
Cooperative Sampling-Based Motion Planning under
Signal Temporal Logic Specifications

Mayank Sewlia1, Christos K. Verginis2, and Dimos V. Dimarogonas1

Abstract— We develop a cooperative sampling-based motion
planning algorithm for two autonomous agents under coupled
tasks expressed as signal temporal logic constraints. The algo-
rithm builds incrementally two spatio-temporal trees, one for
each agent, by sampling points in an extended space, which
consists of a compact subset of the time domain and the physical
space of the agents. The trees are built by checking if newly
sampled points form edges in time and space that satisfy certain
parts of the coupled task. Therefore, the constructed trees
represent time-varying trajectories in the agents’ state space
that satisfy the task. The algorithm is distributed in the sense
that the agents build their trees individually by communicating
with each other. The proposed algorithm inherits the properties
of probabilistic completeness and computational efficiency of
the original sampling-based procedures.

I. INTRODUCTION

Planning of autonomous agents subject to tasks encoded
as temporal logic specifications has attracted a great deal
of attention during the last two decades. Expressing tasks as
temporal logic constraints offers a great degree of versatility,
since such constraints can efficiently describe a large variety
of complex planning objectives, as opposed to simple point-
to-point navigation. A special form of temporal logic, namely
signal temporal logic, offers the incorporation of spatial and
time specifications for autonomous agents, providing a rich
variety of tasks [1].

There exist numerous works that consider planning under
temporal logic specifications. Such specifications include
both qualitative properties, such as linear temporal logic
(LTL) [2], and quantitative spatio-temporal properties, such
as metric temporal logic (MTL) [3]–[6], metric interval
temporal logic (MITL) [7]–[10] or signal temporal logic
(STL) [11]–[18]. MTL and MITL usually specify tasks over
finite-state spaces, requiring the abstraction of the under-
lying continuous-time and -state systems to discrete ones.
However, such abstractions bring several drawbacks, such
as loss of information and risk of state explosion. Using
STL avoids the aforementioned drawbacks and allows one
to express specifications in continuous time and space.

Several works consider the multi-agent motion-planning
planning problem under STL tasks [17], [19]–[23]. The

*This work was supported by the ERC CoG LEAFHOUND, the Swedish
Research Council (VR), the Knut och Alice Wallenberg Foundation (KAW)
and the H2020 European Project CANOPIES.

1M. Sewlia and D. V. Dimarogonas are with Division of Decision and
Control, School of EECS, KTH Royal Institute of Technology, 100 44
Stockholm, Sweden. {sewlia, dimos}@kth.se

2Christos K. Verginis is with Division of Signals and Systems, De-
partment of Electrical Engineering, Uppsala University, Uppsala, Sweden.
christos.verginis@angstrom.uu.se

work [17], [19] develops distributed feedback control al-
gorithms based on funnel control and barrier functions to
guide robots toward satisfying the underlying STL tasks.
The limitations of continuous spaces, however, such as the
inability to explore the entire time and state spaces, leads
to the consideration of only specific STL fragments, losing
the full expressivity of STL. Works that consider the entire
STL fragment adopt centralized solutions based on mixed-
integer linear programming (MILP) [20]–[23]. However,
MILP programs can be computationally demanding and yield
long running times. Furthermore, centralized algorithms do
not scale with the number of agents and are sensitive
to faults, since a single computer unit plans the actions
of all agents. The general motion-planning problem, even
for a two-dimensional configuration space with rectangular
obstacles is PSPACE-hard [24], thus, a common approach is
sampling-based planners. In such planners, the free space is
modeled using a graph with nodes and edges. The motion
planning problem then reduces to a graph-search problem
where a collision free path is found thereon. By constructing
this graph, a multidimensional space search is reduced to
finding a path in the graph. This paper develops a distributed
algorithm that employs a sampling procedure, inheriting its
efficiency and probabilistic completeness properties.

This paper addresses the cooperative motion planning
problem of two autonomous agents, which evolve contin-
uously in time and space, to deliver coupled tasks expressed
as signal temporal logic specifications. Our contribution
with respect to the related literature is the development
of a computationally-efficient algorithm that solves, in a
distributed manner, the cooperative motion-planning prob-
lem under the entire fragment of signal temporal logic
for continuous-time and -state systems, without resorting
to discretization techniques. Among many places, coupled
autonomous-agents find application in warehouses where a
load is too heavy for a single manipulator and thus require
cooperation between two manipulators to move the load.
Multiple-agents can then form teams of coupled-agents to
move multiple loads at once.

Inspired by standard sampling-based motion-planning
techniques, we develop a cooperative time-augmented
sampling-based algorithm. In particular, the algorithm builds
incrementally two spatio-temporal trees, one for each agent,
by sampling points in the coupled state and time domain
of the agents. The algorithm checks if the new edges to be
added to the trees satisfy certain parts of the given task. In
that way, the resulting spatio-temporal trees represent time-
varying trajectories in the agents’ state space that satisfy

the given spatio-temporal task. Finally, the algorithm can
be executed in a distributed manner since the agents build
their own trees by communicating with each other. The
proposed algorithm is relevant to the approach of [25], which
introduces a time-augmented sampling-based algorithm for
single-agent systems under STL tasks. Similarly, [18] pro-
poses a sampling-based algorithm for single-agent systems,
encoding a temporal-logic task in a cost function to be
minimized, without sampling in the time domain.

The rest of the paper is organized as follows. Section
II describes the problem considered, Section III provides
the proposed algorithm, and Section IV presents simulation
results. Finally, Section V concludes the paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notations

The set of natural numbers is denoted by N and the set
of real numbers by R. With n ∈ N, Rn is the set of n-
coordinate real-valued vectors and Rn

+ is the set of real n-
vector with non-negative elements. The cardinality of a set
A is denoted by |A|. If a ∈ R and [b, c] ∈ R2, the Kronecker
sum a ⊕ [b, c] = [a + b, a + c] ∈ R2. We further define the
boolean set as B = {⊤,⊥} (True, False).

B. Signal Temporal Logic

Let x : R≥0 → Rn be a continuous-time signal. Signal
temporal logic [26] is a predicate-based logic with the
following syntax:

φ = ⊤ | µ | ¬φ | G[a,b]φ | F[a,b]φ | φ1U[a,b]φ2 | φ1∧φ2 (1)

where φ1, φ2 are STL formulas and U[a,b] encodes the until
operator, with 0 ≤ a ≤ b < ∞; µ is a predicate of the
form µ : Rn × R≥0 → B defined via a predicate function
h : Rn × R≥0 → R as

µ =

{
⊤ h(x, t) ≥ 0

⊥ h(x, t) < 0
. (2)

We consider time bounded temporal operators. The satisfac-
tion relation (x, t) |= φ indicates that signal x satisfies φ at
time t and is defined recursively as follows:

(x, t) |= µ ⇔ h(x, t) ≥ 0

(x, t) |= ¬φ ⇔ ¬((x, t) |= φ)

(x, t) |= φ1 ∧ φ2 ⇔ (x, t) |= φ2 ∧ (x, t) |= φ2

(x, t) |= φ1U[a,b]φ2 ⇔ ∃t1 ∈ [t+ a, t+ b] s.t. (x, t1) |= φ2

∧ ∀t2 ∈ [t, t1], (x, t2) |= φ1.

We also define the operators disjunction, eventually, and
always as φ1∨φ2 ≡ ¬(¬φ1∧¬φ2), F[a,b]φ ≡ ⊤U[a,b]φ, and
G[a,b]φ ≡ ¬F[a,b]¬φ, respectively. The satisfaction relation

(x, t) |= φ can also be quantified as follows:

ρ(h(x, t) ≥ 0,x, t) = h(x(t), t)

ρ(¬φ,x, t) = −ρ(φ,x, t)
ρ(φ1 ∧ φ2,x, t) = min(ρ(φ1,x, t), ρ(φ2,x, t))

ρ(GIφ,x, t) = inf
t1∈t+I

ρ(φ,x, t1)

ρ(FIφ,x, t) = sup
t1∈t+I

ρ(φ,x, t1)

ρ(φ1UIφ2,x, t) = sup
t1=t+I

min
(
ρ(φ2,x, t1),

inf
t2∈(t,t1)

ρ(φ1,x, t2)
)

A signal x satisfies an STL formula φ at time t if and only
if ρ(φ,x, t) ≥ 0.

C. STL Parse Tree

An STL formula defined recursively over the form (1) can
be represented as a tree, we name it as an STL parse tree.
An STL parse tree is constructed as follows:

• each node is either a temporal operator {GI ,FI}, a
logical operator {∨,∧,¬} or a predicate {µ} where
I ⊂ R is a closed interval,

• each node, apart from predicate nodes, is accompanied
by a satisfaction variable τ ∈ {+1,−1}; such nodes are
termed set nodes,

• a root node has no parent node and a leaf node has no
child note. The leaf nodes constitute the predicate nodes
of the tree.

A path is a formula from a root node to a leaf node and we
see that set of all paths constitutes the tree. A sub-path (or
a sub-formula) is a path from a set node to a leaf node.
Each set node is accompanied by a satisfaction variable
τ ∈ {+1,−1} and each leaf node is accompanied by a
predicate variable π = µ. A signal x satisfies a sub-path if
τ = +1 corresponding to the set node where the path begins.
An analogous tree of satisfaction and predicate variables can
be drawn, called satisfaction variable tree. The satisfaction
variable tree borrows the same tree structure as the STL parse
tree. Each set node from the STL parse tree maps uniquely to
a satisfaction variable τi and each leaf node maps uniquely
to a predicate variable πi, where i is an enumeration of the
nodes in the satisfaction variable tree.

The STL parse tree and the satisfaction variable tree for
the STL formula

φ = FI1

(
µ1 ∨ GI2(µ2)

)
∧ GI3FI4(µ3) ∧ GI5(µ4). (3)

are shown in Figure 1. Suppose τ2 = +1 =⇒ x |=
FI1

(
µ1 ∨ GI2(µ2)

)
. And if τ7 = +1 =⇒ x |= GI5(µ4).

We then have the following equivalence,

(x, t) |= φ⇔ ρ(φ,x, t) ≥ 0⇔ τ(root) = +1. (4)

Before we proceed to the problem formulation, we need
the following definition:

∧

FI1

GI2

GI3

FI4

GI5

µ1

µ2

µ3

µ4∨

τ1

τ2

τ3

τ4

τ5

τ6

τ7

π1

π2

π3

π4

Fig. 1: STL parse tree and satisfaction variable tree for the
formula in (3).

Definition 1 ([27]): The time horizon ‘th(φ)’ of an STL
formula φ is recursively defined as,

th(φ) =


0, if φ = µ

th(φ1), if φ = ¬φ1

max{th(φ1), th(φ2)}, if φ = φ1 ∧ φ2

b+max{th(φ1), th(φ2)}, if φ = φ1U[a,b]φ2.

(5)

D. Problem Formulation

In this paper, we consider the motion-planning problem of
two autonomous agents subject to a coupled task expressed
as an STL formula φ of the form (1). We assume that the
agents evolve in Rn, with n ∈ N, characterized by the
state trajectories xi : R≥0 → Rn, for i ∈ {1, 2}. More
specifically, the problem we consider is the design of time-
varying trajectories yi : [0,∞) → Rn, starting at the initial
configurations yi(0) = xi(0), i ∈ {1, 2}, that satisfy a
user-defined coupled STL task φ, i.e., (y, 0) |= φ. with
y := [y⊤1 , y

⊤
2]

⊤.
We currently do not focus on dynamics of the agent or

the explicit control design that guarantees tracking of the
trajectory yi(t); we assume that the agents are endowed
with a control algorithm that allows such tracking. Instead,
we focus on the planning problem, i.e., the derivation of
continuous time-varying trajectories that satisfy φ. Unlike
previous works in the related literature (e.g., [16]), we
consider the entire fragment of STL and develop a distributed
and efficient sampling-based algorithm.

III. SAMPLING-BASED PLANNING UNDER STL

This section provides the proposed solution to the co-
operative STL planning problem. The solution consists of
a variation of the standard Rapidly-exploring Random Tree
(RRT) algorithm [28] and it derives a time-varying trajectory
y(t) that satisfies φ. The key element is the incorporation of
time in the sampling process, leading to a time-augmented
sampling method. Compared to the original sampling-based
algorithms, we replace the obstacle collision-checking pro-
cedure with a procedure that checks whether a specific frag-
ment of the constructed tree violates the given STL formula.
The aforementioned properties allow the direct derivation of
a time-varying trajectory y(t) that satisfies the given STL
task encoded in φ. This problem poses additional challenges

since it involves determining satisfaction of φ, which is
defined over a continuous signal, using only point-wise data.
We propose the following algorithm, called STLcoRRT, to
address these challenges.

The STLcoRRT algorithm comprises two main compo-
nents, namely the sampling-based procedure to build a tree,
and the STL verification procedure that decides the satisfac-
tion of a STL formula. Each sample corresponds to a point
z = (t,x) ∈ Z ⊂ R+ × Rn, which the STL verification
procedure decides if it is feasible with respect to the STL
formula φ; if yes, it approves it and adds it as a vertex to
the tree. Every added edge is verified against a formula and
a path traversing any edge ensures the satisfaction of φ by
construction. The termination of the STLcoRRT algorithm
guarantees the generation of a trajectory that satisfies the
formula.

In what follows, we introduce first the sampling-based
procedure in Section III-A and then the overall STLcoRRT
algorithm in Section III-B.

A. Sampling-based Procedure

The traditional RRT algorithm samples a point xsamp from
Rn, finds its nearest neighbour xnearest from the existing tree
T = (V, E), and draws an edge of predefined length step to
create a new vertex xnew. The inputs to the RRT algorithm
are a starting vertex x(0), representing the initial condition
of a path, a goal region, signifying the termination of the
algorithm (once xnew is sampled in the goal region), and a
hyper-parameter step representing the edge length. An edge
from xnearest to xnew is added to E in the direction of xsamp.
The Euclidean distance between xnew and xnearest is user
defined and denoted by step. The STLcoRRT algorithm, as
opposed to the traditional RRT algorithm, generates a spatio-
temporal tree T = (V, E), where V is the set of vertices and
E the set of edges. Each vertex in the set V = {z1, z2, . . . }
is given by zi = (ti,xi) ∈ Z ⊂ R+ × Rn. By sampling in
time, the termination of STLcoRRT generates a trajectory in
space and time while RRT only returns a path in space. The
continuous sample space Z is predefined based on the range
of variables xi and the time horizon of the STL formula
as defined in Definition 1. We assume the states xi are
sampled from a closed set. Another distinction is that in
STLcoRRT, a vertex znew = (tnew,xnew) is sampled if and
only if tnew > tnearest and subsequently any znew mentioned
henceforth is considered to be ahead in time with respect to
znearest. Along with this restriction, every eligible znew goes
through a STL verification process deciding if the vertex
could be a satisfactory point in the final trajectory satisfying
y(t) |= φ.

B. Overall Algorithm

To solve the coupled motion planning problem for two
cooperating agents, agent i and agent j, we partition the al-
gorithm into three modules. From the point of view of agent
i, the first module is about sampling in a time region where
agent j has already explored, i.e. Algorithm 3: PastAgent.
The second module is sampling in a time region where agent

j is yet to explore, i.e. Algorithm 2: FutureAgent. And
the final module is verification of the STL formula based on
the sampled points, i.e. Algorithm 4: EdgeApproval. For
the discussions below, we use index i to refer to an agent
that is currently running the pseudo-code and index j for the
other agent. We now describe the algorithm and modules in
detail.

1) Algorithm 1 - STLcoRRT: The main body of STL-
coRRT starts with the initialisation of the tree Ti (not to be
confused with the STL parse tree and the satisfaction variable
tree) with the initial conditions zi0 = (0,xi(0)) (line 1-5). In
the pseudo-code, we denote the time component of a sample
zi = (ti,xi) as zi.ti i.e., ti := zi.ti. Agent i then requests
the updated tree of agent j (line 8). The sampling takes
place between lines 10-12 where the functions Sample,
Nearest and Steer are standard and borrowed from the
original RRT algorithm [28];

• Sample samples a random point zisamp = (tisamp,x
i
samp)

in Z ,
• Nearest finds the nearest node zinearest =

(tinearest,x
i
nearest) with respect to the Euclidean distance

in Ti to the sampled point zisamp, and,
• Steer finds a node zinew = (tinew,x

i
new) which is step

units apart from zinearest in the direction of zisamp.
The condition in line 9 imposes every sample to be sampled
ahead in time compared to its nearest neighbour. This guar-
antees every path in the tree to only move forward in time.
Each agent samples points sequentially and builds its tree
after communicating with the other agent. We distinguish
two scenarios in this sampling procedure: a new sample
zinew = (tinew,x

i
new) of one agent is at a point in time

tinew when (1) the other agent j hasn’t built a tree yet i.e.
tinew > max{tjk}, k ∈ {1, . . . , |Vj |} or (2) the other agent
j has existing edges passing through this time instant tinew
i.e tinew < max{tjk}, k ∈ {1, . . . , |Vj |}. In the former case,
each agent uses the function FutureAgent and in the latter
case each agent uses the function PastAgent to decide the
satisfiability of φ. This process is repeated until zi ∈ Zi

goal
and terminates by finding the trajectory pathi. The goal
region is Zi

goal = {zi ∈ Z | ti ≥ th(φ)}. Both the agents
simultaneously run STLcoRRT and communicate with the
other agent after every edge addition. We further need the
following definition

Definition 2 (Vertex Incidence): A vertex zjnew is said to
be incident on an edge {zinearest, z

i
new} if and only if tinearest <

tjnew < tinew.
Before we proceed with the discussion of the rest of the

modules, we focus on how to evaluate an STL formula φ
using sampled points. Recall that STL is a predicate-based
logic and predicates are defined over predicate functions
which are functions of states of both agents. To evaluate if a
sampled point zinew could be a potential point in the final
satisfiable path for formula φ, we require points of both
agent states zinew = (tnew,x

i
new) and zjnew = (tnew,x

j
new) at

the same time instant tnew. The pair {zinew, z
j
new} is used to

evaluate the predicate and therein the formula φ. Suppose the
edge resultant from adding zinew to Ti is {zinearest, z

i
new}. As

Algorithm 1: STLcoRRT: Agent i perspective

Input: φ, zi0, step, L, Zi
goal, and Z

Output: Ti and pathi

1 Vi ← {zi0};
2 Ei ← ∅;
3 Ti ← (Vi, Ei);
4 t0 ← 0;
5 pathi ← ∅;
6 τ ← {−1};
7 while zi /∈ Zi

goal do
8 Tj ← Agent j;
9 while zinew.t < zinearest.t do

10 zisamp ← Sample(Z);
11 zinearest ← Nearest(Ti, zisamp);
12 zinew ← Steer(zinearest, z

i
samp, step);

13 if zinew.t > max (Vj .t) then
14 Ti, Tj ← FutureAgent (φ, step, L, zinew,

zinearest, τ , Ti, Tj);
15 else
16 Ti ← PastAgent (φ, L, zinew, zinearest, τ , Ti,

Tj);

17 pathi ← pathi∪ PlotPath (Ti)

in obstacle avoidance problems, where an edge connecting
two non-collision vertices can still intersect an obstacle, we
follow the same principle and evaluate points on the edge to
ensure such points do not violate φ. We pick L ∈ N points
on the edge {zinearest, z

i
new} as

zi = zinearest + l(zinew − zinearest),

where l = 0, 1
L−1 ,

2
L−1 , . . . ,

L−2
L−1 , 1. Each zi corresponds to

zj via zi.t = zj .t (discussed in Section III-B.2 and III-B.3
below) over which we evaluate φ. The hyper-parameter L
specifies the discretisation of the edge.

2) Function 2 - FutureAgent: This function is called
when agent i samples a point zinew = (tinew,x

i
new) where

tinew > tjk for all k ∈ (1, 2, . . . , |Vj |) as seen in Figure 2a
(left). It starts by temporarily adding the sampled vertex zinew
to the tree of agent i (lines 1-2). Next, it communicates this
{zinearest, z

i
new} to agent j and agent j samples indefinitely

until a sampled point lies incident to the temporarily added
edge of agent i, lines 3-6 and seen in Figure 2a (center).
Then, the algorithm linearly interpolates in line 7 to obtain
the vertex ziinter = (tjnew,xi

inter) as seen in Figure 2a (right).
This is obtained by solving for xi

inter element-wise as the
solution of,

xi
inter =

(xi
nearest − xi

new

tinearest − tinew

)
(tjnew − tinew) + xi

new.

We define a function Interpolate that solves the afore-
mentioned computation. We can now sample points over the
edge {zinearest, z

i
inter} and all the corresponding interpolated

points from Tj to evaluate the STL formula through the
EdgeApproval function, depicted in Function 4 and dis-
cussed below. By L ∈ N (see Section III-B.1) we chose the

x

t

Z

x

t

Z

x

t

Z

i

j

zi
new

zi
nearest

zi
inter

zj
new

zi
new

zi
nearest

zj
nearest

zi
inter

zi
nearest

zj
new

(a) FutureAgent illustration (i) Left: Agent i adds an edge where Agent j has no incident
edges (lines 1-2), (ii) Center: Agent j samples until it finds a vertex incident to Agent i’s new
edge (lines 3-6), (iii) Right: Agent i interpolates to create a vertex pain {ziinter, z

j
new} (line 7).

x

t

Z

i

j

zj
new

zi
inter

zi
inter

zi
inter

zj
nearest

t

Z

x

zi
new

zj
inter

zj
inter

zj
inter

(b) PastAgent illustration:
Agent i samples zinew and
interpolates in line 7 to find all
incident Agent j samples.

Fig. 2: Illustration of FutureAgent and PastAgent.

number of equally spaced points on the edge {zinearest, z
i
inter}

in the evaluation of φ. The new vertex zinew of agent i is
deleted if it does not satisfy the STL formula (lines 13-14).

Function 2: FutureAgent

Input: φ, step, L, zinew, zinearest, τ , Ti, and Tj
Output: Ti and Tj

1 Vi ← Vi ∪ zinew;
2 Ei ← Ei ∪ {zinearest, z

i
new};

3 while zinew.t < zinearest.t or zjnew.t /∈ (zinearest.t, z
i
new.t)

do
4 zjsamp ← Sample(Z);
5 zjnearest ← Nearest(Tj , zjsamp);
6 zjnew ← Steer(zjnearest, z

j
samp, step);

7 ziinter ← Interpolate({zinearest, z
i
new}, zjnew.t);

8 for l← 0 to L by 1/(L− 1) do
9 zi = zinearest + l(ziinter − zinearest);

10 zj ← Interpolate({zjnearest, z
j
new}, zi.t);

11 π, τ ← EdgeApproval(φ, zi, zj , τ);
12 if !π then
13 Vi ← Vi\zinew;
14 Ei ← Ei\{zinearest, z

i
new};

15 return Ti and Tj

16 Vj ← Vj ∪ zjnew;
17 Ej ← Ej ∪ {zjnearest, z

j
new};

18 Vi ← Vi\zinew;
19 Ei ← Ei\{zinearest, z

i
new};

20 Vi ← Vi ∪ ziinter;
21 Ei ← Ei ∪ {zinearest, z

i
inter};

3) Function 3 - PastAgent: This function, depicted
in Function 3, is called when an agent i samples a point
zinew = (tinew, x

i
new) and when there is at least one edge in

Tj that is being incident to zinew; an illustration is shown
in Figure 2b; PastAgent begins by evaluating zjinter from
the incident edges using linear interpolation as seen in
lines 1-9 . In line 7, as in the case of FutureAgent,
we chose L samples over the edge {zinearest, z

i
new} and find

the corresponding interpolated zjinter’s from Tj to evaluate

EdgeApproval. If all the pairs result in π = ⊤, then the
node zinew and the edge {zinearest, z

i
new} are added to the tree

Ti, see lines 5-11.

Function 3: PastAgent

Input: φ, L, zinew, zinearest, τ , Ti, and Tj
Output: Ti

1 foreach {zjm, zjm+1} ∈ Ej do
2 tjm ← zjm.t;
3 tjm+1 ← zjm+1.t;
4 if tjm < tinew < tjm+1 then
5 for l← 0 to L by 1/(L− 1) do
6 zi = zinearest + l(zinew − zinearest);
7 zj ← Interpolate({zjm, zjm+1}, zi.t);
8 π, τ ← EdgeApproval(φ, zi, zj , τ);
9 if !π then return Ti;

10 Vi ← Vi ∪ zinew;
11 Ei ← Ei ∪ {zinearest, z

i
new};

4) Encoding STL formula into the algorithm via Function
4 (EdgeApproval): Function 4 is recursively defined and
takes as input an STL formula of the form (1), a pair of
points {zi, zj} from the trees of both agents, and returns a
truth value π to determine if the vertices satisfy the STL
formula. Along with π, it returns a variable τ(φ) taking
values in the set {−1,+1} indicating satisfaction of the STL
sub-formula φ. The satisfaction of an STL formula cannot
be determined by an individual point zinew = (tinew, x

i
new).

However, a point zinew along with zjnew can momentarily
determine the satisfaction at that particular instant in time,
since the formula consists of both temporal and spatial
variables. Next, we present a set of rules for adding a a pair
of sampled points zinew, z

j
new to the tree based on the STL

formula φ in (1).
• φ = ⊤ : Any sampled point zinew is added to the tree.
• φ = µ : A sampled point zinew is added to the tree, if

and only if µ = ⊤ with,

µ =

{
⊤ h(xi

new,x
j
new, tnew) ≥ 0

⊥ h(xi
new,x

j
new, tnew) < 0

,

where the predicate function h(xi
new,x

j
new, tnew) may

encapsulate coupled constraints on states of agents i, j.
• ¬φ : A sampled point zinew is added to the tree if and

only if it is not added to the tree for φ.
• φ = φ1 ∨ φ2 : A sampled point zinew is added to

the tree if it is added to the tree for φ1 or φ2 in the
sense presented above. But the point-wise evaluation of
an STL formula does not track history of satisfaction
of parts of the formula. For example, consider the
STL formula φ = φ1 ∨ φ2 = (G[1,2]µ1 ∧ F[4,5]µ2) ∨
(G[1,2]µ3 ∧ F[4,5]µ4) and notice that EdgeApproval
will make no distinction between the said formula and
(G[1,2]µ1 ∧ F[4,5]µ4) ∨ (G[1,2]µ3 ∧ F[4,5]µ2). To avoid
such a scenario, the algorithm is designed to work as
follows: If, in the construction of the tree, a sampled
point satisfies any sub-formula of φ1, then we deactivate
φ2 and if a sampled point satisfies any sub-formula
of φ2, then we deactivate φ1. In the pseudo-code,
if a child node of φ1, denoted by φ1 >, satisfies
τ(φ1 >) = +1, then φ1 ∨ φ2 = φ1 ∨ ⊥. And if a
child node of φ2, denoted by φ2 >, satisfies τ(φ2 >
) = +1, then φ1 ∨ φ2 = ⊥ ∨ φ2. In the example
presented above, if z((0, 2),x) |= G[1,2]µ1, then φ =
(G[1,2]µ1 ∧F[4,5]µ2)∨⊥ and if z((0, 2),x) |= G[1,2]µ3,
then φ = ⊥ ∨ (G[1,2]µ3 ∧ F[4,5]µ4). It may appear
that by formulating disjunction as presented above we
deliberately make a choice of satisfying either φ1 or φ2.
The algorithm is designed such that φ1 or φ2 is satisfied
depending on whether a sub-formula from φ1 or φ2 is
satisfied prior. The choice of sub-formula from φ1 or
φ2 is completely random and depends on the evolution
of the tree. Thus the choice of φ1 or φ2 is still random.

• φ = φ1 ∧ φ2 : A sampled point zinew is added to the
tree if it is added to the tree for φ1 and φ2.

• φ = FIφ : In the case of an eventually operator, it is
possible that a single sample zinew could satisfy FIφ.
And it is also possible that such a point might not be a
part of the final trajectory. Thus, to ensure this satisfying
point is included in our final trajectory we first extract
and store the path connecting zio and zinew. The trees
of both agents are then reset and only the nodes zinew
and zjnew are added to Vi and Vj respectively. By doing
this, any final trajectory will pass through zinew as it
is the only sample connecting the prior tree and the
new tree, lines 21-26. For I = [a, b], if zinew.t < b the
sampled point zinew is added to the tree. Any sampled
point where zinew.t > b is not added to the tree, this stops
the tree from growing beyond zinew.t > b until we find
a satisfying point. Once a point is sampled that satisfies
φ, we remove the hold on tree expansion i.e. the tree is
allowed to expand beyond zinew.t > b. Once τ(φ) = +1,
then this implies that τ(FIφ) = +1 for the sample zinew.
Note that if φ = µ, then τ(φ) = +1⇔ µ = ⊤.

• φ = GIφ : If zinew.t ∈ [a, b], the sampled point zinew is
added to the tree if τ(φ) = +1. If tnew /∈ [a, b] then zinew
is added to the tree. This means the algorithm does not

proceed if it does not satisfy GIφ. Again note τ(φ) =
+1⇔ µ = ⊤ if φ = µ.

• φ = φ1UIφ2 : The until operator is treated as
G[znew.t,znew.t]φ1 until τ(F[znew.t,znew.t]φ1) = +1. The
interval is a singleton set since the satisfaction instance
of φ2 cannot be assessed apriori.

Function 4: EdgeApproval

Input: φ, zinew, zjnew, τ
Output: π, τ

1 switch φ do
2 case ⊤ do
3 return ⊤, τ
4 case µ do
5 if µ then return ⊤, τ ;
6 else return ⊥, τ ;
7 case ¬φ do
8 return ¬EA (φ, τ)
9 case φ1 ∨ φ2 do

10 if zinew.t ∈ t0 ⊕ I and EA(φ1 >, τ)= (·,+1)
then

11 return EA (φ1, τ) ∨ EA (⊥, τ);
12 else if zinew.t ∈ t0 ⊕ I and

EA(φ2 >, τ)= (·,+1) then
13 return EA (⊥, τ) ∨ EA (φ2, τ);
14 else
15 return EA (φ1, τ) ∨ EA (φ2, τ) ;

16 case φ1 ∧ φ2 do
17 return EA (φ1, τ) ∧ EA (φ2, τ)
18 case FIφ do
19 if zinew.t ∈ t0 ⊕ I and EA(φ, τ)= (⊤, ·) then
20 τ ← +1 ;
21 pathi ← PlotPath (Ti);
22 pathj ← PlotPath (Tj);
23 Vi ← ∅, Ei ← ∅;
24 Vj ← ∅, Ej ← ∅;
25 Vi ← Vi ∪ zinew;
26 Vj ← Vj ∪ zjnew;
27 return EA(φ, τ);
28 else if zinew.t ∈ t0⊕ I and EA(φ, τ)= (⊥, ·) then
29 return ¬ EA(φ, τ);
30 else
31 return EA (⊤, τ) ;

32 case GIφ do
33 if zinew.t ∈ t0 ⊕ I then
34 return EA(φ, τ)
35 else
36 if zinew.t > I.2 then τ ← +1;
37 return EA(⊤, τ)
38 case φ1UIφ2 do
39 while EA (FIφ2, τ) ̸= (·,+1) do
40 return EA (G[zinew.t,zinew.t]φ1, τ)

41 return EA (F[zinew.t,zinew.t]φ2, τ)

/* EdgeApproval is abbreviated as EA for
readability purposes */

The function EdgeApproval is recursively defined over
(1) and hence covers the entire STL formula. Below we see
an example of how EdgeApproval treats nested temporal
operators.

Example 1: Let φ = G[0,20]F[1,3]µ. Formula φ requires µ
to hold at least every two seconds in the interval [1, 23]s.

Recalling EdgeApproval(φ), once µ = ⊤ in the interval
[1, 3]s, line 20 in Function 4 returns τ(F[1,3]µ) = +1 and
the initial conditions are reset to zo ← znew. This ensures
to ← znew.t and the new interval is [1 + znew.t, 3 + znew.t].
The next case called is GIφ which returns GI(⊤) in line 34
and EdgeApproval returns (⊤,+1). This process repeats
until the entire interval [0, 23]s is covered.

Once the algorithm terminates i.e. when the tree reaches
the designated goal region, a path (y1(t), y2(t)) is generated
by PlotPath as done in the standard RRT [28]. The paths
(y1(t), y2(t)) satisfy the STL formula by construction since
every node in the tree satisfies the STL formula via the
EdgeApproval function. The generated trajectories can be
verified using the robust semantics presented in Section II-B
by evaluating for ρ(φ,x, t). STLcoRRT, unlike monitoring
algorithms, generates trajectories that satisfy the STL for-
mula by construction. The inter-dependency of coupled tasks
between agents poses a significant challenge in solving the
problem in a distributed way while covering the entire STL
formula rather than a fragment of it. We believe that the
coupled-agents approach treated here is a first step towards
solving the more general multi-agent motion planning under
STL task problem.

Complexity, Completeness and Scalability: The time
complexity is the sum of individual time complexities of the
functions in STLcoRRT, i.e. CSTLcoRRT(N) = CSample(N) +
CNearest(N) + CSteer(N) + CFutureAgent(N) + CPastAgent(N). The
time complexity of CSample(N) + CNearest(N) + CSteer(N) is
O(N) + O(N) + O(N) ≈ O(N) [29]. Each sampled
vertex belongs to either FutureAgent or PastAgent.
Thus the time complexity of FutureAgent and PastAgent
is the worst case time complexity of either one of them.
The time complexity of FutureAgent is CFutureAgent(N) =
CInterpolate(N)+ CInterpolate(LN)+ CEdgeApproval(N) = O(N)+
O(LN) + O(N · log(N)) ≈ O(N · log(N)). Simi-
larly CPastAgent(N) ≈ O(N · log(N)). Thus the worst
case time complexity of FutureAgent and PastAgent
is still O(N · log(N)). Finally, the time complexity of
CSTLcoRRT(N) ≈ O(N · log(N)). The space complexity for
individual agents is the size of the stored tree and is thus
O(N) where N is the number of vertices. The STLcoRRT
algorithm inherits the probabilistic completeness property
from the standard sampling algorithm RRT. The interpolation
of temporarily added edges in FutureAgent ensures such
completeness since non-feasible vertices aren’t added to the
tree. As with sampling based methods, we can take various
steps to speed up the algorithm such as:

• Changing the step to a larger value for high dimensions;
• A maximum number of nodes can be specified in

Algorithm 1 by changing Line 7 to a for loop;
• An iteration limit can be imposed on the second con-

dition in Line 3 of Function 2. Since in some cases it
could be too narrow to sample in (znearest.t, zinew.t).

IV. SIMULATIONS

This section presents some simulation examples demon-
strating the functioning of the STLcoRRT algorithm. We

start with simulating examples from the fragment φ =
µ|G[a,b]µ|F[a,b]µ|φ1 ∧ φ2. All simulations are performed on
an eight core 1.9 GHz Intel-core i7 CPU with 16GB of RAM.
Figure 3a simulates the case when φ = |x1 − x2| > 5,
requiring the agents to be 5 units apart at all times. Agent
1 (in blue) and Agent 2 (in green) build their trees ensuring
that every added vertex is atleast 5 units away from all
incident vertices of the other agent such that any final
trajectory will satisfy φ. Figure 3b simulates the formula
φ = G[4,6]|x1 − x2| < 2 requiring in the interval [4, 6] units,
every added vertex is less than two units apart with respect to
the other agent. The trees are built satisfying this constraint
in the interval [4, 6]. In Figure 3c, we simulate the formula
φ = F[a,b]|x1 − x2| > 8 requiring the agents to be 8 units
apart at any one instant in the interval [4, 6]. All sampled
vertices (zinew, z

j
new) are added to the tree until |x1−x2| > 8

becomes true, indicated by red crosses in Figure 3c. Once
the condition |x1−x2| > 8 holds, the corresponding vertices
are set as new starting vertices for the STLcoRRT algorithm
and are thus included in the final path. Figure 3d requires
x1 < 1 in the interval [2, 8] and |x1−x2| < 2 in the interval
[4, 6]. This is evident from the figure as Agent 1 samples
only in the set {x1 < 1} in the interval [2, 8] and Agent 2
comes closer satisfying |x1 − x2| < 2 in the interval [4, 6].

Next, we present a disjunction example, let φ =
F[4,6]|x1−x2| > 8∨G[6,8]|x1−x2| < 2. In Figure 4a (Left),
we see that Algorithm 1 chose to satisfy the subformula
F[4,6]|x1 − x2| > 8 while in other run G[6,8]|x1 − x2| < 2
was satisfied as seen in Figure 4a (Right). For the case of
a nested formula, φ = G[0,10]F[1,3]|x1 − x2| > 8, which
dictates a task to ‘satisfy |x1 − x2| > 8 every 2 seconds in
the interval [1, 13]’. As seen in Figure 4b, each red cross
represents the satisfaction of F[⋆1,⋆2] where [⋆1, ⋆2] are set
to [1, 3] at t = 0 and re-evaluated after every satisfaction of
the eventually. V. CONCLUSION

This paper presents an efficient sampling-based algorithm
for cooperative motion planning between two agents under
STL specifications. We augment the traditional RRT method
to generate spatio-temporal trees through which we enforce
space and time constraints specified by the STL. The pro-
posed algorithm is distributed as agents independently build
their trees by communicating with each other. For future
work, we will consider robust STL symantics and extend
the existing framework to multiple cooperating agents.

REFERENCES

[1] A. Donzé, “On signal temporal logic,” International Conference on
Runtime Verification, pp. 382–383, 2013.

[2] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Temporal logic
motion planning for mobile robots,” IEEE International Conference
on Robotics and Automation, pp. 2020–2025, 2005.

[3] J. Ouaknine and J. Worrell, “On the decidability of metric temporal
logic,” IEEE Symposium on Logic in Computer Science (LICS’05), pp.
188–197, 2005.

[4] P. Bouyer, F. Laroussinie, N. Markey, J. Ouaknine, and J. Worrell,
“Timed temporal logics,” Models, Algorithms, Logics and Tools, pp.
211–230, 2017.

[5] C. K. Verginis, C. Vrohidis, C. P. Bechlioulis, K. J. Kyriakopoulos,
and D. V. Dimarogonas, “Reconfigurable motion planning and con-
trol in obstacle cluttered environments under timed temporal tasks,”
International Conference on Robotics and Automation, 2019.

0 2 4 6 8 10

t[s]

0

2

4

6

8

10
x

φ = µ = |x1 − x2| > 5

T1

T2

(a) φ = |x1 − x2| > 5

0 2 4 6 8 10

t[s]

0

2

4

6

8

10

x

φ = G[4,6]|x1 − x2| < 2

T1

T2

(b) φ = G[4,6](|x1 − x2| < 2)

0 2 4 6 8 10

t[s]

0

2

4

6

8

10

x

φ = F[4,6]|x1 − x2| > 8

T1

T2

(c) φ = F[4,6](|x1 − x2| > 8)

0 2 4 6 8 10

t[s]

0

2

4

6

8

10

x

φ = G[2,8](x1 < 1) ∧ G[4,6]|x1 − x2| < 2

T1

T2

(d) φ = G[2,8](x1 < 1) ∧
G[4,6](|x1 − x2| < 2)

Fig. 3: Trajectories generated by Algorithm 1 for a single predicate, always, eventually and conjunction operators.

0 2 4 6 8 10

t[s]

0

2

4

6

8

10

x

φ = F[4,6]|x1 − x2| > 8 ∨ G[6,8]|x1 − x2| < 2

T1

T2

0 2 4 6 8 10

t[s]

0

2

4

6

8

10

x

φ = F[4,6]|x1 − x2| > 8 ∨ G[6,8]|x1 − x2| < 2

T1

T2

(a) φ = F[4,6]|x1 − x2| > 8 ∨ G[6,8]|x1 − x2| < 2

0 2 4 6 8 10

t[s]

0

2

4

6

8

10

x

φ = G[0,10]F[1,3]|x1 − x2| > 8

T1

T2

(b) φ = G[0,10]F[1,3]|x1 − x2| > 8

Fig. 4: Trajectories generated by Algorithm 1 for disjunction operator and nested formula.

[6] S. Karaman and E. Frazzoli, “Vehicle routing problem with metric
temporal logic specifications,” IEEE conference on decision and
control, pp. 3953–3958, 2008.

[7] C. K. Verginis and D. V. Dimarogonas, “Timed abstractions for
distributed cooperative manipulation,” Autonomous Robots, vol. 42,
no. 4, pp. 781–799, Apr. 2018.

[8] F. Fotiadis, C. K. Verginis, K. G. Vamvoudakis, and U. Topcu,
“Assured learning-based optimal control subject to timed temporal
logic constraints,” IEEE conference on decision and control, 2021.

[9] A. Nikou, D. Boskos, J. Tumova, and D. V. Dimarogonas, “On
the timed temporal logic planning of coupled multi-agent systems,”
Automatica, vol. 97, pp. 339–345, 2018.

[10] C. N. Mavridis, C. Vrohidis, J. S. Baras, and K. J. Kyriakopoulos,
“Robot navigation under mitl constraints using time-dependent vector
field based control,” IEEE Conference on Decision and Control (CDC),
pp. 232–237, 2019.

[11] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications,” in 53rd IEEE Conference on Decision
and Control. IEEE, 2014, pp. 81–87.

[12] Y. V. Pant, H. Abbas, R. A. Quaye, and R. Mangharam, “Fly-by-
logic: Control of multi-drone fleets with temporal logic objectives,”
ACM/IEEE 9th International Conference on Cyber-Physical Systems
(ICCPS), pp. 186–197, 2018.

[13] N. Mehdipour, C.-I. Vasile, and C. Belta, “Arithmetic-geometric mean
robustness for control from signal temporal logic specifications,”
American Control Conference (ACC), pp. 1690–1695, 2019.

[14] L. Lindemann and D. V. Dimarogonas, “Efficient automata-based plan-
ning and control under spatio-temporal logic specifications,” American
Control Conference (ACC), pp. 4707–4714, 2020.

[15] G. Yang, C. Belta, and R. Tron, “Continuous-time signal temporal
logic planning with control barrier functions,” American Control
Conference (ACC), pp. 4612–4618, 2020.

[16] L. Lindemann, C. K. Verginis, and D. V. Dimarogonas, “Prescribed
performance control for signal temporal logic specifications,” in 2017
IEEE 56th Annual Conference on Decision and Control (CDC), Dec.
2017, pp. 2997–3002.

[17] L. Lindemann and D. V. Dimarogonas, “Control barrier functions
for multi-agent systems under conflicting local signal temporal logic
tasks,” IEEE control systems letters, vol. 3, no. 3, pp. 757–762, 2019.

[18] J. Karlsson, F. S. Barbosa, and J. Tumova, “Sampling-based mo-

tion planning with temporal logic missions and spatial preferences,”
vol. 53, no. 2, pp. 15 537–15 543, 2020.

[19] L. Lindemann and D. V. Dimarogonas, “Feedback control strategies
for multi-agent systems under a fragment of signal temporal logic
tasks,” Automatica, vol. 106, pp. 284–293, 2019.

[20] D. Gundana and H. Kress-Gazit, “Event-based signal temporal logic
synthesis for single and multi-robot tasks,” IEEE Robotics and Au-
tomation Letters, vol. 6, no. 2, pp. 3687–3694, 2021.

[21] D. Sun, J. Chen, S. Mitra, and C. Fan, “Multi-agent motion
planning from signal temporal logic specifications,” arXiv preprint
arXiv:2201.05247, 2022.

[22] A. T. Buyukkocak, D. Aksaray, and Y. Yazıcıoğlu, “Planning of
heterogeneous multi-agent systems under signal temporal logic spec-
ifications with integral predicates,” IEEE Robotics and Automation
Letters, vol. 6, no. 2, pp. 1375–1382, 2021.

[23] I. Haghighi, S. Sadraddini, and C. Belta, “Robotic swarm control
from spatio-temporal specifications,” IEEE Conference on Decision
and Control (CDC), pp. 5708–5713, 2016.

[24] J. Hopcroft, J. Schwartz, and M. Sharir, “On the complexity of motion
planning for multiple independent objects; pspace- hardness of the
”warehouseman’s problem”,” The International Journal of Robotics
Research, vol. 3, no. 4, pp. 76–88, 1984.

[25] C.-I. Vasile, V. Raman, and S. Karaman, “Sampling-based synthesis
of maximally-satisfying controllers for temporal logic specifications,”
pp. 3840–3847, 2017.

[26] O. Maler and D. Nickovic, “Monitoring Temporal Properties of
Continuous Signals,” in Formal Techniques, Modelling and Analysis
of Timed and Fault-Tolerant Systems, ser. Lecture Notes in Computer
Science, Y. Lakhnech and S. Yovine, Eds. Berlin, Heidelberg:
Springer, 2004, pp. 152–166.

[27] P. Yu and D. V. Dimarogonas, “Hierarchical control for uncertain
discrete-time nonlinear systems under signal temporal logic specifica-
tions,” in 2021 60th IEEE Conference on Decision and Control (CDC),
2021, pp. 1450–1455.

[28] S. M. LaValle et al., “Rapidly-exploring random trees: A new tool for
path planning,” 1998.

[29] Z. Zhang, D. Wu, J. Gu, and F. Li, “A path-planning strategy for
unmanned surface vehicles based on an adaptive hybrid dynamic
stepsize and target attractive force-rrt algorithm,” Journal of Marine
Science and Engineering, vol. 7, no. 5, 2019.

