systems not
covered by (1) or Assumption 1 consist of underactuated
or non-holonomic systems, such as unicycle robots or
underactuated aerial vehicles. Nevertheless, we provide an
extension of our results for a non-holonomic unicycle vehicle
in Section III-B. Moreover, the 2nd-order model (1) can be
easily extended to account for higher-order integrator systems
[25].

Consider now a time-constrained task expressed as a time-
varying reference trajectory pd : R≥0 → Rn. The objective
of this paper is to construct a time-varying feedback-control
algorithm u(x, t) such that the state of the closed-loop system
(1) asymptotically tracks pd, i.e., limt→∞(x1(t)−pd(t)) = 0.
Before proceeding, we formally define the errors

e1 :=x1 − pd (2a)
e2 :=ė1 + k1e1 (2b)

for a positive constant k1, which we aim to drive to zero via
the control design. We further define e := [e>1 , e

>
2 ]> ∈ R2n

that will be used in the sequel.

III. MAIN RESULTS

This section describes the proposed algorithm, which
consists of two steps. Firstly, it learns a controller, represented
as a neural network, using training data that correspond to a
collection of different tasks and system parameters. Secondly,
we design an adaptive, time-varying feedback controller
that uses the neural-network approximation and guarantees
tracking of the reference trajectory, consequently achieving
satisfaction of the task.

A. Neural-network learning

As discussed in Section I, we are inspired by cases
where systems undergo changes that modify their dynamics
and hence the underlying controllers no longer guarantee
the satisfaction of a specific task. In such cases, instead
of carrying out the challenging and tedious procedure of
identification of the new dynamic models and design of
new model-based controllers, we aim to exploit data from
off-line system trajectories and develop an online control
law that is able to adapt to the aforementioned changes
and achieve the task expressed via pd. Consequently, we
assume the existence of offline data from a finite set of
T system trajectories that satisfy a collection of tasks,
corresponding to bounded reference trajectories, including
pd, and possibly produced by systems with different dynamic
parameters. The data from each trajectory i ∈ {1, . . . , T}
comprise a finite set of triplets {xs(t), t, us(t)}t∈Ti , where
Ti is a finite set of time instants, xs(t) ∈ R2n are system
states, and us(t) ∈ Rn are the respective control inputs,
compliant with the dynamics (1). Further, we assume that
the aforementioned data triplets are bounded in a compact
subset of R2n×R≥0×Rn. We use the data to train a neural
network in order to approximate the respective controller
u(x, t). More specifically, we use the pairs (xs(t), t)t∈Ti as
input to a neural network, and us(t)t∈Ti as the respective
output targets, for all trajectories i ∈ {1, . . . , T}. For given
x ∈ R2n, t ∈ R≥0, we denote by unn(x, t) the output of the
neural network. Note that the controller u(x, t), which the
neural network aims to approximate, is not associated to the
specific task expressed via pd and mentioned in Section II,
but a collection of several tasks. Therefore, we do not expect
the neural network to learn how to track pd, but rather to
be able to adapt to the entire collection of tasks. This is
an important attribute of the proposed scheme, since it can
generalize over tasks. The motivation for training the neural
network with different tasks and dynamic parameters is the
following. Since the tasks correspond to bounded trajectories,
the respective stabilizing controllers compensate successfully
the dynamics in (1). Therefore, the neural network aims to
approximate an “average” controller the retains this property,
i.e., the boundedness of the dynamics of (1). By using such
approximation, the online feedback control law - illustrated
in the next section - is able to guarantee tracking of pd
without using any explicit information on the dynamics. We
explicitly model the aforementioned approximation via the
following assumption on the closed-loop system trajectory
that is driven by neural network’s output, where we slightly



abuse the notation and use (2) to express x as a function of
e and t.

Assumption 2: There exists r > 0 such that, for all ‖x‖ ≤
r, t ≥ 0, the output unn(x, t) of the neural network satisfies

e>2

(
f(x(e, t), t) + g(x(e, t), t)unn(x(e, t), t)− p̈d(t)

)
≤ κ‖e2‖2 (3)

where κ is an unknown positive constant.
Assumption 2 is a sufficient condition for the prevention

of finite-time escape of the the error trajectory e(t) when
the system applies only the neural-network controller, i.e.,
of the solution of the differential equation ė2 = f(x, t) +
g(x, t)unn(x, t)− ṗd−k21e1 +k1e2. Indeed, when the system
is driven solely by the neural-network controller and satisfies
(3), one can find a Lyapunov function V (e) = e>Ge,
for a suitable constant matrix G ∈ R2n×2n, satisfying2

λmin(G)‖e‖2 ≤ V (e) ≤ λmax(G)‖e‖2 and V̇ ≤ α‖e‖2 ≤
α

λmin{G}V , for all ‖x‖ ≤ r and a positive constant α.
Therefore, we conclude that λmin(G)‖e(t)‖2 ≤ V (e(t)) ≤
V (e(0)) exp

(
α

λmin{G} t
)

, which prevents any finite-time es-
cape of e(t). Further note that the constants r and κ in (3)
are unknown.

Assumption 2 is motivated by (i) the property of neural
networks to approximate a continuous function arbitrarily
well in a compact domain for a large enough number of
neurons and layers [1], and (ii) the fact that the neural
network is trained with bounded trajectories. As mentioned
before, the collection of tasks that the neural network is
trained with correspond to bounded trajectories. Hence, in
view of the similarity of the dynamic terms, the neural
network is expected to approximate a control algorithm
that maintains the boundedness of the state trajectory as
per (3). Contrary to the related works (e.g., [2], [3], [5]–
[7], [26]) however, we do not adopt approximation schemes
for the system dynamics. In fact, a standard assumption in
the related literature is the approximation of an unknown
function by a single-layer neural network as Θ(x)ϑ + ε,
where Θ(x) is a known matrix of radial basis function, ϑ
is a vector of unknown constants, and ε is a constant error
assumed sufficiently small. Nevertheless, Assumption 2 is a
less strict assumption; it does not require sufficiently good
neural-network approximation through a sufficiently small
error ε or knowledge of any radial-basis term Θ(x). Moreover,
Assumption 2 does not imply that the neural-network output
unn(x, t) guarantee accomplishment of the formation task. It
is merely a growth condition on the the solution of the system
driven by unn(x, t). In practice, (3) can be achieved by rich
exploration of the state space in the tasks used for training.
In the numerical experiments of Section IV, we show that (3)
holds true along the executed system trajectories. Finally, we
note that the neural-network controller unn can be replaced by
other learning methodologies, as long as Assumption 2 holds.
Nevertheless, the rich structure of neural networks makes

2λmin and λmax denote the minimum and maximum eigenvalues,
respectively.

them great candidates for approximating a control algorithm
that satisfies (3).

B. Feedback control design

We are now ready to design the feedback control law. We
first define an adaptation variable ˆ̀, with ˆ̀(0) > 0, and design
the neural-network-based adaptive control law as

u(x, ˆ̀, t) = unn(x, t)− (k2 + ˆ̀)e2 (4a)
˙̂
` = k`‖e2‖2 (4b)

where k2 and k` are positive constants.
The control design is inspired by adaptive control method-

ologies [8], where the time-varying gain ˆ̀(t) adapts, in
coordination with the neural-network controller, to the un-
known dynamics in order to ensure closed-loop stability.
In particular, by inspecting the proof of Theorem 1, it can
be concluded that ˆ̀ aims to counteract the term κ+k1

λmin(g)
.

Intuitively, ˆ̀ increases according to (4b) until it dominates
the aforementioned term, leading to convergence of e2 to
zero. Note further that the control algorithm (4) does not
use any information on the system dynamics f(·), g(·) or
the constants κ, r of Assumption 2. The tracking of pd is
guaranteed by the following theorem.

Theorem 1: Let a system evolve according to (1) and let a
reference trajectory pd : R≥0 → Rn encoding a user-defined
task. Under Assumptions 1 and 2, there exists a set Mx

such that, if [x(0)>, ˆ̀(0)]> ∈Mx, the control algorithm (4)
guarantees limt→∞ e(t) = 0, as well as the boundedness of
all closed-loop signals.

Proof: Let the constants β := 1
λmin(g(x,t))

, ` := β(k1 +

κ), where λmin(·) is the minimum eigenvalue operator, k1
is the constant defined in (2b), and κ is the constant in the
right-hand-side of (3). Note that λmin(g(x, t)) > 0 due to
Assumption 1. Consider now the candidate Lyapunov function

V =
α

2
‖e1‖2 +

β

2
‖e2‖2 +

1

2k`
˜̀2

where α := k21β and ˜̀ := ˆ̀− `. Differentiation of V and use
of ė1 = e2 − k1e1 from (2b) yields

V̇ =− αk1‖e1‖2 + βe>2 (f(x, t) + g(x, t)u− p̈d + k1e2)

+
1

k`
˜̀˙̂
`

Substitution of (4) yields

V̇ =− αk1‖e1‖2 − β(k2 + ˆ̀)e>2 g(x, t)e2 + βk1‖e2‖2

+ βe>2
(
g(x, t)unn(x, t) + f(x, t)− p̈d

)
+

1

k`
˜̀‖e2‖2

Next, note that ˆ̀(t) > 0 due to (4b) and the fact that ˆ̀(0) >
0. Therefore, by further using (3) and β = 1

λmin(g(x,t))
, V̇

becomes

V̇ ≤− αk1‖e1‖2 − (k2 + ˆ̀)‖e2‖2 + β(κ+ k1)‖e2‖2

+
1

k`
˜̀‖e2‖2



Finally, by using ` = β(k1 + κ) and ˜̀ = ˆ̀− `, we
obtain V̇ ≤ −αk1‖e1‖2 − k2‖e2‖2, which implies that
V (t) ≤ V (0), for all t ≥ 0 and hence the boundedness
of e1(t), e2(t), and ˜̀(t). Consequently and since pd(t) and
ṗd(t) are bounded, we conclude the boundedness of ˆ̀(t)
and x(t) for all t ≥ 0. By differentiating V̇ and using the
boundedness of x(t), ṗd(t), p̈d(t), and the continuity of f(·)
and g(·), we conclude the boundedness of V̈ (t). Therefore, V̇
is uniformly continuous and hence, application of Barbalat’s
Lemma (Theorem 8.4 of [27]) yields limt→∞ V̇ (t) = 0,
which implies that limt→∞ e1(t) = limt→∞ e2(t) = 0.

Under Assumption 2, the aforementioned results hold under
the condition that ‖x‖ ≤ r. Therefore, we need to establish
that the proposed control algorithm and initial conditions
do not force ‖x(t)‖ to grow larger than r at any point in
time t ≥ 0. To that end, let first compact sets Ω` ⊂ R≥0,
Ω1,d ⊂ Rn, Ω2,d ⊂ Rn satisfying ˜̀(t) ∈ Ω`, pd(t) ∈ Ω1,d,
and ṗd(t) ∈ Ω2,d, for all t ≥ 0. Additionally, let Ωe := {e =
[e>1 , e

>
2 ]> ∈ R2n : ‖x‖ ≤ r, pd(t) ∈ Ω1,d, ṗd(t) ∈ Ω2,d} as

well as M := {[e>, ˜̀]> ∈ R2n+1 : V ≤ V0}, where V0 is the
largest positive constant for which M ⊆ Ωe × Ω`. Then, for
all [e(0)>, ˜̀(0)]> ∈ M ⇔ [x(0)>, ˆ̀(0)]> ∈ Mx, for some
Mx, it follows that V (t) is bounded from above by V0 for all
t ≥ 0, which implies that e(t) ∈ Ωe, for all t ≥ 0. Hence, it
holds that ‖x(t)‖ ≤ r for all t ≥ 0, leading to the conclusion
of the proof.

Remark 1: Note that, contrary to works in the related
literature (e.g., [22]), we do not impose reciprocal terms in
the control input that grow unbounded in order to guarantee
closed-loop stability. The resulting controller is essentially
a simple linear feedback on e(t) with time-varying adaptive
control gains, accompanied by the neural network output that
ensures the growth condition (3). The positive gains k1, k2,
and k` do not affect the stability results of Theorem 1, but
might affect the evolution of the closed-loop system; e.g.,
larger gains lead to faster convergence but possibly larger
control inputs. Further, the proposed control algorithm does
not require any of the long-standing assumptions on the
system dynamics (1), such as linear parameterization, growth
conditions, or boundedness by known functions (e.g., [8]–
[14], [16], [17], [17], [18]). Additionally, we do not assume
the boundedness of the solution of (1) or of the dynamic
terms f(·, t), g(·, t); instead, the control algorithm guarantees
via Theorem 1 the boundedness of the system state as well
as the asymptotic tracking of pd(t). The only boundedness
condition that we require is (3) in Assumption 2, which can
be accomplished by neural-network component in view of
the universal approximation property [1].

Extension to unicycle dynamics: As mentioned in Section
I, the dynamics 1 do not represent all kinds of systems, with
one particular example being when non-holonomic constraints
are present. In such cases, the control law design (4) can
no longer guarantee the stability results of Theorem 1. In
this section, we extend the control algorithm to account
for unicycle vehicles subject to first-order non-holonomic
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Fig. 1: Left: A unicycle vehicle. Right: Unicycle’s reference
trajectory for the experimental results.

constraints. More specifically, we consider the dynamics

ṗ1 = v cosφ, (5a)
ṗ2 = v sinφ, (5b)

φ̇ = ω (5c)

Mθ̈ = u+ fθ(x, t) (5d)

where x1 = [p1, p2, φ]> ∈ R3 are the unicycle’s position
and orientation, x2 = [v, ω]> are its linear and angular
velocity (see left of Fig. 1), θ := [θR, θL]> ∈ R2 are
its wheel’s angular positions, and u = [uR, uL]> ∈ R2

are the wheel’s torques, representing the control input. The
unicycle vehicle is subject to the non-holonomic constraint
ṗ1 sinφ − ṗ2 cosφ = 0, which implies that the vehicle
cannot move laterally. Additionally, M is the vehicle’s inertia
matrix and fθ(x, t) = [fθ,R(x, t), fθ,L(x, t)]> is a function
representing friction and external disturbances. The velocities
satisfy the relations v = rw

2 (θ̇R + θ̇L), ω = rw
2R (θ̇R − θ̇L),

where rw and R are the wheels’ radius and axle length,
respectively. The terms rw, R, M , and fθ(·) are considered
to be completely unknown. As before, the goal is for the
vehicle’s position p := [p1, p2]> to track a desired trajectory
pd = [pd,1, pd,2]> ∈ R2. Towards that end, we define
the error variables e1 := p1 − pd,1, e2 := p2 − pd,2,
ed := ‖p − pd‖, as well as the angle β measured from
the the longitudinal axis of the vehicle, i.e., the unicycle’s
direction vector [cosφ, sinφ], to the error vector −[e1, e2]
(see left of Fig. 1). The angle β can be derived by using
the cross product between the aforementioned vectors, i.e.,
ed sin(β) = [cosφ, sinφ]× [−e1,−e2] = e1 sinφ− e2 cosφ.
The purpose of the control design, illustrated next, is to drive
ed and β to zero. Towards that purpose, we set reference
signals for the vehicle’s velocity as

vd :=
1

cos(β)
(ṗd,1 cos(β + φ) + ṗd,2 sin(β + φ) + kded)

(6a)

ωd :=− sin(φ)ṗd,1

cos(β)ed
+

cos(φ)ṗd,2

cos(β)ed
+ kd tanβ + kββ (6b)

where kd, kβ are positive gains, aiming to create exponentially
stable subsystems for ėd and β̇. We define the respective
velocity errors ev := v − vd, eω := ω − ωd and design



the adaptive and neural-network-based control input as
u(x, ˆ̀

v, ˆ̀
ω, ˆ̀

a, t) := [uS+uD

2 , uS−uD

2 ]> + unn(x, t), with

uS := ˆ̀
v v̇d − (kv + ˆ̀

a)ev + ed cosβ − β sinβ

ed
(7a)

uD := ˆ̀
ωω̇d − (kω + ˆ̀

a)eω + β (7b)
˙̂
`v := −kvev v̇d,

˙̂
`ω := −kωeωω̇d,

˙̂
`a := ka(e2v + e2ω) (7c)

where ˆ̀
v , ˆ̀

ω , and ˆ̀
a are adaptation variables (similar to (4)),

with ˆ̀
a(0) > 0, and kv , kω , ka, are positive gains, We now re-

state Assumption 3 to apply for the unicycle analysis, where
we use ũnn(x, t) := [unn,R(x, t) + unn,L(x, t), unn,R(x, t) −
unn,L(x, t)]>, f̃θ(x, t) := [fθ,R(x, t)+uθ,L(x, t), uθ,R(x, t)−
uθ,L(x, t)]>, and eg := [ev, eω]>.

Assumption 3: There exists r > 0 such that the output
unn(x, t) of the trained neural network satisfies

e>g

(
ũnn(x(e, t), t) + f̃θ(x(e, t), t)

)
≤ κeg (8)

for all ‖x‖ ≤ r, t ≥ 0, where κ is an unknown positive
constant.
The next corollary establishes the stability of the proposed
scheme for the unicycle dynamics.

Corollary 1: Let the unicycle system (5) and let a refer-
ence trajectory pd : R≥0 → R2. Assume that β(t) ∈ (−β̄, β̄),
|ṗd,1 sinφ− ṗd,2 cosφ| < edα1, for positive constants β̄ < π

2 ,
α1, and all t ≥ 0. Under Assumption 3, there exists a set Mx

such that, if [x(0)>, ˆ̀
v(0), ˆ̀

ω(0), ˆ̀
a(0)]> ∈Mx, the control

algorithm (7) guarantees limt→∞ ed(t) = limt→∞ β(t) =
limt→∞ ev(t) = limt→∞ eω(t) = 0, and the boundedness of
all closed-loop signals.

The assumptions |ṗd,1 sinφ− ṗd,2 cosφ| < edα1, sinβ <
edα2 are imposed to avoid the singularity of ed = 0; note that
β and ωd are not defined in that case. Intuitively, they imply
that ed will not be driven to zero faster than β or ṗd,1 sinφ−
ṗd,2 cosφ; the latter becomes zero when the vehicle’s velocity
vector v aligns with the desired one ṗd.

Proof: By differentiating ed and β, and using (5) as well
as the relations e1 = −ed cos(φ+ β), e2 = −ed sin(φ+ β)
(see left of Fig. 1), we derive

ėd = −v cosβ + ṗd,1 cos(φ+ β) + ṗd,2 sin(φ+ β) (9a)

β̇ = −ω +
sinβ

ed
v − ṗd,1

ed
sin(φ+ β) +

ṗd,2

ed
cos(φ+ β) (9b)

which can be written as[
ėd
β̇

]
= G

[
v
ω

]
+

[
ṗd,1 cos(φ+ β) + ṗd,2 sin(φ+ β)
ṗd,2
ed

cos(φ+ β)− ṗd,1
ed

sin(φ+ β)

]
where G :=

[
− cosβ 0

sin β
ed

−1

]
. It can be verified that the

reference velocity signals, designed in (6), can be written as[
vd
ωd

]
= G−1

[
−ṗd,1 cos(φ+ β)− ṗd,2 sin(φ+ β)− kded
− ṗd,2

ed
cos(φ+ β) +

ṗd,1
ed

sin(φ+ β)− kββ

]
and therefore, by using the relations v = ev + vd and ω =
eω + ωd, ėd and β̇ can be written as[
ėd
β̇

]
=

[
−kded
−kββ

]
+G

[
ev
eω

]
=

[
−kded
−kββ

]
+

[ −ev cosβ
ev

sin β
ed

− eω

]
(10)

The control design follows the back-stepping methodology
[8]. Let, therefore, the function V1 := 1

2 (e2d + β2), which,
after time differentiation and use of (10), yields

V̇1 =− kde2d − kββ2 − edev cosβ + βev
sinβ

ed
− βeω (11)

We will cancel the last terms of V̇1 using the control input
(7). First, we note that the inertia matrix of the system M ,
appearing in the unicycle dynamics (5), has the form [28]

M =

[
M1 M2

M2 M1

]
with M1 :=

mr2w
4 +

(IC+md2)r2w
4R2 + I0,

M2 :=
mr2w
4 − (IC+md2)r2w

4R2 , and where IC is the moment of
inertia of the vehicle with respect to point C (see left of Fig.
1), I0 is the moment of inertia of the the wheels, and d is
the distance of the between point C and the vehicle’s center
of mass (p1, p2). Therefore, the second part of the unicycle
dynamics (5) can be written as

M1θ̈R +M2θ̈L = uR + fθ,R

M2θ̈R +M1θ̈L = uL + fθ,L

with fθ,R and fθ,L denoting the elements of fθ. By summing
and subtracting the aforementioned equations, we obtain

(M1 +M2)(θ̈R + θ̈L) = uR + uL + fθ,R + fθ,L (12a)

(M1 −M2)(θ̈R − θ̈L) = uR − uL + fθ,R − fθ,L (12b)

From the definition of ev and eω, it holds that ėv = v̇ − v̇d,
ėω = ω̇− ω̇d, which, by using the relations v = rw

2 (θ̇R+ θ̇L),
ω = rw

2R (θ̇R − θ̇L) and (12), becomes

ėv =
rw

2(M1 +M2)

(
uR + uL + fθ,R(x, t) + fθ,L(x, t)

)
− v̇d

(13a)

ėω =
rw

2R(M1 −M2)

(
uR − uL + fθ,R(x, t)− fθ,L(x, t)

)
− ω̇d

(13b)

Define now `v := 2M1+M2

rw
, `ω := 2RM1−M2

rw
. The adapta-

tion terms ˆ̀
v, and ˆ̀

ω, used in the control mechanism (7),
aim to approximate `v and `ω, respectively. Note that ˆ̀

v

and ˆ̀
ω are positive, and we define the errors ˜̀v := ˆ̀

v − `v,˜̀
ω := ˆ̀

ω − `ω .
Furthermore, we define the error ˜̀a := ˆ̀

a − κ, where κ as
in the right-hand-side of (8), and we consider the continuously
differentiable and positive definite function

V := V1 +
`v
2
e2v +

`ω
2
e2ω +

1

2kv
˜̀2
v +

1

2kω
˜̀2
ω +

1

2ka
˜̀2
a

which, by differentiating V and employing (11) and (12),
becomes

V̇ =− kde2d − kββ2 − edev cosβ + βev
sinβ

ed
− βeω

+ ev
(
uR + uL + fθ,R + fθ,L − `v v̇d

)
+ eω

(
uR − uL + fθ,R − fθ,L − `ωω̇d

)
+

1

kv
˜̀
v

˙̂
`v +

1

kω
˜̀
ω

˙̂
`ω +

1

ki
˜̀
a

˙̂
`a



By substituting the control and adaptation algorithm (7), V̇
becomes

V̇ =− kde2d − kββ2 − kve2v − kβe2ω + ev v̇d ˜̀v + eωω̇d ˜̀ω
− ˆ̀

a(e2v + e2ω) + ev(unn,R + unn,L + fθ,R + fθ,L)

+ eω(unn,R − unn,L + fθ,R − fθ,L)− ˜̀vev v̇d − ˜̀ωeωω̇d

+ ˜̀a(e2v + e2ω)

Finally, by using (8) and ˜̀a = ˆ̀
a − κ, V̇ becomes

V̇ =− kde2d − kββ2 − kve2v − kβe2ω
which implies that V (t) ≤ V (0) and the boundedness of
ed(t), β(t), ev(t), eω(t), ˜̀v(t), ˜̀ω(t), and ˜̀a(t), for all t ≥ 0.
By differentiating V̇ and using (10), (13), and (7), one further
concludes the boundedness of V̈ and hence the uniform
continuity of V̇ . Therefore, by applying Barbalat’s Lemma
(Theorem 8.4 of [27]), we conclude that limt→∞ ed(t) =
limt→∞ β(t) = limt→∞ ev(t) = limt→∞ eω(t) = 0.

Under Assumption 3, the aforementioned results hold under
the condition that ‖x‖ ≤ r. Therefore, we need to establish
that the proposed control algorithm and initial conditions
do not force ‖x(t)‖ to grow larger than r at any point in
time t ≥ 0. To that end, let first compact sets Ω` ⊂ R3

≥0,
Ω1,d ⊂ Rn, Ω2,d ⊂ Rn satisfying ˜̀(t) := [˜̀v, ˜̀ω, ˜̀a]> ∈
Ω`, pd(t) ∈ Ω1,d, and ṗd(t) ∈ Ω2,d, for all t ≥ 0.
Additionally, let Ωe := {e := [ed, β, ev, eω]> ∈ R4 : β ∈
(−β, β), |ṗd,1 sinφ− ṗd,2 cosφ| < edα1, ‖x‖ ≤ r, pd(t) ∈
Ω1,d, ṗd(t) ∈ Ω2,d} as well as M := {[ed, β, ev, eω, ˜̀>]> ∈
R7 : V ≤ V0}, where V0 is the largest positive constant for
which M ⊆ Ωe × Ω`. Then, for all [e(0)>, ˜̀(0)>]> ∈M⇔
[x(0)>, ˆ̀

v(0), ˆ̀
ω(0), ˆ̀

a(0)]> ∈Mx, for some Mx, it follows
that V (t) is bounded from above by V0 for all t ≥ 0, which
implies that e(t) ∈ Ωe, for all t ≥ 0. Hence, it holds that
‖x(t)‖ ≤ r for all t ≥ 0, leading to the conclusion of the
proof.

IV. NUMERICAL EXPERIMENTS

This section is devoted to a series of numerical experiments.
We first test the proposed algorithm on a 6-dof UR5 robotic
manipulator with dynamics

ẋ1 = x2 (14a)

ẋ2 = B(x1)−1 (u− C(x)x2 − g(x1) + d(x, t)) (14b)

where x1, x2 ∈ R6 are the vectors of robot joint angles
and angular velocities, respectively; B(x1) ∈ R6×6 is the
manipulator’s positive definite inertia matrix, C(x) ∈ R6×6

is the Coriolis matrix, g(x1) ∈ R6 is the gravity vector, and
d(x, t) ∈ R6 is a vector of friction terms and exogenous time-
varying disturbances. The workspace consists of obstacles and
four points of interest T1 = [−0.15,−0.475, 0.675, π2 , 0, 0]>,
T2 = [−0.6, 0, 2.5, 0,−π2 ,−

π
2 ]>, T3 =

[−0.025, 0.595, 0.6,−π2 , 0, π]>, and T4 = [−0.525,
−0.55, 0.28, π, 0, −π2 ]> (end-effector position and
Euler-angle orientation), and the corresponding joint-angle
vectors as c1 = [−0.07,−1.05, 0.45, 2.3, 1.37,−1.33]>,

Fig. 2: A UR5 robot in a workspace with four points of
interest Ti, i ∈ {1, . . . , 4}.

c2 = [1.28, 0.35, 1.75, 0.03, 0.1,−1.22]>, c3 =
[−0.08, 0.85,−0.23, 2.58, 2.09,−2.36]>, c4 = [−0.7,
−0.76, −1.05, −0.05, −3.08, 2.37]> (radians).

We consider a nominal task expressed via the spatio-
temporal constraint

∧
i∈{1,...,4}G[0,∞)FIi(‖x1 − ci‖ ≤ 0.1),

where G and F are the always and eventually operators
respectively. The task consists of visits of x1 to ci ∈ R6

(within the radius 0.1) infinitely often within the time intervals
dictated by Ii, for i ∈ {1, . . . , 4}, while avoiding obstacles.
The reference trajectories are generated by an RRT algorithm.

We set a nominal value for the time intervals as Ii =
[0, 20] (seconds), and we create 100 problem instances by
varying the following attributes: firstly, we add uniformly
random offsets in [−0.3, 0.3] (radians) to the elements of all
ci, and in [−2, 2] (seconds) to the right end-points of the
intervals Ii; secondly, we add random offsets to the dynamic
parameters of the robot (masses and moments of inertia of
the robot’s links and actuators) and we set a different friction
and disturbance term d(·), leading to a different dynamic
model in (14); thirdly, we set different sequences of visits
to the points ci, i ∈ {1, . . . , 4}, as dictated by φ, i.e., one
trajectory might correspond to the visit sequence ((x(0), 0)→
(c1, t11) → (c2, t12) → (c3, t13) → (c4, t14), and another to
((x(0), 0) → (c3, t13) → (c1, t11) → (c4, t14) → (c2, t12).
Finally, we add uniformly random offsets in [−0.5, 0.5] to
the initial position of the robot (from the first point of the
sequence), and we set its initial velocity randomly in the
interval [0, 1]6.

Regarding the dynamics (14), we use the method-
ology described in [29] to derive the B, C, and g
terms. We set nominal link masses and moments of in-
ertia as m = [1, 2.5, 5.7, 3.9, 2.5, 2.5, 0.7] (kg) and I =
[0.02, 0.04, 0.06, 0.05, 0.04, 0.04, 0.01] (kgm2), respectively,
and we add random offsets in (−m2 ,

m
2 ), (− I2 ,

I
2 ) in the

created instances. Regarding the function d() used in (14);
we set d(x, t) = dt(t) + df (x), where

dt = At

sin(η1t+ ϕ1)
...

sin(η6t+ ϕ6)


df = Btẋ⊗ ẋ
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Fig. 3: Top: Mean (left) and standard deviation (right) of
‖e2(t)‖ for the proposed and no-neural-network control
algorithms. Bottom: Mean (left) and standard deviation (right)
of the adaptation variable ˆ̀(t) for the proposed algorithm.

At = diag{ Ati}i∈{1,...,6} ∈ R6×6, Ati is a random term in
(0, 2mi), ηi is a random term in (0, 1), ϕi is a random term
in (0, 2), Bt ∈ R6×36 is a random matrix taking values in
(0, 2mi), and ⊗ denotes the Kronecker product.

We separate the aforementioned 100 problem instances
into 50 training instances and 50 test instances. We generate
trajectories using the 50 training instances from system runs
that satisfy different variations of one cycle of the task (i.e.,
one visit to each point). Each trajectory consists of 500 points
and is generated using a nominal model-based controller. We
use these trajectories to train a neural network and we test
the control algorithm (4) in the 50 test instances. The neural
networks consist of 4 fully connected layers of 512 neurons;
each layer is followed by a batch normalization module and
a ReLU activation function. For the training we use the adam
optimizer and the mean-square-error loss function. In all
cases we choose a batch size of 256, and we train until a
desirable average (per batch) loss of the order of 10−4 is
achieved. All the values of the data used for the training
were normalized in [0, 1]. We chose the control gains of
the control law (4) as k1 = 1, k2 = 10, and k` = 1. We
also compare our algorithm with the the adaptive controller
uc(x, t) = −(k2 + ˆ̀)e2, ˙̂

` = k`‖e2‖2 that does not employ
the neural network (i.e., the term unn(x, t)), using the same
control gains.

The comparison results are depicted in the top of Fig. 3,
which depicts the mean and standard deviation of the signal
‖e2(t)‖ for the 50 instances and 40 seconds. One concludes
that the proposed algorithm achieves better performance
in terms of error magnitude than the no-neural-network
algorithm. Additionally, the bottom of Fig. 3 depicts the
mean and standard deviation of the adaptation variable ˆ̀(t)
for the 50 test instances. Finally, Fig. 4 illustrates the control
inputs u(x, t) as well as the neural-network outputs unn(x, t).
Note that the control input converges to the neural-network
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Fig. 4: Mean (left) and standard deviation (right) of the control
inputs u(x, t) (top) and the neural-network outputs unn(x, t)
(bottom) for the proposed algorithm.
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Fig. 5: Top: Mean (left) and standard deviation (right) of
‖e(t)‖ = ‖ed(t), β(t), ev(t), eω(t)‖ for the proposed and no-
neural-network control algorithms. Bottom: Mean (left) and
standard deviation (right) of the adaptation variables ˆ̀

v(t),
ˆ̀
ω(t), and ˆ̀

a(t) for the proposed algorithm.

output, i.e., limt→∞(u(t)− unn(t)) = 0, which can be also
verified by (4) and the fact that limt→∞ e2(t) = 0.

We next test the proposed algorithm, following a similar
procedure, on a unicycle robot. The dynamic terms in (5)
have the form

M =

[
M1 M2

M2 M1

]
fθ(x, t) = d(x, t)

with M1 := mr2

4 + (IC+md2)r2

4R2 + I0, M2 := mr2

4 −
(IC+md2)r2

4R2 , and where IC is the moment of inertia of the
vehicle with respect to point C (see left of Fig. 1), I0 is the
moment of inertia of the the wheels, and d is the distance of



the between point C and the vehicle’s center of mass (p1, p2).
The term d(x, t) is chosen as in the robotic-manipulator case.
The task here is to track a reference trajectory pd(t) ∈ R2,
shown in the right of Fig. 1. We derived 100 problem instances
by varying the dynamic and geometric parameters (elaborated
subsequently) and the function d(x, t), the unicycle’s initial
position and orientation with random offsets in [−0.25, 0.25]
(rad) from θ(0) = arctan(e2(0)/e1(0)), and we further set
random values in [−0.25, 0.25] (rad/s) to the initial wheel
velocities. Regarding the dynamic and geometric parameters,
which appear in the inertia matrix, we set m = 28 (kg),
IC = 0.1 (kgm2), I0 = 0.01 (kgm2), r = 0.01 (m), d = 0.01
(m), and we added random offsets in (−m2 ,

m
2 ), (− IA2 ,

IA
2 ),

(− I02 ,
I0
2 ), (− r2 ,

r
2 ), (−d2 ,

d
2 ), respectively, for the problem

instances. We chose the control gains of (7) as kd = 0.01,
kβ = 2, kv = 0.01, kω = 0.01, , kv = 3, kω = 1, and
ka = 1. For the training, we chose the parameters as in the
robotic manipulator case. We further compared with a version
of (7) that does not use the neural-network outputs.

The comparison results are depicted in the top pf Fig. 5,
which depicts the mean and standard deviation of the error
e = [ed, β, ev, eω]>, for the 50 test instances. One concludes
that the proposed algorithm achieves better performance
in terms of error magnitude than the no-neural-network
algorithm. Additionally, the bottom of Fig. 5 depicts the
mean and standard deviation of the adaptation variables
ˆ̀= [ˆ̀v, ˆ̀

ω, ˆ̀
a]> for the 50 test instances.

V. CONCLUSION AND FUTURE WORK

We develop an algorithm for the control of systems with
unknown nonlinear dynamics. The algorithm integrates neural
network-based learning and adaptive control. Future directions
will focus on relaxing the considered assumptions and create
connections among the off-line data, the training, and the
control performance.
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