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Abstract— We develop two consensus-based learning algo-
rithms for multi-robot systems applied on complex tasks in-
volving collision constraints and force interactions, such as the
cooperative peg-in-hole placement. The proposed algorithms
integrate multi-robot distributed consensus and normalizing-
flow-based reinforcement learning. The algorithms guarantee
the stability and the consensus of the multi-robot system’s
generalized variables in a transformed space. This trans-
formed space is obtained via a diffeomorphic transformation
parameterized by normalizing-flow models that the algo-
rithms use to train the underlying task, learning hence skillful,
dexterous trajectories required for the task accomplishment.
We validate the proposed algorithms by parameterizing rein-
forcement learning policies, demonstrating efficient coopera-
tive learning, and strong generalization of dual-arm assembly
skills in a dynamics-engine simulator.

I. INTRODUCTION
From heterogenous robot teams to anthropomorphic

humanoids, modern robot systems are envisioned to
enable complex tasks, such as dual-arm manipulation [1],
considering multiple robots and end-effectors. Serving as
an inspiration, humans master bimanual skills ranging
from transporting large objects to fine watch-making
tasks [2]. To achieve human-level proficiency, dual-arm
manipulation entails development of skillful and dex-
terous trajectories to bring objects to desired poses,
avoid intra- and inter-arm collisions and accommodate
physical contacts for stable force interaction. Related
work relies on assumptions of established grasps, focuses
on resolving task priorities [3], [4] or regulating internal
stress [5], [6]. The advancement on learning and synthe-
sizing dexterous motion trajectories for dual- and multi-
arm robot systems is still rather limited.

Prior works on trajectory representation and learn-
ing have extensively used dynamical-system-based ap-
proaches [7], [8]. Ongoing research on robot learning
concentrates almost exclusively on the convergence of
single-robot systems to fixed point [9], [10]. These well-
studied approaches are not directly applicable in multi-
robot tasks, since the latter require accommodation
of the inter-robot dynamics and the stability of the
relative robot poses. These challenges call for learning
of dynamical systems on multiple robot agents.

From a control perspective, numerous works use dis-
tributed consensus protocols for multi-robot coordina-
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Fig. 1: Consensus-based normalizing-flow for nonlinear con-
trol of complex state trajectories (colored dotted lines) with
convergence towards a subspace (black bold line) instead of a
fixed point. Using dual-arm assembly as an illustrative case.

tion [11], [12], [13]. Each robotic agent uses local infor-
mation from its neighboring robots to update its internal
state, such as its position, and reach an agreement with
the team. However, standard consensus protocols cannot
produce complex and nonlinear transient behaviors for
the robotic agents; such behaviors are necessary, e.g. for
the accomplishment of the dual-arm assembly task illus-
trated in Fig. 1. Apart from achieving specific relative
poses, such tasks require skillful trajectories that avoid
collisions and accommodate force interactions. Although
dual-arm robots are often deployed for such tasks, a
multi-robot scenario may deploy independent robotic
agents, such as mobile manipulators. Thus, scalability
may require distributed algorithms, where the robots use
local information to compute their actions.

We study the multi-robot coordination of complex
tasks relying on relative pose control. Our contribution is
the development of multi-robot algorithms that integrate
reinforcement learning and consensus-based stabiliza-
tion. We design two distributed control algorithms that
guarantee the consensus of a multi-robot system with
2nd-order continuous-time dynamics based on a diffeo-
morphic mapping. The first algorithm achieves consensus
among an arbitrary number of robots with standard
normalizing-flow networks as the diffeomorphic mapping.
The second algorithm encodes translation-invariant con-
trol for representing dual-arm coordination strategies
that are invariant in the workspace. This is enabled
by a modified normalizing-flow model which constitutes
another contribution. We study the efficiency of the



proposed algorithms in a simulated dual-arm assembly
task, where reinforcement learning with a baseline deep
neural network policy fails. Our results show that the
proposed controllers can learn the desired skills efficiently
and generalize them to untrained workspace positions.

II. RELATED WORK

Multi-robot consensus: Research on multi-robot con-
sensus focuses on the development of distributed control
algorithms such that the robotic agents of a multi-
robot system reach an agreement over some internal
variable, such as their positions [11], [13]. Most works
model the multi-robot communication via graphs, con-
sidering both directed [14], [15] and undirected cases
[11]. Other variations regarding multi-robot consensus
include the incorporation of a leader agent that excites
the system [16], [17], design of observers to account
for insufficient measurements [18], or event-triggered
communication and control [19], [20]. Finally, a large
variety of consensus-based works deals with uncertainties
in the agents’ dynamics [15], [21].

Learning with dynamical systems: Learning robot task
motion commonly uses dynamical systems to repre-
sent and generate complex state trajectories. Dynamic
Movement Primitives encode stable point-to-point or
rhythmic motions with time-dependent dynamical sys-
tems [7]. Other works use Gaussian Mixture Models as
time-invariant dynamical systems and employ imitation
learning of parameters in a constrained space [8]. Time-
invariant stable dynamical systems are also explored
in reinforcement learning with variable impedance con-
trollers [22] and deep energy models [23]. The authors
of [24] propose the use of diffeomorphic transforma-
tions for accurate modeling of more complex motions.
The concept is the coordinate change of stable linear
systems via nonlinear diffeomorphic transformations,
whose parameter space is less restricted by the stability
conditions. Recent research models such transformations
using normalizing-flow neural networks [25], [26] with
an unconstrained parameter space [9]. A similar idea
is extended to account for second-order dynamics and
force control, enabling efficient reinforcement learning in
contact-rich manipulation [10]. Normalizing-flow dynam-
ical systems have also been used in computer graphics
for learning and generating human locomotive behav-
iors [27], [28].

Our work uses normalizing-flow neural networks to
transform linear controllers with reserved theoretical
guarantees. We consider consensus in the context of
multi-robot dynamics, which are less explored in terms of
learning time-invariant dynamical systems. As opposed
to the aforementioned works that focus on learning
independent point-to-point behaviors, this paper con-
cerns stable trajectories on forming relative poses; the
latter can be more efficient for dual-arm tasks entailing
coordination of inter-robot dynamics.

Dual-arm and cooperative manipulation: Research on
dual- and multi-arm manipulation focuses largely on
optimal load distribution and path tracking for grasped
objects [1], [4], [5]. Most works focus on developing
decentralized control algorithms to guarantee that a
rigidly grasped object tracks a pre-defined trajectory
[29], [30], [31]. The works [32], [33] consider similar
frameworks for non-rigid grasps, such as rolling contacts.
On a different direction, the works [34], [6], [35], [36]
focus on the force decomposition problem; that is, how
to decompose a desired force, which is to be applied to a
grasped object, to individual robot forces such that the
total internal stress is zero.

Another important topic is coordination of the relative
motion between robots, such as in reaching to grasp or
manipulating non-rigid objects. The work [37] follows a
master-slave scheme to synchronize kinematic trajecto-
ries towards a moving virtual target. The trajectories
are generated from linear parameter-varying systems
with parameter constraints similar to [8] and an exter-
nal allocation variable for synchronization. [38] exploits
an extended cooperative task-space representation to
develop relative motion without intervening the global
motion of an articulated object. Research in [39] tackles
deformable shape control by precomputing valid dual-
arm poses associated to an elastic rod. Finally, [40]
addresses learning to align two parts under a master-
slave framework. The proposed methodology relies on
choosing a proper center of compliance and estimating
linear impedance parameters from tele-operated demon-
strations.

Our work proposes distributed controllers at the
force level while learning complex multi-robot behaviors
through parameterized normalizing-flow neural networks
in an unconstrained parameter space. We consider a
dual-arm assembly task as a case study; in contrast
to [40], however, the proposed controllers guarantee
multi-robot consensus and the unconstrained parame-
terization enables the robots to autonomously acquire
motion trajectories, e.g. through reinforcement learning,
without resorting to demonstrations as in [40] and [37].

III. PRELIMINARIES AND PROBLEM
FORMULATION

A. Graph Theory and Multi-Robot Consensus
An undirected graph is a pair G = (N ,E ), where N

is a finite set of nodes, representing a team of robotic
agents, and E ⊂ N ×N , with (i, i) /∈ E , is the set of
edges that model the communication capabilities among
the agents. The adjacency matrix associated with the
graph G is denoted by A = [ai j] ∈Rn×n, with ai j ∈ {0,1},
i, j ∈{1, . . . ,n}. If ai j = 1, then agent i obtains information
regarding the state x j of agent j (i.e., (i, j)∈ E ), whereas
if ai j = 0 then there is no state-information flow from
agent j to agent i (i.e., (i, j) /∈ E ). Furthermore, the set
of neighbors of agent i is denoted by Ni = { j ∈ N :
(i, j) ∈ E }, and the degree matrix is defined as D =



diag{|N1|, . . . , |Nn|}. Since the graph is undirected, the
adjacency is a mutual relation, i.e., ai j = a ji, rendering
A symmetric. The Laplacian matrix of the graph is
defined as L = D−A, which is symmetric and positive
semidefinite [13]. The graph is connected if there exists
a path between any two agents. For a connected graph,
the kernel of L is span{1}, where 1 is the vector of ones
of appropriate dimension, implying that L1 = 0 [13].

The distributed multi-robot consensus problem con-
sists of the agreement of the state trajectories xi(t),
i ∈ N = {1, . . . ,n}, of a team of n robotic agents
using local information. More specifically, each agent
updates its state based on the first-order protocol ẋi =
−∑ j∈Ni ai j(xi − x j), which uses local information from
the neighboring set Ni. The aforementioned update is
equivalent to ẋ = −Lx in stacked vector form, with
x = [x1, . . . ,xn]

>. If the multirobot graph is connected,
then x converges to the kernel of L, which is span{1},
implying that limt→∞(xi(t)−x j(t)) = 0, for i, j ∈N , i 6= j
[13]. Numerous works extend the consensus protocol for
higher-order systems [41].

B. Normalizing-Flow Neural Networks
Normalizing-flow models are invertable neural net-

works that are frequently used in learning probabilistic
generative models [26]. The models are constructed by
a sequence of bijective and differentiable layers with
parameterized neural networks. Such bijections allow the
transformation of the likelihood of a simple probability
distribution, such as Gaussian, into more complex ones
through the respective Jacobian terms (Fig. 2 left).
As a result, density estimation can be performed by
maximizing a tractable data likelihood. Differentiable
bijections are also used as diffeomorphic mappings to
transform state spaces that can characterize complex
trajectories [9], [10]. An example is depicted in Fig. 2;
the right part shows that mapping the original state
coordinate can warp a linear 2D gradient field to model
complex flows. We exploit such a property in the next
section to establish consensus guarantees for multi-robot
systems.

Fig. 2: Normalizing-flow networks transform simple density
functions or vector fields to complex models, with tractability
or dynamic properties retained. Adapted from [10].

A specific normalizing-flow model called RealNVP [42]
parameterizes invertible layers with the following equa-
tions (also see Fig. 3):

zk+1 = φ
k(zk)

zk+1
1:dk = zk

1:dk

zk+1
dk+1:d = zk

dk+1:d � exp(sk(zk
1:dk))+ tk(zk

1:dk)

(1)

where zk is the input to the layer, D is the dimension
of the input and dk < D is the index where the input
dimensions are partitioned at layer k. The partitions
are coupled through elementwise multiplication � and
nonlinear transformations sk(∗) and tk(∗) which are
ordinary neural networks. Stacking these layers yields the
entire model φθ = φ k ◦φ k−1 ◦ ...◦φ 1 with the invertibility
cascaded. The subscript θ denotes all neural network
parameters and is omitted when it is obvious. Note that
normalizing-flows like RealNVP is not equivariant in
general. However, the way of its nonlinear coupling allows
a simple extension for antipodal-equivariance φ(z) =
−φ(−z), see Section IV-C. We will use this extension
in one of our theoretical results.

z

z z

z

Fig. 3: RealNVP Normalizing-flow The invertible layers
wire partitioned dimensions with affine transformations [42].
Adapted from [10].

C. Problem Formulation
We consider n ≥ 2 robotic agents, characterized by

their generalized coordinate xi ∈ Rd , i ∈ N = {1, . . . ,n}.
The dynamics of the ith agent can be represented as

Mi(xi)ẍi +Ci(xi, ẋi)ẋi +gi(xi) = τi + τi,ext (2)

where Mi : Rd → Rd×d is the positive definite inertia
matrix, Ci : Rd ×Rd → Rd×d is the Coriolis matrix, and
gi : Rd → Rd is the gravitational force. The term τi ∈ Rd

represents the actuation of each robotic agent, whereas
τext

i ∈Rd is an external generalized force τext
i ∈Rd . The

inertia and Coriolis terms satisfy the skew-symmetric
property y>[Ṁ(xi)−2Ci(x, ẋi)]y= 0, for all vectors y∈Rd ,
and i ∈ N .

We further define the stack terms x =
[x>1 , . . . ,x

>
n ]

> ∈ Rnd , M(x) = diag{M1(x1), . . . ,Mn(xn)},
C(x) = diag{C1(x1, ẋ1), . . . ,Cn(xn, ẋn)}, g(x) =
[g1(x1)

>, . . . ,gn(xn)
>]>, τ = [τ>1 , . . . ,τ>n ]>, and

τext = [τ>1,ext, . . . ,τ
>
n,ext]

>, which gives rise to the
multi-agent dynamics

M(x)ẍ+C(x, ẋ)ẋ+g(x) = τ + τext. (3)

We model the communication among the robotic agents
via an undirected and static graph G = (N ,E ), as
elaborated in Section III-A.

The goal of this paper is learning distributed con-
trollers of the form τ = π(x, ẋ,θ) that guarantee multi-
robot consensus in a transformed, diffeomorphic space.
Such a space is dictated by a normalizing-flow neural
network φ and parameterized by θ , as explained in



Section III-B. As opposed to traditional multi-robot
consensus protocols, the proposed approach allows the
robotic agents to learn how to execute skillful trajecto-
ries that accomplish a complex multi-robot task. For
instance, consider the dual-arm assembly example of
Fig. 1, where two robotic agents coordinate to achieve
a peg-in-hole task. The developed controllers achieve
consensus on the two parts, i.e., x1 = x2, while the
agents learn, via a normalizing-flow neural network φ(·)
and a reinforcement-learning procedure, how to execute
trajectories that avoid collisions and accommodate force
interactions during insertion.

IV. MAIN RESULTS
This section presents the main theoretical results of

the paper. Firstly, we present a distributed nonlinear
controller for the general case of n robotic agents based
on bijective mappings, which can be instantiated with
normalizing-flow neural networks. Secondly, we focus on
the dual-robot case of n = 2 and present a translation-
invariant controller that relies on a modified normalizing-
flow neural network. The section is concluded by remarks
on the proposed controllers.
A. Consensus-based Normalizing-Flow Controller

We give the following theorem for nonlinear consensus
control of n robots:

Theorem 1: Let a system of n≥ 2 robotic agents evolv-
ing according to eq.(3) under a static and undirected
communication graph G . Further, let a differentiable and
bijective mapping φ :Rd →Rd , with J= dφ(∗)

d∗ :Rd →Rd×d

being the respective Jacobian matrix, as well as constant,
positive definite matrices Di ∈Rd×d , i ∈N . If the graph
is connected, the distributed control design

τi = gi(xi)−Diẋi −J(xi)
>

∑
j∈Ni

(
φ(xi)−φ(x j)

)
(4)

guarantees that (i) limt→∞

(
xi(t)−x j(t)

)
= 0, for all i, j ∈

N , with i 6= j, if τext = 0, and (ii) the closed-loop multi-
agent system is passive if τext 6= 0.

Proof: We first write the control design of eq. (4)
in stacked vector form

τ = g(x)−Dẋ− J̄(x)>(L⊗ In)φ̄(x), (5)

where φ̄(x) = [φ(x1)
>, . . . ,φ(xn)

>]> ∈ Rnd ,
J̄(x) = diag{J(x1), . . . ,J(xn)} ∈ Rnd×nd , and
D = diag{D1, . . . ,Dn} ∈ Rnd×nd . Consider now the
continuously differentiable function

V =
1
2

φ̄(x)>(L⊗ In)φ̄(x)+
1
2

ẋ>M(x)ẋ.

Since the multi-robot communication graph G is con-
nected, L is positive semidefinite and hence V is non-
negative.

We tackle first the case where τext = 0. By differen-
tiating V and using eq. (2) and the skew symmetry of
Ṁ−2C, we obtain

V̇ = ẋ>
(
τ −g(x)+ J̄(x)>(L⊗ In)φ̄(x)+ τext

)
,

which, by substituting eq. (5), becomes V̇ = −ẋ>Dẋ.
Hence, V (t) remains bounded, for all t ≥ 0. Since φ and
M are a continuous, we also conclude the boundedness of
the solution x(t), ẋ(t), for all t ≥ 0. Therefore, according
to LaSalle’s invariance principle [43, Chapter 4], the
solution x(t) converges to the largest invariant set M in
E = {(x, ẋ) ∈ R2nd : V̇ = 0}; E consists of all the points
satisfying ẋ = 0, due to the positive definiteness of D.
In view of the closed-loop system, consisting of eq. (2)
and (5), the largest invariant set in E is the set M =
{(x, ẋ) ∈ R2nd : ẋ = 0, ẍ = 0}. Therefore, by substituting
eq. (5) in eq. (2), we conclude that M consists of all
the points that satisfy J̄(x)>(L⊗ In)φ̄(x) = 0. Since φ is
a bijective mapping, J̄> has full rank and, therefore,
J̄(x)>(L ⊗ In)φ̄(x) = 0 implies (L ⊗ In)φ̄(x) = 0. Based
on the properties of L, we conclude that the system
converges to the set M, where φ̄(x) = 1⊗c, for a constant
c ∈ Rd i.e., to the set where φ(x1) = φ(x2) = · · ·= φ(xn).
Since φ is bijective, the latter implies x1 = x2 = · · ·= xn,
which proves part (i).

Next, we consider the case where τext 6= 0. By fol-
lowing similar steps, the derivative of V becomes V̇ =
ẋ>τext − ẋ>Dx ≤ ẋ>τext, which implies that the multi-
agent system is passive under τext, proving part (ii).

B. Translation-invariant Normalizing-Flow Controller
The controller presented in the prior section is not

translation-invariant with respect to inter-agent differ-
ences xi−x j; that is, the control output does not remain
identical when all robot positions are translated by
a vector c ∈ Rd . Such a property can be useful for
generalization of the controller to different setups, where
the robotic agents are placed in another region of the
workspace. In what follows, we propose a translation-
invariant distributed controller for the special case of
n = 2 robotic agents, using a modified normalizing-flow
model.

Theorem 2: Let a system of n= 2 robotic agents evolv-
ing according to eq. (3) under a static and undirected
communication graph G . Further, let a differentiable
and bijective mapping φ : Rd → Rd , satisfying φ(−∗) =
−φ(∗), with J = dφ(∗)

d∗ : Rd → Rd×d being the respective
Jacobian matrix, as well as positive definite matrices
Di,S ∈Rd×d , i ∈N = {1,2}. If the graph G is connected,
the distributed control design

τi = gi(xi)−Diẋi −J(xi −x−i)
>Sφ(xi −x−i)

+J(x−i −xi)
>Sφ(x−i −xi), (6)

with x−1 = x2, x−2 = x1, guarantees that (i)
limt→∞

(
x1(t) − x2(t)

)
= 0, if τext = 0 and (ii) the

closed-loop multi-agent system is passive if τext 6= 0.
Proof: We first write the control design eq. (6) in

stacked vector form

τ = g(x)−Dẋ− L̄J̄(L̄x)>S̄φ̄(L̄x), (7)

where L̄ = L ⊗ In, φ̄(L̄x) = [φ(x1 − x2)
>,φ(x2 − x1)

>]>,
J̄(L̄x) = diag{J(x1 − x2),J(x2 − x1)}, D = diag{D1,D2},



S̄ = diag{S,S}, and in this 2-agent case, L =

[
1 −1
−1 1

]
.

Consider now the continuously differentiable function

V =
1
2

φ̄(L̄x)>S̄φ̄(L̄x)+
1
2

ẋ>M(x)ẋ,

which is non-negative due to the connectedness of G and
hence the positive definiteness of L. We tackle first the
case where τext = 0. By differentiating V and using eq.
(3) and the skew-symmetry of Ṁ−2C, we obtain

V̇ = φ̄(L̄x)>S̄J̄(L̄x)L̄ẋ+ ẋ>(τ −g(x)),

which, by substituting eq. (7), becomes V̇ = −ẋ>Dẋ.
Hence, V (t) remains bounded, for all t ≥ 0. Since φ and
M are continuous, we also conclude the boundedness of
the solution x(t), ẋ(t), for all t ≥ 0. Therefore, according
to LaSalle’s invariance principle [43, Chapter 4], the
solution x(t) converges to the largest invariant set M
in E = {(x, ẋ) ∈R2nd : V̇ = 0}; E consists of all the points
satisfying ẋ = 0, due to the positive definiteness of D. In
view of the closed-loop system, consisting of eq. (2) and
(5), the largest invariant set in E is the set M = {(x, ẋ) ∈
R2nd : ẋ = 0, ẍ = 0}. Therefore, by substituting eq. (7) in
eq. (2), we conclude that M consists of all the points
that satisfy L̄J̄(Lx)>S̄φ̄(L̄x) = 0, which reads

J(x1 −x2)
>Sφ(x1 −x2) = J(x2 −x1)

>Sφ(x2 −x1) (8)

Since φ(−∗) = −φ(∗), it holds that J(−∗) = J(∗) and
φ(0) = 0. Furthermore, φ is bijective and hence J> has
full rank. By further using the positive definiteness of S,
eq. (8) becomes φ(x1 −x2) = 0. Since φ is bijective, the
latter implies that x1 = x2, which proves part (i).

Next, we consider the case where τext 6= 0. By fol-
lowing similar steps, the derivative of V becomes V̇ =
ẋ>τext − ẋ>Dẋ ≤ ẋ>τext, which implies that the multi-
robot system is passive under τext, proving part (ii).

C. Antipodal-Equivariant Normalizing-Flow Networks

The translation-invariant controller of Section IV-B
relies on the property φ(−∗) = −φ(∗). This effectively
requires a normalizing-flow model that is equivariant
under the reflection action at the origin, a.k.a. antipodal-
equivariant. A closer look into the RealNVP layers eq. (1)
reveals that we can achieve this by crafting neural
networks s(∗) and t(∗) that are respectively invariant
and equivariant under this action. To this end, we
propose a simple modification without introducing extra
architectures and parameters, by constructing even and
odd functions:

s̃k(∗) = sk(∗)+ sk(−∗)
t̃k(∗) = tk(∗)− tk(−∗)

We can then obtain an antipodal-equivariant bijection
φ(∗) since function composition reserves equivariance
property.

D. Remarks

The proposed algorithms guarantee the consensus of
the agents’ generalized coordinates xi; for articulated
dynamics, these may correspond to joint-space variables,
or Cartesian-space position coordinates. For redundant
agents, the position coordinate is not a generalized coor-
dinate and joints may be subject to nullspace motions. As
discussed in the Chapter 8 and 9 of [44], Cartesian space
control can be implemented by Jacobian transpose with
nullspace motion accounted by joint space kinetic energy.
Also, joint motion is commonly damped by viscous
frictions therefore nullspace motions tend to stop at an
equilibrium position.

We can extend the proposed consensus algorithms to
account for first-order dynamics ẋi = τi, i ∈ N . More
specifically, the controllers of eq. (5) and eq. (7) become
τ = ẋ=−J̄(x)−1φ̄(x) and τ = ẋ=−J̄(L̄x)−1φ̄(L̄x), respec-
tively, with the notation φ̄(x) = [φ(x1)

>, . . . ,φ(xn)
>]>,

J̄(x) = diag{J(x1), . . . ,J(xn)}, L̄ = L⊗ In, φ̄(L̄x) = [φ(x1 −
x2)

>,φ(x2 − x1)
>]>, J̄(L̄x) = diag{J(x1 − x2),J(x2 − x1)}.

We omit the detailed proofs since they are similar to the
ones of Theorems 1 and 2.

It is worth noting that, although the second controller
(eq. (6)) is translation-invariant, it does not necessar-
ily generate equivariant position trajectories. This is
attributed to the inertia and Coriolis terms Mi(xi),
Ci(xi, ẋi), which appear in the closed-loop system since
the controller does not cancel them. Such terms vary
across the spatial space and hence alter the eventual
acceleration of the two robots when these are translated.
The accommodation of equivariant trajectories may be
achieved from online adaptation and inverse dynamics
control algorithms, which we leave for the future work,
or use the kinematics controller in the prior paragraph
if tasks are less demanding on force control. Still, for
motions that are not highly dynamic, the controller may
still generalize to some extent as we demonstrate in the
experiment section.

Both controllers have a nonlinear form constructed by
normalizing-flow neural networks. Replacing them with
an ordinary neural network implies the possibility of
having a singular Jacobian, which will invalidate the zero
point discussion e.g. in eq. (8). From our observations
on numerical results, the normalizing-flows appear both
capable of generating diverse trajectories. The main
difference between the two forms, besides the number
of robotic agents and the normalizing-flow networks, is
whether the nonlinearity is applied before or after the
multiplication of Laplacian. We find that the first con-
troller appears more susceptible to numerical instability
in integration, especially when a larger normalizing-flow
model is used. This can be attributed to the fact that the
first controller performs subtractions in the transformed
space which may result in excessively large stiffness forces
when the space is highly warped.



V. EXPERIMENTAL RESULTS
This section validates the proposed algorithms with

some numerical examples and a case study on simulated
dual-arm assembly in the context of reinforcement learn-
ing.

A. Normalizing-Flow-based Consensus
We consider numerical examples of point mass agents

that validate the convergence of the proposed controllers.
For the sake of visualization, we stick to planar motion by
setting d = 2 and we test five simulation instances. The
results are depicted in Figs. 4 and 5. More specifically,
Fig. 4 shows the time evolution of the planar position
trajectories of n = 4 robotic agents with mass mi = 0.1,
Di = I2×2, i ∈ 1,2, under the first control algorithm
(see eq. (4)) where we select a random θ for a two-
layer φ(∗). All trajectories start with randomly sampled
positions and velocities and converge at different points.
The trajectories also show diverse transient behaviors
thanks to the control nonlinearity. Fig. 5a depicts the
generated position paths in the planar space under the
second control algorithm (eq. (6)) for n = 2 robotic
agents with mass mi = 0.5, Di = I2×2, and a random
equivariant φ(∗) of six RealNVP layers. One can verify
that the agents successfully reach consensus. To validate
the translation-invariance property of the proposed al-
gorithm, we simulate the system from different initial
conditions that retain the relative position of the two
agents. As illustrated in Fig. 5b, the shape of the paths
is reserved under the translation.
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Fig. 4: Evolution of the planar position trajectories of n = 4
point-mass robotic agents under the distributed consensus-
based normalizing-flow control algorithm (4). Simulation
instances and agents are marked by different line colors and
styles respectively.

B. Reinforcement Learning with Normalizing-Flow Poli-
cies

In this study, we show that the proposed controllers
can be utilized for efficient learning of cooperative robotic
manipulation skills. We consider learning the control
parameters through reinforcement learning (RL) in an
environment resembling a dual-arm assembly task, as is
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(a) Random initial states.
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(b) Initial states retaining rela-
tive position.

Fig. 5: Planar position paths of two point-masses robotic
agents under the translation-invariant control algorithm
eq.(6): (a) Paths from random initial positions (colored
lines); (b) Paths from initial conditions retaining the relative
positions of the agents. Simulation instances and agents are
marked by different line colors and styles respectively.

shown in Fig. 6a. The goal of the task is to insert a
peg into a socket with a clearance of 2mm. Each part is
rigidly attached to a torque-controlled Franka robot. The
RL policy observes 3D translational position and velocity
of the bottom centers of the objects, and outputs force
actuation at these two points in the Cartesian space. The
actuation is realized in the joint space through Jacobian
transpose. The control also augments gravity compensa-
tion for attached objects and robots. An extra stiffness
controller is used to regulate end-effector orientations.
Due to the rotational compliance, the object positions
are not strictly following the generalized coordinate
dynamics assumed in the theorems. The policies thus
need to learn to overcome this mismatch and to skillfully
accommodate contacts while aligning the two parts.

The task environment is episodic with a horizon of
T = 250 time steps. At the beginning of each episode, the
end-effectors are randomly initialized in two 10cm×10cm
areas in the XY plane at fixed heights. A reward is
assigned at each step based on the distance between
the observed positions. We also add force magnitude
to penalize large control efforts and evaluate the object
distance with a scale of 10 at the terminal step. The
insertion is deemed as a success when the final distance
is below a threshold. The task is implemented at a
simulated environment based on the physics engine
PyBullet [45].

We use Proximal Policy Optimization (PPO) [46]
and its implementation in the Garage library [47] for
RL training. Normalizing-flow controllers are used to
construct stochastic policies with addictive Gaussian
noises. In particular, we set the N = 2 to the first
controller with a name of CNF-N policy and label the
policy using the translation-invariant one as CNF-TI. We
compare learning performance of these policies to a fully-
connected neural network baseline. All policies share
same PPO parameters, value functions and neural net-
works of a similar size. The policies are trained through
200 epochs with each collecting 20 episodes for learning
and evaluation. This amounts to 106 environment steps
in total. We would like to clarify that although the CNF



(a) Dual-arm insertion en-
vironment (b) Average return of evaluated episodes (c) Success rate of evaluated episodes

Fig. 6: Reinforcement learning for developing a coordination strategy in a dual-arm assembly task. The policies that embed
consensus-based normalizing-flow controllers outperform a deep neural network baseline with a significant margin.

policies can be executed in a distributed manner the
training is still centralized under the standard PPO.

Fig. 6b reports RL learning curves averaged by
10 random seeds. The CNF policies benefit from the
convergence property, showing a much better initial
performance and constant improvement. The standard
neural networks, the NN policy, also learns to bring the
two parts closer from the shaped reward but performs
consistently worse than CNF and cannot learn a more
delicate coordination to complete the insertion. The
gap is more evident from Fig. 6c which shows the
success rates throughout the training process. The CNF
policies starts managing successful insertions in the very
beginning of the training stage. Both CNF-N and CNF-
TI fail or unlearn on a few seeds while shows steady
learning on the remained ones and can reach a more
than 90% success rate. In contrast, the NN baseline
barely succeeds with the allocated training budget. The
comparison highlights some significant challenges posed
to existing RL approaches in learning to coordinate two
arms in a force control task. The proposed consensus-
based normalizing-flow controllers can be used as efficient
structure to alleviate the challenges.

Fig. 7: Snapshots of CNF-TI generalized insertions from novel
initial positions. Upper: +20cm; Bottom: -20cm.

As discussed in Section IV-D, the translation-invariant
controller cannot guarantee to reserve the trajectory
shape under general manipulator dynamics. Still, we
are interested to see to what extent the learned policy
can generalize to novel positions. We evaluate the best
trained CNF policies in environments by translating
initial end-effector positions along the Z axis, which
are never trained in the RL process. Table I shows the

number of successful insertions at positions of different
offset. Our finding is that, even though the mass in
Cartesian space is not a constant, the CNF-TI policy still
manages to succeed most of the time when the testing
positions are not far from the training area, see Fig. 7
for the snapshot of motion execution. The policy even
generalize perfectly in the upward direction and it may
generalize even further because the offset of 0.3m reaches
the workspace limit. The negative direction appears more
challenging to CNF-TI. We observe that typical failures
are caused by unexpected collisions before sliding on the
block surface. The policy can usually recover by bringing
the peg back to the surface but cannot finish the insertion
in time.

offset (m) 0.05 0.10 0.15 0.20 0.25 0.30
CNF-N +z axis 5/5 3/5 1/5 0/5 0/5 0/5

-z axis 4/5 4/5 4/5 3/5 2/5 2/5
CNF-TI +z axis 5/5 5/5 5/5 5/5 5/5 5/5

-z axis 4/5 4/5 2/5 4/5 4/5 1/5

TABLE I: Number of successful insertions in 5 trials from
untrained initial positions. The offsets indicate the vertical
displacement of both end-effectors.

VI. CONCLUSIONS
This paper addresses learning skillful and dexterous

dual-arm motion for complex manipulation tasks. We
propose control algorithms that feature a free parameter
space for generating rich trajectories with consensus
stabilization. The richness comes from nonlinearity of
diffeomorphic transformation, which are implemented
by normalizing-flow networks and modified models of
an equivariant form. Integrating with reinforcement
learning, the proposed algorithms show a significant
performance boost in a dual-arm manipulation setting.
The robots manage to acquiring complex maneuvering
skills to avoid unnecessary collisions and accommodate
interaction forces in aligning two assembly parts. This
task is shown to be particularly challenging and fail
learning with a standard deep neural network policy.
The learned skills are also demonstrated to generalize
under significant end-effector displacement, highlighting



the importance of imposed consensus and equivariance
structure.

For the outlook of future work, we plan to extend
the translation-invariant controller to N ≥ 2 for general
multi-robot consensus problems. Diffeomoprhic trans-
formations could be used as an effective framework to
extend results under a linear assumption to a nonlinear
form. It would also be interesting to investigate protocols
for a dynamical Laplacian and convergence to other equi-
librium configurations. For learning dual-arm motions,
research efforts are needed to explore the representation
capacity of these stable controllers. The controllers might
also be useful for modeling human bimanual data and
draw inspirations from them to encode other motion
patterns. In addition to controlling two manipulators,
the proposed algorithms may also benefit tasks entailing
coordination of multiple end-effectors such as dexterous
manipulation of multi-fingered hands.
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