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Abstract— We consider the asymptotic consensus problem for
2nd-order nonlinear multi-agent systems subject to predefined
constraints for the system response, such as maximum overshoot
or minimum convergence rate. We design a distributed discon-
tinuous adaptive control protocol that guarantees that the inter-
agent consensus errors evolve in a prescribed funnel while at the
same time converging to zero. The multi-agent dynamics contain
parametric and structural uncertainties, without boundedness
or approximation/parametric factorization assumptions. The
response of the closed loop multi-agent system is solely de-
termined by the predefined funnel and is independent from
the control gain selection. Finally, simulation results verify the
theoretical findings.

I. INTRODUCTION

Distributed control of networked multi-agent systems is
an emerging and significant topic that has received a large
amount of attention during the last decades due to the
variety of its applications [1]–[3]. In such schemes, each
agent calculates its own control signal based solely on local
information in order to achieve a collaborative task with the
other agents. A particular scheme of multi-agent systems
consists of the leader-follower architecture, where a team
of agents aims to follow a designated leader that holds
information about the execution of a potential task [4],
[5]. Leader-follower architectures find several applications
in autonomous vehicle, systems biology, and power systems.

A significant challenge that arises is control of multi-agent
systems with uncertain dynamics. Such uncertainties affect
many practical engineering systems and consist of unknown
dynamic parameters, modelling errors, or environmental
disturbances. A large variety of works develops learning-
based and adaptive control algorithms to compensate for the
aforementioned uncertainties [6]–[9]. However, these works
base their results on several limiting assumptions, such as
global Lipschitz or boundedness conditions [5], [10], linearly
parametrized dynamics with respect to unknown but constant
parameters [11], and availability of a priori information on
the dynamics [12].

Another important aspect of multi-agent systems is com-
pliance with pre-defined transient and steady-state specifi-
cations. Such specifications encode properties with respect
to overshoot, rate of convergence, and steady-state error of
the trajectory of a system, providing thus guarantees related
to safety and stabilization or tracking in a pre-defined time
interval. A large class of works establishing pre-defined
transient and steady-state specifications consist of funnel
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control algorithms, also known as prescribed-performance
control [4], [13]–[15]. Such algorithms guarantee that the
disagreement terms of the multi-agent system evolve in user-
defined functions of time that form a time-varying funnel,
which encodes the transient and steady-state specifications.
Impressively, funnel-control algorithms are able to implicitly
compensate large degrees of uncertainty in the dynamics. The
cost of doing so, however, is the lack of asymptotic stability
guarantees, i.e., the multi-agent disagreement terms remain in
the funnel without necessarily converging to zero. Traditional
funnel-based works achieve such a property only through
funnels that “shrink” asymptotically, i.e., funnels that become
arbitrarily narrow around zero as time grows to infinity. This,
however, might yield undesired large inputs due to the small
funnel values, and can be problematic in real-time systems.
On the other hand, by achieving asymptotic stability, the
funnels do not need to converge close to zero and can be used
only to encode transient constraints for the system. Asymp-
totic stability with transient constraints for multi-agent was
achieved in the works [15]–[17]; unlike the setup we consider
in this paper, however, [15] considers the simplistic case of
scalar states and constant control-input coefficients and [16],
[17] do not consider dynamic uncertainties. Furthermore,
asymptotic tracking subject to funnel transient constraints
has been achieved in [18], [19] for single-agent systems
assuming linear dynamics or parametric uncertainties.

In this paper, we consider the multi-agent synchronization
problem subject to transient constraints imposed by a set
of predefined funnels. The multi-agent system evolves to
2nd-order dynamics with unknown nonlinear terms. Our
main contribution lies in the design of a distributed adaptive
control algorithm that guarantees, not only confinement of
the multi-agent disagreement terms in the given funnels,
but also asymptotic stability from all initial conditions that
satisfy the initial funnel constraints. The proposed algorithm
is of low complexity, does not incorporate any information
on the system model, and does not require global state
boundedness assumptions or growth conditions. The transient
performance of the multi-agent system is independent of the
control gains and the system dynamics and depends solely
on the pre-defined funnel.

The rest of the paper is structured as follows. Section II
introduces preliminary background and notation. Section III
describes the tackled problem and Section IV provides the
proposed control protocol and the stability analysis. Finally,
simulation results are given in Section V and Section VI
concludes the paper.



II. NOTATION AND PRELIMINARIES

A. Notation

The sets of real, positive real, and non-negative real
numbers are denoted by R, R>0, and R≥0, respectively; ‖x‖
denotes the 2-norm of a vector x ∈ Rn; The open and closed
balls with respect to the 2-norm and with radius δ, centered
at x ∈ Rn, are denoted by B(x, δ) and B̄(x, δ), respectively.
Finally, In ∈ Rn×n and ⊗ denote the identity matrix and
Kronecker product, respectively.

B. Nonsmooth Analysis

Consider the following differential equation with a discon-
tinuous right-hand side:

ẋ = f(x, t), (1)

where f : D × [t0,∞) → Rn, D ⊂ Rn, is Lebesgue
measurable and locally essentially bounded, uniformly in t.
The Filippov regularization of f is defined as (see [20])

K[f ](x, t) :=
⋂
δ>0

⋂
µ(N̄)=0

co(f(B(x, δ)\N̄), t), (2)

where
⋂
µ(N̄)=0 is the intersection over all sets N̄ of

Lebesgue measure zero, and co(E) is the convex closure
of the set E.

Definition 1 (Def. 1 of [21]): A function x : [t0, t1) →
Rn, with t1 > t0, is called a Filippov solution of (1) on
[t0, t1) if x(t) is absolutely continuous and if, for almost all
t ∈ [t0, t1), it satisfies ẋ ∈ K[f ](x, t), where K[f ](x, t) is
the Filippov regularization of f(x, t).

Lemma 1 (Lemma 1 of [21]): Let x(t) be a Filippov so-
lution of (1) and V : D× [t0, t1)→ R be a locally Lipschitz,
regular function. Then, V (x(t), t) is absolutely continuous,
V̇ (x(t), t) = ∂

∂tV (x(t), t) exists almost everywhere (a.e.),

i.e., for almost all t ∈ [t0, t1), and V̇ (x(t), t)
a.e
∈ ˙̃
V (x(t), t),

where
˙̃
V :=

⋂
ξ∈∂V (x,t)

ξ>
[
K[f ](x, t)

1

]
,

and ∂V (x, t) is Clarke’s generalized gradient at (x, t) [21].
Theorem 1 (Corollary 2 of [21]): For the system given in

(1), let D ⊂ Rn be an open and connected set containing
0 and suppose that f is Lebesgue measurable and x 7→
f(x, t) is essentially locally bounded, uniformly in t. Let
V : D × [t0, t1) → R be locally Lipschitz and regular such
that W1(x) ≤ V (x, t) ≤W2(x), ∀t ∈ [t0, t1), x ∈ D, and

z ≤ −W (x(t)), ∀z ∈ ˙̃
V (x(t), t), t ∈ [t0, t1), x ∈ D, (3)

where W1 and W2 are continuous positive definite func-
tions and W is a continuous positive semi-definite on D.
Choose r > 0 and c > 0 such that B̄(0, r) ⊂ D and
c < min‖x‖=rW1(x). Then, for all Filippov solutions x :
[t0, t1) → Rn of (1), with x(t0) ∈ D := {x ∈ B̄(0, r) :
W2(x) ≤ c}, it holds that t1 = ∞, x(t) ∈ D, ∀t ∈ [t0,∞),
and limt→∞W (x(t)) = 0.

We now introduce the next theorem that relaxes the
inequality condition (3).

Theorem 2: For the system given in (1), let D ⊂ Rn be
an open and connected set containing 0 and suppose that f is
Lebesgue measurable and x 7→ f(x, t) is essentially locally
bounded, uniformly in t. Let V : D× [t0, t1)→ R be locally
Lipschitz and regular such that W1(x) ≤ V (x, t) ≤ W2(x),
∀t ∈ [t0, t1), x ∈ D, and

W1(x) ≤V (x, t) ≤W2(x), ∀t ∈ [t0, t1), x ∈ D, (4a)
z ≤−W (x) + α exp(−βt),

∀z ∈ ˙̃
V (x, t), t ∈ [t0, t1), x ∈ D, (4b)

where W1 and W2 are continuous positive definite functions,
W is a continuous positive semi-definite on D, and α, β
are positive constants. Choose r > 0 and c > 0 such that
B̄(0, r) ⊂ D and c + α

β exp(−βt0) < min‖x‖=rW1(x).
Then, for all Filippov solutions x : [t0, t1) → Rn of (1),
with x(t0) ∈ D := {x ∈ B̄(0, r) : W2(x) ≤ c}, it
holds that t1 = ∞, x(t) ∈ D, for all t ∈ [t0,∞), and
limt→∞W (x(t)) = 0.

Proof: Firstly, inequality (4b) and Lemma 1 suggest
that V̇ (x(t), t)

a.e
≤ −W (x(t)) +α exp(−βt) for any arbitrary

Filippov solution of (1) and all t ≥ t0. We argue that the
latter condition implies that

V (x(t), t) ≤ V (x(t0), t0) +
α

β

(
exp(−βt0)− exp(−βt)

)
,

(5)

for all t ≥ t0. Indeed, aiming to reach a contradiction, let a
t > t0 such that V (x(t), t) > V (x(t0), t0)+α

β

(
exp(−βt0)−

exp(−βt)
)
. Then, it holds that∫ t

t0

V̇ (x(σ), σ)dσ = V (x(t), t)− V (x(t0), t0)

>
α

β

(
exp(−βt0)− exp(−βt)

)
.

It follows that V̇ (x(t), t) > α exp(−βt) on a set of positive
measure, which contradicts V̇ (x(t), t) ≤ α exp(−βt), a.e.

Define now the sets

S1,` := {x ∈ B(0, r) : W1(x) ≤ `}
S2,` := {x ∈ B(0, r) : W2(x) ≤ `}

Ω`(t) := {x ∈ B(0, r) : V (x, t) ≤ `},

for a positive constant `, as well as the constant κ :=
c + α

β exp(−βt0). Note that, due to the fact that κ <
min‖x‖=rW1(x) and (4a), it holds that

S2,` ⊂ Ω`(t) ⊂ S1,` ⊂ B(0, r) ⊂ D,

for ` ∈ {c, κ} and all t ≥ t0. Moreover, (5) implies that
V (x(t), t) ≤ V (x(t0), t0)+ α

β exp(−βt0). Therefore, for any
t0 ≥ 0 and any x(t0) ∈ Ωc(t0), the solution starting at
(x(t0), t0) stays in Ωκ(t), for every t0. Hence, since S2,c ⊂
Ωc(t0), any solution starting in S2,c stays in Ωκ(t) for all
future times. Finally, since Ωκ(t) ⊂ S1,κ ⊂ B(0, r), it holds
that ‖x(t)‖ < r, for all t ≥ t0.



What is left to prove is that limt→∞W (x(t)) = 0.
Towards that end, we define first W̃ : D × [t0,∞), with

W̃ (x, t) := W (x)− α exp(−βt).

Consequently, one obtains from (4b) and Lemma 1 that∫ t

t0

W̃ (x(τ))dτ ≤−
∫ t

t0

V̇ (x(τ), τ)dτ =

V (x(t0), t0)− V (x(t), t) ≤ V (x(t0), t0).

Therefore,
∫ t
t0
W̃ (x(τ))dτ is bounded for all t ≥ t0.

Moreover, limt→∞
∫ t
t0
W̃ (x(τ))dτ is guaranteed to exist

since (i) limt→∞
∫ t
t0
α exp(−βt) = limt→∞

α
β (exp(−βt0)−

exp(−βt)) = α
β exp(−βt0), and (ii)

∫ t
t0
W (x(τ))dτ is

monotonically non-decreasing due to the positive semi-
definiteness of W (x). Since x(t) is locally absolutely con-
tinuous and f is essentially locally bounded, uniformly
in t, x(t) is uniformly continuous. Because W̃ (x, t) is
continuously differentiable in t and continuous in x, and
x ∈ B(0, r) ⊂ B̄(0, r), W (x(t), t) is uniformly continuous
in t on [t0,∞). Therefore, by using Barbalat’s lemma [22],
we conclude that limt→∞ W̃ (x(t), t) = limt→∞

(
W (x(t))−

α exp(−βt)
)

= 0, leading to limt→∞W (x(t)) = 0.

III. PROBLEM FORMULATION
Consider a MIMO multi-agent team comprised of a leader

and N followers, with the leading agent acting as an exosys-
tem that generates a desired command/reference trajectory
for the multi-agent team. The followers evolve according to
the 2nd-order dynamics

ẋi,1 = xi,2 (6a)
ẋi,2 = fi(xi, ζi, t) + gi(xi, ζi)ui (6b)

ζ̇i = fζi(xi, ζi, t) (6c)

for i ∈ N := {1, . . . , N}, where ζi ∈ Rnζ , xi :=
[x>i,1, x

>
i,2]> ∈ Rn × Rn are the states of agent i ∈ N , with

nζ ≥ 2 and n ≥ 2, which are available for measurement,
fi : R2n × R≥0 → Rn and gi : R2n × R≥0 → Rn×n are
unknown vector fields, and ui ∈ Rn is the control input of
agent i ∈ N . We make the following regularity assumptions
for fi(·) and gi(·):

Assumption 1: The maps (xi, ζi) 7→ fi(xi, ζi, t) :
R2n+nζ → Rn and (xi, ζi) 7→ gi(xi, ζi, t) : R2n+nζ →
Rn×n are locally Lipschitz for each t ∈ R≥0 and the maps
t 7→ fi(xi, ζi, t) : R≥0 → Rn are uniformly bounded for
each (xi, ζi) ∈ Rn × Rnζ , for all i ∈ N .

Assumption 2: The matrices

g̃i(xi, ζi, t) := gi(xi, ζi, t) + gi(xi, ζi, t)
>, i ∈ N ,

are positive definite, for all (xi, ζi, t) ∈ R2n+nζ × R≥0.
Assumption 3: There exist sufficiently smooth functions

Uζi : Rnζ → R≥0 and class K∞ functions γ
ζi

(·), γ̄ζi(·),
γζi(·) such that γ

ζi
(‖ζi‖) ≤ Uζi(ζi) ≤ γ̄ζi(‖ζi‖), and(

∂Uζi
∂ζi

)>
fζi(xi, ζi, t) ≤ −γζi(‖ζi‖) + πζi(xi, ζi, t),

for all i ∈ N , where xi 7→ πζi(xi, ζi, t) : R2n → R≥0 is
continuous and class K∞ for each (ζi, t) ∈ Rnζ ×R≥0, and
(ζi, t) 7→ πζi(xi, ζi, t) : Rnζ × R≥0 → R≥0 is uniformly
bounded for each x ∈ R2n, for all i ∈ N .

Assumption 2 is a sufficient controllability condition (sim-
ilar to the ones considered in a variety of works, e.g., [4], [5],
[12]), and Assumption 3 suggests that ζi are input-to-state
practically stable implying stable zero (internal) dynamics.

We write the multi-agent dynamics (6) in vector form

ẋ1 = x2 (7a)
ẋ2 = f(x, ζ, t) + g(x, ζ, t)u (7b)

ζ̇ = fζ(x, ζ, t) (7c)

where we use the stacked-vector notation

x1 := [x>1,1, . . . , xN,1]> ∈ RNn

x2 := [x>1,2, . . . , xN,2]> ∈ RNn

x := [x>1 , x
>
2 ]> ∈ R2Nn

ζi := [ζ>1 , . . . , ζ
>
N ]> ∈ RNnζ

u := [u>1 , . . . , u
>
N ]> ∈ RNn

f := [f>1 , . . . , f
>
N ]> ∈ RNn

fζ := [f>ζ1 , . . . , f
>
ζN ]> ∈ RNnζ

g := diag{g1, . . . , gN} ∈ RNn×Nn

We use an undirected graph G := (N , E) to model the
communication among the agents, with N being the index
set of the agents, and E ⊆ N ×N being the respective edge
set, with (i, i) /∈ E (i.e., simple graph). The adjacency matrix
associated with the graph G is denoted by A := [aij ] ∈
RN×N , with aij ∈ {0, 1}, i, j ∈ {1, . . . , N}. If aij = 1,
then agent i obtains information regarding the state xj of
agent j (i.e., (i, j) ∈ E), whereas if aij = 0 then there
is no state-information flow from agent j to agent i (i.e.,
(i, j) /∈ E). Furthermore, the set of neighbors of agent i is
denoted by Ni := {j ∈ N : (i, j) ∈ E}, and the degree
matrix is defined as D := diag{|N1|, . . . , |NN |}. Since the
graph is undirected, the adjacency is a mutual relation, i.e.,
aij = aji, rendering A symmetric. The Laplacian matrix of
the graph is defined as L := D −A and is also symmetric.
The graph is connected if there exists a path between any
two agents. For a connected graph, it holds that L1̄ = 0,
where 1̄ is the vector of ones of appropriate dimension.

Regarding the leader agent, we denote its state variables
by x0 := [x>0,1, x

>
0,2]> ∈ R2n, evolving according to ẋ0,1 =

x0,2 = q0, where q0 is a positive constant, such that x0,1(t)
is bounded for all finite t. However, the leader provides its
state only to a subgroup of the N agents. In particular, we
model the access of the follower agents to the leader’s state
via a diagonal matrix B := diag{b1, . . . , bN} ∈ RN×N ; if
bi = 1, then the ith agent has access to the leader’s state,
whereas it does not if bi = 0, for i ∈ N . We further define
H := (L+ B)⊗ In.

The control objective is the design of a distributed control
algorithm for the followers, using relative state feedback, that



asymptotically stabilizes the disagreement vectors

δi(t) := xi,1(t)− x0,1(t) (8)

to zero, for all i ∈ N . At the same time, as discussed in
Section I, we aim at imposing a certain predefined behaviour
for the transient response of the multi-agent system. Note,
however, that δi(t) in (8) is not accessible by the agents that
are not connected to the leader, i.e., agents for which bi = 0.
Therefore, we formulate the transient behaviour on the error
variables

ei :=[ei,1, . . . , ei,n]>

:=
∑
j∈Ni

aij(xi,1 − xj,1) + bi(xi,1 − x0,1) (9)

for i ∈ N , which will define the subsequent control design.
The transient behaviour we aim at imposing is inspired
by funnel-control techniques [23]–[25]. More specifically,
given n predefined funnels for each agent, described by the
exponentially decaying functions (also called performance
functions [24]) ρi,k : R≥0 → [ρ

i,k
, ρ̄i,k] ⊂ R>0, with

ρi,k(t) := (ρ̄i,k − ρi,k) exp(−li,kt) + ρ
i,k

, we aim at guar-
anteeing that1 −ρi,k(t) < ei,k(t) < ρi,k(t), for all t ≥ 0,
i ∈ N , and k ∈ K := {1, . . . , n}, given that −ρi,k(0) <
ei,k(0) < ρi,k(0), for all i ∈ N , k ∈ K. These functions can
encode maximum overshoot or convergence rate properties.
Note that, compared to the majority of the related works on
multi-agent funnel control (e.g., [4], [5]), we do not require
arbitrarily small final values ρ

i,k
= limt→∞ ρi,k(t), which

would achieve convergence of ei,k(t) arbitrarily close to
zero, since one of the objectives is actual asymptotic stability.
Formally, the problem statement is the following:

Problem 1: Consider the multi-agent system (6) and n
funnels for each agent described by the functions ρi,k. Design
a distributed control algorithm u such that limt→∞ ei(t) = 0
and −ρi,k(t) < ei,k(t) < ρi,k(t), for all i ∈ N , k ∈ K,
t ≥ 0, and all closed loop signals remain bounded.

To solve the aforementioned problem, we need the follow-
ing assumption on the graph connectivity:

Assumption 4: The graph G is connected and there exists
at least one i ∈ N such that bi = 1.
Assumption 4 implies that H = (L+B)⊗In is an irreducibly
diagonally dominant M-matrix [26]. An M-matrix is a square
matrix having its off-diagonal entries non-positive and all
principal minors nonnegative; thus H is positive definite.

By stacking all ei and using (9) and (8), one obtains

e := [e>1 , . . . , e
>
N ]> = Hδ (10)

where δ := [δ>1 , . . . , δ
>
N ]>. Therefore, since H = (L+B)⊗

In and L+B is positive definite owing to Assumption 4, we
conclude that

‖δ‖ ≤ ‖e‖
λmin(L+ B)

. (11)

1The results can be extended to non-symmetric funnels.

Therefore, the control-design specification limt→∞ ei(t) = 0
leads to limt→∞ δi(t) = 0, i ∈ N . Similarly, the transient-
state specifications imposed to ei,k(t) via the funnels ρi,k(t)
can be directly translated into respective specifications for
δi(t). Although λmin(L+B) is related to the global topology
of the network and is not known by the agents, one can
employ the lower bound [27] λmin(L + B) ≥ Π(N) :=
N−1

2

N−1
2

N2+N−1 , which depends only the number of agents, to
derive

‖δ‖ ≤ ‖e‖
Π(N)

. (12)

which translates the transient-state specification of e(t) to
transient-state specifications for δ(t).

IV. MAIN RESULTS

The proposed solution to Problem 1 is based on the
error transformation proposed in [24], which converts the
constrained error behaviour −ρi,k(t) < ei,k(t) < ρi,k(t)
to an unconstrained one, for all i ∈ N , k ∈ K. More
specifically, we define the error transformations εi,k ∈ R
according to:

ei,k = ρi,kT (εi,k),∀i ∈ N , k ∈ K, (13)

where T : R → (−1, 1) is a smooth, strictly increasing
function, with T (0) = 0. Since T is increasing, the inverse
mapping T−1 : (−1, 1)→ R is well-defined, and

lim
z→−∞

T (z) = −1 lim
z→+∞

T (z) = 1, (14)

and hence, if εi,k remains bounded in a compact set, the
desired funnel objective −ρi,j(t) < ei,k(t) < ρi,k(t) is
achieved, for all i ∈ N , k ∈ K. We further require that

|z| ≤
∣∣∣∣∂T−1(z)

∂z
T−1(z)

∣∣∣∣ , ∀z ∈ (−1, 1). (15)

A possible choice that satisfies the aforementioned specifi-
cations is T (z) := exp(z)−1

exp(z)+1 .

From (13), we obtain εi,k = T−1
(
ei,k
ρi,k

)
, and by defining

εi := [εi,1, . . . , εi,n]>, we obtain

ε̇i =riρ
−1
i

( ∑
j∈Ni

aij(xi,2 − xj,2)

+ bi(xi,2 − x0,2)− ρ̇ieiρ−1
i

)
, (16)

where ρi := diag{[ρi,k]k∈K} ∈ Rn×n, ri :=

diag
{[

∂T−1(z)
∂z

∣∣
z=

ei,k
ρi,k

]
k∈K

}
, for i ∈ N . By further defin-

ing ε := [ε>1 , . . . , ε
>
N ]> and using (16) and (10), we obtain

ε̇ = rρ−1
(
H(x2 − x̄0,2)− ρ̇ρ−1e

)
, (17)

where r := diag{[ri]i∈N }, ρ := diag{[ρi]i∈N }, and x̄0,2 :=
[x>0,2, . . . , x

>
0,2]> ∈ RNn. Since the leader signal x0,2 is

unknown to the agents for which bi = 0, we define the
respective estimate variables v̂i ∈ Rn, i ∈ N of an
observer system. The proposed control algorithm follows a



backstepping-like methodology: we define first the reference
signal xi,v for each agent as

xi,v := −κi,1riρ−1
i εi + v̂i, i ∈ N (18)

where κi,1 is a positive constant, for all i ∈ N . We further
design the dynamics of v̂i as

˙̂vi = −
∑
i∈Nj

(v̂i − v̂j)− bi(v̂i − x0,2), i ∈ N . (19)

Next, we define the associated errors

evi := [e>vi,1, . . . , e
>
vi,n]> := xi,2 − xi,v (20)

Proceeding in a similar fashion, we define a funnel for
each evi,k described by the functions ρvi,k : R≥0 →
[ρ
vi,k

, ρ̄vi,k] ⊂ R>0, where ρ
vi,k

, ρ̄vi,k are the positive
lower and upper bounds, respectively, with the constraint
ρvi,k(0) > |evi,k(0)|, i ∈ N , k ∈ K. Note that agent i
can calculate evi,k(0) since it is a function of its own and its
neighbours’ state and the funnel functions. Moreover, note
that the functions ρvi,k represent an artificial funnel, in the
sense that they are not part of the given specification (as
ρi,k). The constraints they need to satisfy concern bound-
edness, positivity, and initial compliance with respect to the
respective errors, i.e., ρvi,k(0) > |evi,k(0)|, i ∈ N , k ∈ K.

Next, we define the open set Du,t := {(x, t) ∈ R2Nn ×
R≥0 : ρi(t)

−1ei ∈ (−1, 1)n, ρvi(t)
−1evi ∈ (−1, 1)n, i ∈

N}, with ρvi := diag{[ρvi,k]k∈K}, i ∈ N , and design the
distributed control law ui : Du,t → Rn as

ui =− κi,2ρ−1
vi rviεvi − κi,3d̂iρ

−1
vi svi (21)

where, for all i ∈ N ,

svi :=

{
rviεvi
‖rviεvi‖

, if εvi 6= 0

0, otherwise
,

εvi := [εvi,1, . . . , εvi,n]>, εvi,k := T−1
(
evi,k
ρvi,k

)
, k ∈ K,

rvi := diag{[rv1,k]k∈K}, rvi,k := ∂T−1(z)
∂z

∣∣
z=

evi,k

ρvi,k

, k ∈ K,

κi,2, κi,3 are positive gains, and d̂i are adaptive variable
gains, subject to the constraint d̂i(0) ≥ 0, and dynamics

˙̂
di = γi‖rviεvi‖, (22)

where γi > 0 are positive constant gains, for all i ∈ N .
Remark 1: The control design procedure follows closely

our previous work on single-agent systems [28], inspired by
the original prescribed performance methodology [4], [24],
[29]. Traditionally, the desired signals and control law consist
only of proportional terms with respect to the transformed
errors εi, εvi , i ∈ N , which are guaranteed to be ultimately
bounded. In this work, the incorporation of the extra terms in
(21) achieves convergence of the transformed errors to zero,
guaranteeing thus asymptotic stability.

Remark 2: Note that no information regarding the dy-
namic model is incorporated in the control protocol (18)-
(22). Furthermore, no a-priori gain tuning is needed and,
as the next theorem states, the solution of Problem 1 is

guaranteed from all initial conditions that satisfy −ρi,k(0) <
ei,k(0) < ρi,k(0), i ∈ N . As will be revealed subsequently,
the adaptive gains d̂i compensate the unknown dynamic
terms, which are proven to be bounded due to the confine-
ment of the states in the prescribed funnels. Finally, note that
each agent uses only local information from its neighbours
to compute (18) and (21).

Theorem 3: Consider a system subject to the dynamics (6)
and let funnels ρi,k as described in Problem 1. Then. under
Assumptions 1-4, the control algorithm (18)-(22) guarantees
the solution of Problem 1 from all initial conditions that
satisfy −ρi,k(0) < ei,k(0) < ρi,k(0), for all i ∈ N , k ∈ K.

Proof: The intuition of the subsequent proof is as
follows: We first show the existence of at least one Filippov
solution of the closed-loop system in Du,t for a time interval
I ⊆ [t0,∞). Next, we prove that for any of these solutions,
the state remains bounded in I by bounds independent of
the endpoint of I. Hence, the dynamic terms of (6) are also
upper bounded by a term, which we aim to compensate via
the adaptation gains d̂i, i ∈ N .

We start by defining some terms that will be used in the
subsequent analysis: K1 := diag{κi,1, . . . , κN,1} ⊗ In,
H̄ := λmax(H), H1 := λmin(K1HK1), Mp :=
maxi∈N ,k∈K{ρ̄i,k}, mp := mini∈N ,k∈K{ρi,k}, Mv

:= maxi∈N ,k∈K{ρ̄vi,k}, mv := mini∈N ,k∈K{ρvi,k},
Mv̇ := maxi∈N ,k∈K{supt≥0{|ρ̇vi,k(t)|}}, λi :=

mini∈N
(
ρvi(t)

−1g̃i(xi, ζi, t)ρvi(t)
−1
)
, βi := (ki,3λi)

−1,
i ∈ N , r := infz∈(−1,1)

∂T−1(z)
∂z . Note that all the

aforementioned terms are strictly positive. Moreover, in
view of (14), it holds that arg infz∈(−1,1)

∂T−1(z)
∂z ∈ (−1, 1).

By employing (21), (22), the closed loop system becomes

ẋ1 = x2, (23a)

ẋ2 ∈ f(x, ζ) + g(x, ζ, t)(K[u](x, d̂, t)), (23b)

ζ̇ = fζ(x, ζ, t) (23c)
˙̂
d = fd(x, t), (23d)

where d̂ := [d̂1, . . . , d̂N ]> ∈ RN , fd :=
[γ1‖rv1εv1‖, . . . , γN‖rvN εvN ‖] ∈ RN , and K[u](x, d, t)
is the Filippov regularization of u(x, d, t), formed
by substituting the terms svi with their regularized
terms, which are Svi =

rviεvi
‖rviεvi‖

if ‖rviεvi‖ 6= 0

and Svi ∈ (−1, 1)n otherwise, i ∈ N . Note that it
holds (rviεvi)

>Svi = ‖rviεvi‖, i ∈ N . Define now
x̃ := [x>, ζ>, d̂>]> ∈ R2Nn+Nnζ+N and consider the open
set Dc := {(x̃, t) ∈ R2Nn+Nnζ+N × R≥0 : (x, t) ∈ Du,t}.
Since ρi,k(0) > |ei,k(0)| and ρvi,k(0) > |evi,k(0)|, for
all i ∈ N , k ∈ K, the set Dc is nonempty. Moreover, the
right hand-side of (23) is Lebesgue measurable and locally
Lipschitz in x̃ over the set {x̃ : (x̃, t) ∈ Dc}, and Lebesgue
measurable in t over the set {t : (x̃, t) ∈ Dc}. Hence,
according to Prop. 3 of [30], for each initial condition
(x̃(0), 0) ∈ Dc, there exists at least one Filippov solution
x̃(t) of (23), defined in I := [0, tmax), where tmax > 0,
such that (x̃(t), t) ∈ Dc, for all t ∈ I. By applying the
transformation T (·)−1, we conclude the existence of the



respective Filippov solutions εi(t), εvi(t), i ∈ N , for all
t ∈ I. Let now x̃(0) denote the initial condition of the
system (23) satisfying (x̃(0), 0) ∈ Dc and consider the
family of Filippov solutions starting from x̃(0) denoted by
the set X. Note that, although not explicitly stated, tmax

and I might be different for each solution in X. We aim
to prove that all εi(t) and εvi(t) are bounded and that
converge to zero, for all i ∈ N and x̃(t) ∈ X. In view of
Dc, for all x̃(t) ∈ X it holds that

|ei,k(t)| < ρ̄i,k, |evi,k(t)| < ρ̄vi,k, (24)

for all i ∈ N , k ∈ K, t ∈ I, where ρ̄i,k and ρ̄vi,k are the
upper bounds of ρi,k(t) and ρvi,k(t), respectively. Consider
now the observer variables (19), which can be written as

˙̂vi = −
∑
i∈Nj

(ṽi − ṽj)− biṽi, i ∈ N ,

where ṽi := v̂i − x0,2, i ∈ N . Therefore, by setting ṽ :=
v̂ − x̄0,2 := [v̂>1 , . . . , v̂

>
N ]> − x̄0,2, one obtains

˙̃v = ˙̂v = −Hṽ (25)

Since H is positive definite, (25) describes an exponentially
stable system. Hence, there exist positive constants q1 and
q2 such that

‖ṽ(t)‖ = ‖v̂(t)− x̄0,2(t)‖ ≤ q1 exp(−q2t),∀t ≥ 0. (26)

Consider now the Lyapunov function Vp := 1
2ε
>K1ε. By

differentiating Vp, we obtain in view of (17) - (20) and (24)

V̇p =ε>K1rρ
−1(H(x2 − x̄0,2)− ρ̇ρ−1e)

=ε>K1rρ
−1(H(xv − x̄0,2) +Hev − ρ̇ρ−1e)

=− ε>rρ−1K1HK1ρ
−1rε+ ε>K1rρ

−1(H(ṽ + ev)

− ρ̇ρ−1e)

≤− H1

Mp
‖rε‖2 + ‖rε‖B̄p, (27)

for all t ∈ I, where we denote xv := [x>1,v, . . . , x
>
N,v]

>,
ev := [e>v1 , . . . , e

>
vN ]>, and B̄p is a positive constant satis-

fying B̄p ≥ maxi∈N {κi,1}‖ρ−1(H(ṽ + ev) − ρ̇ρ−1e)‖ for
all t ∈ I. Note that B̄p is independent of I in view of (24),
(26), and the boundedness of ρ(t)−1 and ρ̇(t).

Hence, we conclude that V̇p < 0 when ‖rε‖ > B̄pMp

H1
.

Since ri,k is positive, for all i ∈ N , k ∈ K, the latter is
equivalent to ‖ε‖ > B̄pMp

H1r
⇒ V̇p < 0. Hence, we conclude

that all x̃(t) ∈ X satisfy

‖ε(t)‖ ≤ ε̄ := max

{
‖ε(0)‖, B̄pMp

H1r

}
. (28)

Since ε̄ is finite, it holds that T (ε̄) < 1. Hence |T (εi,k(t))| ≤
T (ε̄) < 1, for all i ∈ N , k ∈ K, t ∈ I. Moreover,
since T (·) and T−1(·) are smooth, the derivative ∂T−1(z)

∂z
approaches infinity only when z → ±1. Therefore, in view
of the definition of r in (17), we conclude the existence of
a finite r̄ > 0 such that ‖r(t)‖ ≤ r̄, for all t ∈ I. Next, (13)
implies that ‖e(t)‖ ≤ ē := MpT (ε̄)

√
n, for all t ∈ I. Hence,

we conclude that ‖xv(t)‖ ≤ x̄v :=
maxi∈N {κi,1}

mp
r̄ε̄ and, in

view of (12), ‖x1(t)‖ ≤ x̄1 := ē
Π(N) + supt≥0 ‖x0,1(t)‖,

for all t ∈ I. In addition, by employing (24), we conclude
that ‖x2(t)‖ < x̄2 := Mv

√
n + x̄v , for all t ∈ I.

Finally, by differentiating xv , employing the smoothness and
boundedness of ρ and its derivatives, the smoothness of
T (·), the boundedness of x0,1(t) and q0,1, as well as the
aforementioned bounds, we can conclude the existence of a
bound d̄xv such that ‖ẋv(t)‖ ≤ d̄xv , for all t ∈ I.

The boundedness of x(t) and Assumption 3 imply the
existence of a positive constant ζ̄ such that ζ(t) ≤ ζ̄, for
all t ∈ I. Hence, in view of Assumption 1, and the fact
that ‖x1(t)‖ ≤ x̄1 and ‖x2(t)‖ < x̄2, there exists a positive
constant F̄ such that ‖f(x, ζ, t)‖ ≤ F̄ , for all t ∈ I. We
define now the constant

d :=
maxi∈N {βi}

mv

(
F̄ + d̄xv +Mv̇

√
n
)

+
MvH̄

mp
r̄ε̄ (29)

and consider the function

V (ε̃) :=Vp +
∑
i∈N

{
βi
2
‖εvi‖2 +

1

2γi
d̃2
i

}
,

where ε̃ := [ε>, ε>v , d̃]> ∈ RN(2n+1), εv := [ε>vi , . . . , ε
>
vN ]>

∈ RNn, and d̃ := [d̃1, . . . , d̃N ]> := [d̂1 − d, . . . , d̂N −
d]> ∈ RN ; V (ε̃) satisfies W1(ε̃) ≤ V (ε̃) ≤ W2(ε̃),
for W1(ε̃) := min

{
1
2 ,

mini∈N {βi}
2 , 1

2 maxi∈N {γi}

}
‖ε̃‖2 and

W2(ε̃) := max
{

1
2 ,

maxi∈N {βi}
2 , 1

2 mini∈N {γi}

}
‖ε̃‖2. Then,

according to Lemma 1, V̇ (ε̃(t))
a.e.
∈ ˙̃

V (ε̃(t)) with ˙̃
V :=

∩ξ∈∂V (ε̃)ξ
>K
[
˙̃ε
]
. Since V (ε̃) is continuously differentiable,

its generalized gradient reduces to the standard gradient
and thus it holds that ˙̃

V = ∇V >K
[
˙̃ε
]
, where ∇V =

[ε>p ,
∑
i∈N βiε

>
vi ,
∑
i∈N

1
γi
d̃i]
>. In view of (27) and (28),

the first term of V becomes

V̇p ≤−
H

Mp
‖rε‖2 + ε>K1rρ

−1(Hṽ − ρ̇ρ−1) + ε>rρ−1Hev

≤− H

Mp
‖rε‖2 + r̄ε̄P (t) + ε>rρ−1Hev

where P (t) :=
maxi∈N {κi,1}

mp
(H̄‖ṽ(t)‖ +

maxi∈N ,k∈K{|ρ̇i,k(t)|}
mp

). By setting z = T (εvi,k) in (15), we
obtain |T (εvi,k)| ≤ |rvi,kεvi,k|, i ∈ N , k ∈ K and hence by
employing evi,k = ρvi,kT (εvi,k), i ∈ N , k ∈ K, we obtain

V̇p ≤−
H

Mp
‖rε‖2 + r̄ε̄P (t) +

MvH̄

mp
r̄ε̄‖rvεv‖

≤ − H

Mp
‖rε‖2 + r̄ε̄P (t) +

MvH̄

mp
r̄ε̄
∑
i∈N
‖rviεvi‖

Therefore, we obtain ˙̃
V ⊂ W̃s, with

W̃s :=V̇p −
∑
i∈N

βiε
>
virviρ

−1
vi giρ

−1
vi

(
κi,2rviεvi + κi,3d̂iSvi

)
+
∑
i∈N

βiε
>
virviρ

−1
vi

(
fi − ẋi,v − ρ̇viρ−1

vi evi

)
+
∑
i∈N

d̃i‖rviεvi‖

(30)



Note that, since d̂i(0) ≥ 0, (22) implies that d̂i(t) ≥ 0,
for all t ∈ I, i ∈ N . Moreover, since the Filippov
regularization is defined as a closed set and ˙̃

V ⊂ W̃s, it
holds that max

z∈ ˙̃
V
{z} ≤ max

z∈W̃s
{z}. Therefore, after

using Assumption 2, the fact that βi = 1
λiκi,3

, i ∈ N , and
(29), (30) becomes

max
z∈ ˙̃
V

{z} ≤ − H

Mp
‖rε‖2 −

∑
i∈N

βiκi,2λi‖rviεvi‖2

+ r̄ε̄P (t) +
∑
i∈N

{
d‖rviεvi‖ − d̂i‖rviεvi‖+ d̃i‖rviεvi‖

}
= − H

Mp
‖rε‖2 −

∑
i∈N

βiκi,2λi‖rviεvi‖2 + r̄ε̄P (t)

=: −W (ε̃) + r̄ε̄P (t) (31)

where W is a continuous and positive semi-definite func-
tion on RN(2n+1). Moreover, since limt→∞ ρ̇i,k(t) =
− limt→∞ li,k(ρ̄i,k − ρ

i,k
) exp(−li,kt) = 0, i ∈ N ,

k ∈ K, and in view of (26), the term P (t) =
maxi∈N {κi,1}

mp
(H̄‖ṽ(t)‖+

maxi∈N ,k∈K{|ρ̇i,k(t)|}
mp

) converges to
zero exponentially. Therefore, there exist positive constants
q3 and q4 such that (31) becomes

max
z∈ ˙̃
V

{z} ≤ −W (ε̃) + q3 exp(−q4t), (32)

for all t ∈ I. Therefore, it holds that z ≤ −W (ε̃) +

q3 exp(−q4t), for all z ∈ ˙̃
V , t ∈ I. In addition, note

that (32) holds for all the solutions in X. Choose now any
finite r > 0 and let c < min‖ε̃‖=rW1(ε̃). Note that all
the conditions of Theorem 2 are satisfied and hence, all
Filippov solutions starting from ε̃(0) ∈ Ωf := {ε̃ ∈ B(0, r) :
W2(ε̃) ≤ c} are bounded and remain in Ωf , ∀t ∈ I.
Moreover, tmax = ∞, implying that I = R≥0 and it also
holds that limt→∞ ‖ε(t)‖ = 0 and limt→∞ ‖εv(t)‖ = 0,
which, in view of the increasing property of T (·) and the
fact that T (0) = 0, implies that limt→∞ ‖e(t)‖ = 0 and
limt→∞ ‖ev(t)‖ = 0.

Note that r, and hence c, can be arbitrarily large al-
lowing any finite initial condition ε̃, which implies any
(x̃(0), 0) ∈ Dc. In addition, it holds that ‖ε̃‖2 ≤ c̃ :=

min
{

1
2 ,

mini∈N {βi}
2 , 1

2 maxi∈N {γi}

}−1

c, which implies the

boundedness of ‖ε‖, ‖εv‖ and d̃ by
√
c̃. Therefore, we

conclude that ‖d̂(t)‖ ≤ d̄ := d +
√
c̃ and that all solutions

are bounded in compact sets for all t ∈ I, which means that
u and ˙̂

d, as designed in (21) and (22), respectively, remain
also bounded, for all t ∈ I.

Remark 3: Note that no boundedness assumptions or
growth conditions are needed for the unknown vector fields
fi and gi, i ∈ N . Moreover, the response of the system
is solely determined by the funnel functions ρi,k and ρvi,k,
isolated from the system dynamics and the control gains.
Nevertheless, appropriate gain tuning might be needed in
order to suppress chattering due to the discontinuous nature
of the proposed algorithm. Finally, unlike most related works,
ρi,k are not required to decrease to values arbitrarily close
to zero, and asymptotic stability is still achieved.

V. SIMULATION RESULTS
We perform simulations with a leader and 4 follower

agents with b1 = 1, b2 = b3 = b4 = 0, aij = 1 for (i, j) ∈
{(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2), (3, 4), (4, 3)} and 0
otherwise. The leader evolves according to x0,1 = [2t,−t]>
and each follower consists of two inverted pendulum con-
nected by a spring and a damper, with dynamics:

Ji,1ẍi,1 = gs sin(xi,1)− 0.25Fs,i cos(xi,1 − θi)− Ti,1 + ui,1

Ji,2ẍi,2 = 1.25gs sin(x1,2) + 0.25Fs,i cos(xi,2 − θi)− Ti,2 + σ(t)ui,2,

where Fs,i := 150(ds,i−0.5) + ḋs,i is the force between the
connection points of the spring and damper, and

ds,i :=
√
.25 + .25(sin(xi,1 − xi,2)) + 0.125(1− cos(xi,2 − xi,1))

is the distance between these points; θi is defined as

θi := tan−1

(
0.25(cos(xi,2)− cos(xi,1))

0.5 + 0.25(sin(xi,1)− sin(xi,2))

)
and Ti,1, Ti,2 are friction terms on the motors evolving
according to Ti,j = daj ,i(t) + τi,j + τ̇i,j + ẋi,j , with

τ̇i,j = ẋi,j − |ẋi,j |

(
1 + exp

(
−
∣∣∣∣ ẋi,j0.1

∣∣∣∣2
))−1

and daj ,i(t) := (−1)j−1 cos(t)2, for t ∈
[
0, 3π

2

)
∪[ 7π

2 ,
11π
2 )∪

[ 21π
2 , 27π

2 ) ∪ [ 35π
2 , 50) and 0 otherwise, j ∈ {1, 2}, be-

ing an additional disturbance. The time varying signal
σ(t) is set as σ(t) = 1 if t ∈ [0, 3) ∪ [3.5,∞), and
σ(t) = 0.5 if t ∈ [3, 3.5), modeling a loss of effective-
ness of the second motors when t ∈ [3, 3.5). We also
choose gs = 9.81 as the gravity constant and Ji,1 =
0.5, Ji,2 = 0.625. The initial conditions are x1(0) =
[−0.7606,−0.2699]>, x2(0) = [−1.2288,−1.6145]>,
x3(0) = [0.8140,−0.8459]>, x4(0) = [1.9924,−1.9092]>,
τi,1(0) = τi,2(0) = 0 for all i ∈ {1, . . . , 4}. The pre-
scribed funnel functions are chosen as ρi,1(t) = ρi,2(t) =
2.5 exp(−0.1t) + 2.5, ∀i ∈ {1, . . . , 4}, which converge to
2.5. We also choose ρvi,1(t) = ρvi,2(t) = (‖evi(0)‖ −
2) exp(−0.1t) + 2.5, as well as the gains κi,1 = 100,
κi,2 = 2 · 103, ki,3 = 0.0125, and γi = 50 for all
i ∈ N . The simulation results are depicted in Figs. 1-2
for t ∈ [0, 25] sec. More specifically, Fig. 1 depicts the
synchronization errors ei,k(t) along with the performance
functions ρi,k(t), for i ∈ {1, . . . , 4} and k ∈ {1, 2}. One can
conclude that ei,k(t) not only respect their imposed funnels
but also converge asymptotically to zero, without the need
of arbitrarily small values for limt→∞ ρi,k(t). Finally, Figs.
2 depicts the adaptation variables d̂i(t) and control inputs
ui(t) for i ∈ N . One can conclude the convergence of d̂i(t)
to constant values as well as the boundedness of the control
input ui(t), as proved in the theoretical analysis.

VI. CONCLUSION AND FUTURE WORK

This paper presents a distributed control algorithm that
guarantees asymptotic synchronization subject to funnel con-
straints for a class of 2nd-order multi-agent systems with
unknown, nonlinear dynamics. Future efforts will be devoted
towards extending the proposed scheme to more general
systems, directed graphs, and controllability relaxations.



Fig. 1. The evolution of the errors ei,k(t), depicted with blue and green,
along with the performance functions ρi,k(t), depicted with red, for i ∈
{1, . . . , 4}, k ∈ {1, 2}, and t ∈ [0, 25] sec.

Fig. 2. The evolution of the adaptation variables d̂i(t) (top) and the control
inputs ui(t) (middle and bottom) for i ∈ {1, . . . , 4} and t ∈ [0, 25] sec.
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