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Abstract— We develop a control algorithm for the safety of a
control-affine system with unknown nonlinear dynamics in the
sense of confinement in a given safe set. The algorithm leverages
robust nonlinear feedback control laws integrated with on-
the-fly, data-driven approximations to output a control signal
that guarantees the boundedness of the closed-loop system in
the given set. More specifically, it first computes estimates of
the dynamics based on differential inclusions constructed from
data obtained online from a single finite-horizon trajectory. It
then computes a novel feedback safety control law that renders
the system forward invariant with respect to the safe set,
given an accurate enough estimate, using reciprocal barriers.
An extension of the algorithm is capable of coping with the
controllability loss incurred by the control matrix along the safe
set. The algorithm removes a series of common and limiting
assumptions considered in the related literature since it does
not require global boundedness, growth conditions, or a priori
approximations of the unknown dynamics’ terms.

I. INTRODUCTION

Learning for dynamics and control purposes is an impor-
tant emerging field concerning autonomous systems. Such
systems must be rendered adaptable and robust to unpre-
dicted failures and abrupt changes in the dynamics, neces-
sitating the use of data to synthesize control actions instead
of the standard, possibly conservative, model-based design.
Moreover, data obtained from the system trajectories before
the aforementioned change in the dynamics are unusable and
typical episodic reinforcement learning algorithms do not
apply; one can only employ limited data obtained on the
fly from the current trajectory [1], [2]. Desirable properties
of such systems include target stabilization, tracking of a
reference trajectory, or safety guarantees [1]–[3].

This paper considers the problem of safety, in the sense
of confinement in a given set, of nonlinear systems of the
form (to be precisely defined in Sec. II)

ẋ = f(x) + g(x)u (1)

with a priori unknown terms f and g. Unlike previous
works in the related literature, we do not impose any of the
commonly used assumptions, such as global Lipschitzness,
boundedness, [1], [2] or growth conditions [4]. Moreover, we
do not assume the commonly used triangular system form
or positive definiteness of the control matrix g [5]–[7], and
we do not employ a priori approximations of the system
dynamics, such as linear parameterizations [8], [9] or neural
networks [10].

We develop a novel two-layered framework for the safety
control of the unknown system in (1). We integrate nonlinear
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Fig. 1. An example of a safe set C = {x ∈ Rn : h(x) = r2−‖x‖2 > 0}
(with blue boundary) we aim to retain the system trajectory in, by using
data obtained on the fly at the time instants {t0, t1, . . . }. The set Cµ =
{x ∈ Rn : h(x) = r2 − ‖x‖2 ∈ (0, µ)} (with red boundary) dictates the
region where the safety controller is activated.

feedback control with on-the-fly, data-driven techniques to
provide an efficient control scheme that guarantees the con-
finement of the system state in a given set. More specifically,
the main contributions are as follows. Firstly, we compute
an estimate of the control matrix g, which is updated on
the fly based on a discrete set of data from a single finite-
horizon trajectory. We then use this estimate to design a
novel feedback control protocol based on reciprocal barriers,
rendering the system forward-invariant with respect to the
given safe set under certain assumptions on the estimation
error. The only a priori information required on the dynamics
is restricted to upper bounds of Lipschitz constants in the
safe set. Secondly, we apply the proposed methodology to
“minimally invasive” local safety control in the sense that it
acts only close to the boundary of the safe set. Finally, we
provide an extension that tackles controllability loss incurred
by the control matrix g. The proposed two-layered algorithm
does not require any expensive numerical operations or
tedious analytic expressions to produce the control signal,
enhancing thus its applicability.

Safety of uncertain autonomous systems in the sense of
set invariance [11] is a topic that has been and still is
undergoing intense study by the control community. The
works in [4], [7] incorporate uncertainties in safety algo-
rithms based on artificial potential fields, limited, however, to
constant unknown parameters and terms that satisfy dissipa-
tive or growth conditions. Optimization-based algorithms that



guarantee safety through state constraints [12], [13] cannot
tackle dynamic uncertainties more sophisticated than additive
bounded disturbances. The recent works in [14], [15] employ
adaptive control techniques to tackle safety constraints for
uncertain systems, restricted, however, to linearly parame-
terized dynamics with constant unknown parameters. In this
paper, we consider a more general class of systems where
the functions f and g are entirely unknown.

A widely employed methodology that tackles safety for
autonomous systems and has received significant attention
is the concept of barrier certificates [16], which provide a
convenient and efficient way to guarantee invariance in a
given set [6], [17]. Nevertheless, standard control based on
barrier certificates relies heavily on the underlying dynamics
since the respective terms are used in the control design;
[8], [9], [18], [19] investigate uncertainties in the system
dynamics, restricted, however, to additive perturbations or
linearly parameterized terms that include constant unknown
parameters. Therefore, the respective methodologies are not
applicable to the class of systems considered in this paper.

Another class of work dealing with unknown dynamics is
that of funnel control, which guarantees confinement of the
state in a given funnel, incorporating transient (e.g., safety)
constraints [5], [10], [20], [21]. In contrast to the setup of
the current paper, such methodologies either apply to certain
forms of the dynamics, such as triangular systems, with
possibly positive definite input matrices [5], [21], or rely on
approximation of the dynamics using neural networks [10].
The latter has the drawbacks of lacking good heuristics for
choosing radial basis functions and number of layers, as well
as relying on strong assumptions on the amount of data.

Data-driven approaches have also been integrated with
barrier functions to address the safety of uncertain systems
through Gaussian-process models and reinforcement learn-
ing techniques [3], [22]–[24]. The aforementioned works,
however, consider only additive uncertain terms that are
assumed to evolve in compact sets. On the contrary, we
consider nonlinear systems of the form (1) where both f and
g are unknown, without having access to any nominal model.
Moreover, reinforcement learning and Gaussian-process al-
gorithms typically require large amounts of data in order to
provide accurate enough results [2], [22]. Recent methodolo-
gies that employ limited data obtained on the fly have been
developed in [1], [2], [25], imposing, however, restrictive as-
sumptions on the dynamics, such as global boundedness and
Lipschitz continuity with known bounds, or known bounds
on the approximation errors. In addition, the aforementioned
works resort to online optimization techniques for safety
specifications, increasing thus the complexity of the resulting
protocols. In the current paper, we rely on limited data
without imposing the assumptions stated above, developing
a safety control algorithm that does not require significant
computational resources.

The remainder of this article is structured as follows.
Section II gives the problem formulation. Section III presents
the on-the-fly algorithm that approximates of the dynamics,
and the control design is provided in Section IV. Section

V investigates the case of controllability loss, and Section
VI presents a simulation example. Finally, Section VII con-
cludes the paper.

II. PROBLEM FORMULATION

A. Notation

We denote by N̄ := N∪{0} the set of nonnegative integer
numbers, where N is the set of natural numbers. The set
of n-dimensional nonnegative reals, with n ∈ N, is denoted
by Rn≥0; Int(A) and ∂A denote the interior and boundary,
respectively, of a set A ⊆ Rn. Given a ∈ Rn, ‖a‖ denotes
its 2-norm; ∇h(x) ∈ Rn is the gradient of a function h :
Rn → R. An interval in R is denoted by [a, b] = {x ∈ R :
a ≤ x ≤ b} and the set of intervals on R by IR := {A :=
[A, Ā] : A, Ā ∈ R,A ≤ Ā}, which extends to the sets of
interval vectors IRn and matrices IRn×m. We carry forward
the definitions [26] of arithmetic operations, set inclusion,
and intersections of intervals to interval vectors and matrices
componentwise.

B. Problem Setup

Consider a system characterized by x := [x1, . . . , xn]> ∈
Rn with dynamics

ẋ(t) = f(x(t)) + g(x(t))u (2)

where f := [f1, . . . , fn]> : Rn → Rn, g := [gij ] : Rn →
Rn×m are unknown, continuously differentiable functions,
and u := [u1, . . . , um]> ∈ Rm is the control input. The
problem this work considers is the invariance of the unknown
system (2) in a given closed set C ⊂ Rn of the form

C := {x ∈ Rn : h(x) ≥ 0} (3a)

where h : Rn → R is a continuously differentiable function,
with bounded derivative dh(x)

dx in Int(C), and satisfying the
simple controllability condition that ∇h(x)>g(x) is not
identically zero (i.e., relative degree one). More specifically,
we aim to design a control law that achieves x(t) ∈ Int(C),
i.e., h(x(t)) > 0, for all t ≥ t0, given that x(t0) ∈ Int(C)
for an initial time constant t0 ≥ 0.

As mentioned in Section I, we aim to integrate a nonlinear
feedback control scheme with a data-driven algorithm that
approximates the dynamics (2) by using data obtained on
the fly from a finite-horizon trajectory. More specifically,
consider an increasing time sequence {t0, t1, t2, . . . } signi-
fying the time instants of data measurements. That is, we
assume that at each ti, i ∈ N, the system has access to
the discrete dataset of i points Ti := {(xj , ẋj , uj)}i−1

j=0,
consisting of the system state xj = [xj1, . . . , x

j
n]> = x(tj),

the state derivative ẋj = [ẋj1, . . . , ẋ
j
n]> = ẋj(tj), and the

control input uj = [uj1, . . . , u
j
m]> = u(tj) from a trajectory

of (2). The trajectory that produces the dataset Ti has finite
horizon in the sense that, for each finite i, Ti is finite. We
are now ready to give the problem statement treated in this
paper.

Problem 1. Let a system evolve subject to the unknown
dynamics (2). Given the discrete dataset Ti, i ∈ N, and



x(t0) ∈ Int(C), compute a time-varying feedback control law
u : Rn × [t0,∞) → Rm that guarantees x(t) ∈ Int(C), for
all t ≥ t0.

We further impose the following assumptions, required for
the solution of Problem 1.

Assumption 1. It holds that C ⊂ Br(0), where Br(0) is the
open ball of radius r centered at 0, for some r > 0.

Assumption 2. There exist known positive constants f̄k, ḡk`
satisfying |fk(x)− fk(y)| ≤ f̄k|x− y|, |gk`(x)− gk`(y)| ≤
ḡk`|x− y|, for all k ∈ {1, . . . , n}, ` ∈ {1, . . . ,m}, x, y ∈ C.

Assumption 1 simply states that the system remains
bounded when in the safe set C. Note that we do not
assume that the system is bounded in any set. Assumption
2 considers knowledge of upper bounds of the Lipschitz
constants of fk and gkl in the safe set C. Note that we do not
assume that the functions f(·) and g(·) are globally Lipschitz
(as e.g., in [1], [2]). The Lipschitz constants of fk and gkl in
C are also not considered to be exactly known; rather, upper
bounds are needed. In fact, Assumption 2 can be relaxed in
the sense that such upper bounds can be computed on the
fly using the data from the current system trajectory Ti [2].

Note that the current problem setting exhibits a unique
challenge due to the on-the-fly availability of the data
measurements and the minor assumptions imposed on the
dynamics (2). In contrast to most related works, we do
not assume global boundedness, Lipschitzness, or growth
conditions on the dynamic terms, and we do not employ
a priori approximation structures or data obtained offline.

The solution of Problem 1, consisting of a two-layered
approach, is given in Sec. III-V. Firstly, we use previous
results on on-the-fly approximation of the unknown dynam-
ics [2] and compute locally Lipschitz estimates for g(x).
Secondly, we use these estimates to design a closed-form
feedback control law based on reciprocal barrier functions.

III. ON-THE-FLY OVER-APPROXIMATION OF THE
DYNAMICS

In this section, we provide a brief overview of the ap-
proximation algorithm of [2] based on data obtained online
from a single finite-horizon trajectory. More specifically, at
each ti, i ∈ N, the algorithm uses the information from
the finite dataset Ti in order to construct a data-driven
differential inclusion ẋ ∈ F i(x) + Gi(x)u that contains the
unknown vector field of (2), where F i : Rn → IRn and Gi :
Rn → IRn×m are known interval-valued functions. Such an
over-approximation enables us to provide a locally Lipschitz
estimate ĝi of g to be used in the subsequent feedback
control scheme. First, we provide in Lemma 1 closed-form
expressions for F and G given over-approximations of f and
g at some states.

Lemma 1 ( [2], Lemma 2). Let i ∈ N and consider
the sets A ⊆ C, Ei := {(xj , CjF , C

j
G)}i−1

j=0 where CjF :=

(CjF1
, . . . , CjFn) ∈ IRn, CjG := (CjGk`) ∈ IRn×m are

intervals satisfying f(xj) ∈ CjF and g(xj) ∈ CjG . Further,

Algorithm 1 Approximate(ti,Ti)

Input: Single trajectory Ti, constant M > 0, upper bounds
on the Lipschitz constants.

Output: Ei = {(xj , CjF , C
j
G)|f(xj) ∈ CjF , G(xj) ∈ CjG}

i−1
j=0

1: A ← C, RfA ← [−M,M ]n, RGA ← [−M,M ]n×m

2: Define x0 ∈ A, C0
F ← RfA , and C0

G ← RGA
3: for ι ∈ {1, . . . , i− 1} ∧ (xι, ẋι, uι) ∈ Ti do
4: Compute F ι := F (xι),Gι := G(xι) via (4) using

Eι−1

5: Compute CιF , C
ι
G via (5), F ι,Gι, and (xι, ẋι, uι)

6: end for
7: do
8: Execute lines 3–6 with Ei instead of Eι−1 on line 4
9: while EN is not invariant

10: return Ei

consider the constants f̄k and ḡk` satisfying Assumption 2,
for all k ∈ {1, . . . , n}, ` ∈ {1, . . . ,m}, and x, y ∈ A. The
interval-valued functions F := (F 1, . . . ,F n) : Rn → IRn
and G := (Gk`) : Rn → IRn×m, given for all k ∈
{1, . . . , n} and ` ∈ {1, . . . ,m}, by the expressions

F k(x) :=
⋂

(xj ,C
j
F ,·)∈Ei

{
CjFk + f̄k‖x− xj‖[−1, 1]

}
, (4a)

Gk`(x) :=
⋂

(xj ,·,CjG)∈Ei

{
CjGk` + ḡk`‖x− xj‖[−1, 1]

}
, (4b)

satisfy f(x) ∈ F (x) and g(x) ∈ G(x), for all x ∈ A.

Loosely speaking, Lemma 1 states that if a set Ei =
{(xj , CjF , C

j
G)}i−1

j=0 and Lipschitz bounds are given, it is
possible to obtain an analytic formula over the interval
domain to over-approximate the unknown f and g. Lemma 2
enables to compute the set Ei based on the dataset Ti.

Lemma 2 ( [2], Lemma 1). Let a data point (xj , ẋj , uj),
a vector interval F j := (F j1 , . . . ,Fn)> ∈ IRn such that
f(xj) ∈ F j , and a matrix interval Gj := (Gjk`) ∈ IRn×m

such that g(xj) ∈ Gj . Consider the intervals CjF :=
(CjF1

, . . . , CjFn) ∈ IRn and CjG := (CjGk`) ∈ IRn×m, defined
sequentially for ` ∈ {1, . . . ,m} by

CjFk :=
{
Fjk
}
∩
{
ẋjk − Y

j
k

}
, (5a)

s0,k :=
{
ẋjk − CjFk

}
∩ {Yjk}, (5b)

CjGk` :=

{({
s`−1,k −

∑
p>` G

j
kpu

j
p

}
∩
{
Gjk`u

j
`

})
1

u
j
`

, uj` 6= 0

Gjk`, otherwise,
(5c)

s`,k :=
{
s`−1,k − CjGk`u

j
`

}
∩

∑
p>l

Gjkpu
j
p

 , (5d)

for all k ∈ {1, . . . , n}, where Yj := Gjuj ∈ IRn. Then,
CiF and CiG are the smallest intervals enclosing f(xj) and
g(xj), respectively, given only (xj , ẋj , uj), F j , and Gj .

Using Lemma 2, Alg. 1 utilizes the dataset Ti at each time
instant ti, i ∈ N, to compute the set Ei and subsequently,



over-approximate f and g using (4). Initially, C0
F and C0

G
need to be computed such that f(x0) ∈ C0

F , g(x0) ∈ C0
G ,

which can be achieved by choosing a sufficiently large M
(see line 2 of Alg. 1). Note that the computational complexity
of the algorithm (in time and memory) is linear in the
number of the elements of Ti and the system dimension
n. The subsequent theorem characterizes the correctness of
the obtained differential inclusions.

Theorem 1 ( [2], Theorem 1). Let i ∈ N and Fi :=
(Fi1, . . . ,F

i
n)> : Rn → IRn, Gi := (Gik`) : Rn → IRn×m,

with Fi(x) := F (x), Gi(x) := G(x) computed from (4) and
the output Ei of Alg. 1, which is executed at ti using the
dataset Ti. Then it holds that ẋ(t) ∈ Fi(x(t)) + Gi(x(t))u,
for all t ≥ ti.

Remark 1. As pointed out in [2], Alg. 1 can be adjusted to
employ extra information on f and g, if available, yielding
more accurate approximations. In particular, if we are given
sets A ⊆ C, RfA , RGA such that {f(x)|x ∈ A} ⊆ RfA
and {g(x)|x ∈ A} ⊆ RGA , these can be used in Alg. 1,
replacing the respective ones defined in line 1. We stress,
nevertheless, that such sets are not required to be available.

Based on Lemmas 1 and 2, we propose now a locally
Lipschitz function ĝi : C → Rn×m that estimates the
unknown function g at each measurement instant ti.

Lemma 3. Let i ∈ N. Given a weight θ ∈ [0, 1] and a set
A ⊆ C, each component of the function ĝi := [ĝik`] : C →
Rn×m, for all x ∈ A, given by

ĝik`(x) = θGik`(x) + (1− θ)Ḡik`(x), (6)

where Gik` and Ḡik` are the left and right endpoints, respec-
tively, of the interval Gik`, is locally Lipschitz in A, for all
k ∈ {1, . . . , n} and ` ∈ {1, . . . ,m}.

Proof: By the definition of Gikl, given by the output Ei
of Alg. 1 and Lemma 1, we have for any x ∈ A that

Gik`(x) = inf
⋂

(xj ,·,CjGk` )∈Ei

{
CjGk` + ḡk`||x− xj ||[−1, 1]

}
,

Ḡik`(x) = sup
⋂

(xj ,·,CjGk` )∈Ei

{
CjGk` + ḡk`||x− xj ||[−1, 1],

}
for all k ∈ {1, . . . , n} and ` ∈ {1, . . . ,m}. Thus, one can
observe through interval arithmetic that Gik`(x) and Ḡik`(x)
can be also written as

Gik`(x) = inf
(xj ,·,CjGk` )∈Ei

{
mu(xj) + gk`||x− xj ||

}
,

Ḡik`(x) = sup
(xj ,·,CjGk` )∈Ei

{
ml(x

j)− ḡk`||x− xj ||
}
,

where ml(x
j) := inf CjGk` and mu(xj) := supCjGk` . Using

the inequality |||x|| − ||y||| ≤ ||x − y|| for any two vectors
x, y ∈ Rn, we conclude that the functions hj : x 7→
mu(xj) + gk`||x− xj || and lj : x 7→ ml(x

j)− ḡk`||x− xj ||
are Lipschitz continuous in A with ḡk` as the Lipschitz
constant in A. Similarly, and by using max{l, h} = 0.5(l+

h + |l − h|), and min{l, h} = 0.5(l + h − |l − h|), we
can deduce by induction that x 7→ supj∈{1,...,i} lj(x) and
x→ infj∈{1,...,i} hj(x) are also Lipschitz continuous owing
to the Lipschitz continuity of lj and hj for all j ∈ {1, . . . , n}.
Thus, one obtains that x→ Ḡik`(x) and x 7→ Gik`(x) are also
Lipschitz continuous, from which we conclude the Lipschitz
continuity of ĝk`, being a linear combination of the latter.

IV. CONTROL DESIGN

This section presents a control algorithm based on the
approximation of the dynamics of Section III and the concept
of reciprocal barriers. Given the set C = {x ∈ Rn : h(x) ≥
0} and following [6], we define the cont. differentiable
reciprocal barrier function β : (0,∞)→ R that satisfies

1

α1(h)
≤ β(h) ≤ 1

α2(h)
(7)

for class K functions α1, α2. Note that (7) implies
infx∈Int(C) β(h(x)) > 0 and limx→∂C β(h(x)) =∞.

According to [6], the set Int(C) is forward-invariant if there
exists a reciprocal barrier function β satisfying (7) and

dβ(h(x))

dx

>
(f(x) + g(x)u) ≤ α3(h(x)) (8)

for a class K function α3. This condition allows β to grow
quickly when solutions are far away from ∂C, with the
growth rate approaching zero as solutions approach ∂C. For
unknown f and g, however, the design of a controller u such
that (8) holds, can be difficult, if not impossible, to achieve.
Therefore, this work focuses on maintaining β bounded in a
compact set, which implies that h is kept away from zero.
To this end, we enforce the extra condition on β:∥∥∥∥dβ(h)

dh

∥∥∥∥ ≤ 1

α4(h)
, (9)

for a class K function α4, which essentially implies that
the derivative of β(·) is bounded in Int(C). Examples of β
include β(x) = 1

x , β(x) = − ln
(

x
1+x

)
.

Let now the estimate ĝi(x) of g(x), as computed by
Lemma 3, for t ∈ [ti, ti+1), i ∈ N̄1. Let also the respective
error g̃i(x) := ĝi(x) − g(x) for i ∈ N̄. The term ĝi(x)
will be used in the control design to cancel the effect of
g(x), inducing thus a time-dependent switching. The next
theorem is the first result of this paper, stating that, if
the estimated system defined by ĝi(x) is controllable with
respect to h(x), and if ĝi(x) is sufficiently close to g(x), we
achieve boundedness of x(t) in Int(C) and, consequently,
provide a solution to Problem 1.

Theorem 2. Let a system evolve according to (2) and a set
C satisfying x(t0) ∈ Int(C) for some t0 ≥ 0. Let functions
h : Int(C)→ [0,∞), β : (0,∞)→ R satisfying (3) and (7),
(9), respectively. Assume that

‖ĝi(x)>∇h(x)‖ ≥ ε, (10a)
ḡh̄ < ε, (10b)

1Since T0 is empty, ĝ0(x) is set randomly.



for a positive constant ε, for all i ∈ N̄ and x ∈
Int(C), and where h̄ := supx∈Int(C) ‖∇h(x)‖ and ḡ :=
supx∈Int(C)

i∈N̄
‖g̃i(x)‖. Under Assumptions 1, 2, the control law

u := u(x, t) = −κdβ(h(x))

dh(x)

ĝi(x)>∇h(x)

‖ĝi(x)>∇h(x)‖2
, (11)

for t ∈ [ti, ti+1), i ∈ N̄ and where κ is a positive
constant control gain, guarantees that x(t) ∈ Int(C), and
the boundedness of all closed loop signals, for all t > t0.

Proof: The closed-loop system ẋ = f(x)+g(x)u(x, t)
is piecewise continuous in t ≥ t0 , for each fixed x ∈ Int(C),
and, in view of Lemma 3, locally Lipschitz in x ∈ Int(C) for
each fixed t ≥ t0. Hence, since x(t0) ∈ Int(C), we conclude
from [27, Theorem 2.1.3] the existence of a maximal abso-
lutely continuous solution x(t), satisfying x(t) ∈ Int(C), for
all t ∈ [t0, tmax), for a positive constant tmax > t0. We aim
to prove next that x(t) remains in a compact subset of Int(C)
and consequently tmax =∞.

Since x(t) ∈ Int(C) for all t ∈ [t0, tmax), Alg. 1 produces
valid approximation sets Fi(x), Gi(x) at each ti, from which
we obtain the estimate ĝi(x). Using g(x) = ĝi(x) + g̃i(x)

and βd := dβ(h(x)
dh(x) , one obtains

β̇ ≤ βd∇h(x)>f(x)− κβ2
d + κβ2

d
‖g̃i(x)>∇h(x)‖
‖ĝi(x)>∇h(x)‖

for all t ∈ [t0, tmax). Since x ∈ Int(C) and f is cont.
differentiable, there exists a constant f̄ , independent of tmax,
satisfying ‖f(x(t))‖ ≤ f̄ , for all t ∈ [t0, tmax). Moreover,
since ‖ĝi(x)>∇h(x)‖ ≥ ε, for all i ∈ N̄, β̇ becomes

β̇ ≤ |βd|‖∇h(x)‖f̄ − κβ2
d + κβ2

d
h̄ḡ

ε
.

Therefore, since h̄ḡ < ε, there exists a constant ε such that
ε = 1− h̄ḡ

ε > 0, leading to

β̇ ≤ −|βd|
(
εκ|βd| − h̄f̄

)
. (12)

Note that the latter inequality holds regardless of the
index i. We claim now that (12) implies the bounded-
ness of β. Assume that this is not the case, and that
limt→tmax β(h(x(t))) = ∞, which, in view of (7) and
(9), implies that limt→tmax

|βd(t)| = ∞. Hence, for every
positive constant γ > 0, there exists a time instant tγ ∈
(t0, tmax) such that |βd(t)| > γ for all t > tγ . Consequently
and since f̄ and ε, κ are positive constants, we conclude
from (12) that there exists a time instant t′ ∈ [t0, tmax)
such that β(t) < 0 for all t > t′, which leads to a
contradiction. We conclude, therefore, that there exists a
constant β̄ such that β(h(x(t)) ≤ β̄, for all t ∈ [t0, tmax),
implying h(x(t)) ≥ h := α−1

1

(
1
β̄

)
, for all t ∈ [t0, tmax),

which dictates the boundedness of the system in a compact
set x(t) ∈ C̄ ⊂ Int(C), for all t ∈ [t0, tmax). One can hence
conclude from [27, Theorem 2.1.4] that tmax = ∞, and
that x(t) ∈ C̄ ⊂ Int(C), for all t ≥ t0. Moreover, since
h(x(t)) ≥ h, for all t ∈ [t0, tmax), (9) and (11) imply the

boundedness of u(x(t), t), for all t ≥ t0, leading to the
conclusion of the proof.

Loosely speaking, the system will remain safe if the
approximation error g̃ is small enough, as quantified by the
controllability constant ε in (10a). In Section V we provide
an algorithm that deals with the case when (10a) might no
longer hold. Moreover, it can be argued that Theorem 2 is
overly conservative; the conditions (10) need only hold close
to the boundary of C, which gives rise to local barrier control,
developed next.

Local Barrier Control

The conditions ‖ĝi(x)>∇h(x)‖ ≥ ε, ḡh̄ < ε imposed
in Th. 2 are quite restrictive, since they have to hold for
all x ∈ Int(C), and i ∈ N̄. Moreover, note that (11) suggests
that the controller is “enabled” regardless of the distance of x
from ∂C, which might yield a conservative system trajectory.
This problem is alleviated in [6] by achieving condition (8),
where β is allowed to grow when x is far away from ∂C.
As mentioned before, the system dynamics are unknown and
hence such a condition cannot be achieved. Nevertheless, we
show in this section that the control law can be designed to
be “enabled” only close to the unsafe boundary ∂C, where
the proximity can be chosen by the user/designer. This allows
the choice of any continuous nominal controller un(x) away
from the boundary, which might be responsible for some
(potentially unsafe) desired task. Moreover, we relax the
strict conditions of Th. 2 to hold only close to the boundary.

Let the proximity from ∂C be defined in terms of the
positiveness of h(x). That is, for a given constant µ > 0,
we want the controller to act only when 0 < h(x) ≤ µ,
which defines the set Cµ := {x ∈ Rn : h(x) ∈ (0, µ]}. To
this end, we define the switching signal σµ : [0,∞)→ [0, 1],
with σµ(h) = 0 if h ≥ µ, σµ(h) = φµ if h ∈ [0, µ), and
σµ(h) = 1 if h ≤ 0, where φµ : [0,∞) → [0, 1] is any
decreasing continuous function satisfying φµ(0) = 1 and
φµ(µ) = 0, for some µ > 0. The design parameters φµ and
µ tune how “aggressive” the system behaves to ensure safety.
The control law is now designed as

u := u(x, t) = un(x)− κσµ(h(x))βd
ĝi(x)>∇h(x)

‖ĝi(x)>∇h(x)‖2
,

(13)
where un(x) is a nominal continuous controller and κ is
a positive constant control gain. Similarly to the proof of
Th. 2, we establish the existence and uniqueness of an
absolutely continuous solution x(t) evolving in Int(C), for
t ∈ [t0, tmax), for a positive time instant tmax > t0. Given
µ > 0, define the set Kµ := {i ∈ N̄ : ∃[τ1, τ2) ⊆
[t0, tmax), with τ1 ∈ [ti, ti+1) s.t. x(t) ∈ Cµ, for all t ∈
[τ1, τ2)}, where ti are the update instants from Section III.
The set Kµ contains the time index of the last update before
entering the set Cµ as well as the time indices of the updates
while in the set Cµ (see the purple points of the system
trajectory in Fig. 1). Note that Kµ is not empty, unless
x(t) ∈ Int(C)\Cµ (i.e., h(x(t)) ≥ µ for all t ≥ t0). We
are now ready to state the main results of this section.



Theorem 3. Let a system evolve according to (2) and a set
C satisfying x(t0) ∈ Int(C) for some t0 ≥ 0. Let functions
h : Int(C)→ [0,∞), β : (0,∞)→ R satisfying (3) and (7),
(9), respectively, and a constant µ′ ∈ (0, µ). Assume that

‖ĝi(x)>∇h(x)‖ ≥ ε, (14a)
ḡµ′ h̄µ′ < εσµµ′ (14b)

for a positive constant ε, for all i ∈ Kµ′ and x ∈ Cµ′ ,
where σµµ′ := σµ(µ′), h̄µ′ := supx∈Cµ′ ‖∇h(x)‖ and ḡµ′ :=

supx∈Cµ′
i∈Kµ′

‖g̃i(x)‖. Under Assumptions 1, 2, the control law

(13) guarantees that x(t) ∈ Int(C), for all t > t0, and the
boundedness of all closed loop signals.

Proof: Since we have established the existence of a
solution x(t) ∈ Int(C), for a time interval t ∈ [t0, tmax),
assume that limt→tmax

h(x(t)) = 0, i.e., the system con-
verges to the boundary of C as t → tmax, implying
limt→tmax β(h(x(t))) = ∞. Let any t′ ∈ [t0, tmax) such
that x(t) ∈ Cµ′ for all t ∈ [t′, tmax), and x(t) ∈ C̃ := {x ∈
Rn : h(x) ≥ mint∈[t0,t′]{h(x(t))} > 0}, for all t ∈ [t0, t

′].
Hence, it holds 0 < h(x(t)) ≤ µ′ < µ and σµ(h(x(t))) ≥
σµµ′ := σµ(µ′) > 0, for all t ∈ [t′, tmax). Moreover, note
that ti ∈ [t′, tmax) implies i ∈ Kµ′ , which is non-empty
since x(t) ∈ Cµ′ , and consequently, ‖ĝi(x(t))>∇h(x(t))‖ ≥
ε, ḡµ′ h̄µ′ < εσµµ′ , for all t ∈ [t′, tmax). By recalling that
σµ(h) ≤ 1, β̇ becomes

β̇ ≤ βd∇h(x)>fn(x)− κσµµ′β2
d + κβd

‖g̃i(x)>∇h(x)‖
‖ĝi(x)>∇h(x)‖

for all t ∈ [t′, tmax), where fn(x) := f(x) + g(x)un(x).
Since f, g, un are continuous functions and x(t) ∈ Int(C) for
all t ∈ [t0, tmax), there exists a constant f̄n, independent of
tmax, satisfying ‖fn(x(t))‖ ≤ f̄n, for all t ∈ [t0, tmax). By
also using ‖ĝi(x(t))>∇h(x(t))‖ ≥ ε, for all t ∈ [t′, tmax),
we obtain

β̇ ≤ |βd|‖∇h(x)‖f̄n − κσµµ′β2
d + κβ2

d
h̄µ′ ḡµ′

ε
,

for all t ∈ [t′, tmax). By setting εµ′ := σµµ′ −
h̄µ′ ḡµ′

ε > 0,
we obtain

β̇ ≤ −|βd|
(
εµ′ |βd|κ− h̄µ′ f̄n

)
for all t ∈ [t′, tmax). By invoking similar arguments as in the
proof of Th. 2, we conclude that x(t) ∈ C̄ ⊂ Int(C). By also
using x(t) ∈ C̃, for all t ∈ [t0, t

′] and the compactness of the
latter, we conclude the boundedness of x(t) and β(h(x(t))),
for all t ∈ [t0, tmax). From [27, Th. 2.1.4], we conclude
that tmax = ∞, and the boundedness of x(t), β(h(x(t))),
u(x(t), t) for all t ∈ [t0,∞).

Intuitively, the condition ḡµ′ h̄µ′ < εσµµ′ of Th. 3
is implicitly connected to the frequency of measurements
{xi, ẋi, ui} the system obtains. More specifically, note first
that ‖g̃i(x(ti))‖ ≤ limt→t−i

‖g̃i(x(ti))‖, for all i ∈ N̄, i.e.,
the estimation gi(x) of g(x) improves with every update.
Hence, the condition ḡµ′ h̄µ′ < εσµµ′ simply implies that the
system will have obtained sufficiently enough measurements

such that it obtains an accurate enough estimate ĝi(x) of g(x)
from Alg. 1 before it reaches ∂(C). An explicit relation is
out of the scope of this paper and is left for future work.

V. LOSS OF CONTROLLABILITY

In this section we provide an algorithm that considers
cases where ‖ĝi(x)>∇h(x)‖ can become arbitrarily small,
relaxing thus the respective assumption in Th. 2 and 3.

The framework we follow in order to tackle such cases
is an online switching mechanism that computes locally
alternative barrier functions hι, defining new safe sets Cι :=
{x ∈ Rn : hι(x) ≥ 0} ⊂ Cι−1, for ι ≥ 2, with
h1 := h, C1 := C. More specifically, at a point xc
where ‖ĝi(xc)>∇h(xc)‖ becomes too small, the algorithm
looks for an alternative function h2 satisfying C2 ⊂ C
and for which ‖ĝi(xc)>∇h2(xc)‖ is sufficiently large. The
controller switches locally to h2 until ‖ĝi(x)>∇h(x)‖ be-
comes sufficiently large again. In case the system navigates
along the line ‖ĝi(x)>∇h(x)‖ = 0 to a region where
‖ĝi(x)>∇h2(x)‖ is also small, the procedure is repeated and
a new h3 is computed. Note that, since we desire ĝi(x) to
be close to g(x), and hence the interval Gi(x) to be small
(see Lemma 3), choosing a different ĝi(x) from Gi(x) is not
expected to significantly modify the term ‖ĝi(x)>∇h(x)‖.

The aforementioned procedure is described more formally
in the algorithm SafetyAdaptation (Alg. 2). More specifi-
cally, for a given j, each ρj indicates whether the system is
close to the set where ‖ĝi(x)>∇hj(x)‖ = 0. If that’s the
case (ρj = 0), then a new function hj+1 is computed such
that Cj+1 ⊂ Cj , and in the switching point it holds that
hj+1(x) > 0 and ‖ĝi(x)>∇hj+1(x)‖ is sufficiently large;
hj+1(x) is used then in the control law. If ‖ĝi(x)>∇hι(x)‖
becomes sufficiently large, for some ι < j, then j is set back
to ι, and hι(x) can be safely used in the control law again.
We also impose a hysteresis mechanism for the switching of
the constants ρι (lines 7, 13) through the parameters ε̄, ε.

The reasoning behind Alg. 2 is the following. By ap-
propriately choosing the functions hι(x), the solutions of
‖ĝi(x)>∇hι(x)‖ = 0 form curves of measure zero. Hence,
the intersection of n such lines will be a single point and
hence the employment of a newly computed hn+1 will drive
the system away from that point, resetting the algorithm.
More formally, there is no time instant t ≥ t0 such that
‖ĝi(x(t))>∇hι(x)‖ ≤ ε for ι ≥ n + 1, implying that the
iterator variable j of Alg. 2 will never exceed n + 1. A
formal proof for the aforementioned reasoning is, however,
not in the scope of this paper and consists part of future
work. The formal definition of the control law is

u = un(x)− κσµ(h(x))βdub(x, t) (15a)

ub :=
n+1∑
ι=1

ρι

ι−1∏
j=1

(1− ρj)
ĝi(x)>∇hι(x)

‖ĝi(x)>∇hι(x)‖2
, (15b)

for all t ∈ [ti, ti+1), i ∈ N̄, with h1 = h and σµ as in (13).
The SafetyAdaptation algorithm is run separately for each

time interval [ti, ti+1), i ∈ N̄. That is, when a new measure-
ment (x(ti+1), ẋ(ti+1, u(ti+1)) is received, the estimation



of g(x) is updated, a new ĝi+1 is computed by Alg. 1, and
SafetyAdaptation is reset (j and ρι are reset as in lines 1−2).

Algorithm 2 SafetyAdaptation(gi, h, ε̄, ε)

1: ρι ← 1, ∀ι ∈ {1, . . . , n+ 1};
2: j ← 1; h1 ← h;
3: while True do
4: if ‖ĝi(x)>∇hj(x)‖ ≤ ε ∧ ρj = 1 then
5: xc ← x; ρj ← 0;
6: Find hj+1 such that

1) Cj+1 ⊂ Cj
2) hj+1(xc) > 0
3) ‖ĝi(xc)>∇hj+1(xc)‖ ≥ γj+1;

7: j ← j + 1;
8: end if
9: for ι ∈ {1, . . . , j − 1} do

10: if ‖ĝi(x)>∇hι(x)‖ > ε̄ ∧ ρι = 0 then
11: ρι ← 1; j ← i;
12: Break;
13: end if
14: end for
15: Apply (15)
16: end while

Alg. 2 imposes an extra, state-dependent switching to the
closed-loop system, which can be written as

ẋ = f(x) + g(x)un − κσµ(h(x))g(x)βduι(x, t), (16)

where uι := ĝi(x)>∇hι(x)
‖ĝi(x)>∇hι(x)‖2 , for some i ∈ N̄, ι ∈ N. The

switching regions are not pre-defined, but detected online
based on the trajectory of the system (line 4 of Alg. 2).
Moreover, by choosing γj > ε, for all j ≥ 2, we guarantee
that the switching does not happen continuously, and hence
the solution of (16) is well-defined in [t0, tmax) for some
tmax > t0, satisfying x(t) ∈ Int(C), for all t ∈ [t0, tmax).

The results of this section are summarized as follows.

Theorem 4. Let a system evolve according to (2) and a set C,
satisfying x(t0) ∈ Int(C) for a positive t0 ≥ 0. Let functions
h : Int(C)→ [0,∞), β : (0,∞)→ R satisfying (3) and (7),
(9), respectively, and a positive constant µ′ ∈ (0, µ). Assume
that ḡµ′ h̄µ′ < εσµµ′ := σµ(µ′), for a positive constant ε, for
all i ∈ Kµ′ and x ∈ Cµ′ , where h̄µ′ := supx∈Cµ′ ‖∇h(x)‖
and ḡµ′ := supx∈Cµ′

i∈Kµ′
‖g̃i(x)‖. Let Assumptions 1, 2 hold and

consider the control law (15), with ρι computed as in Alg. 2.
Further assume that there is no time instant t ≥ t0 such that
‖ĝi(x(t))>∇hι(x(t))‖ ≤ ε for ι ≥ n+1. Then x(t) ∈ Int(C)
and all closed loop signals remain bounded, for all t > t0.

Proof: The proof follows from the fact that at the
switching regions, i.e., when ‖ĝi(x)>∇hj(x)‖ ≤ ε, it holds
that hj(xc) > hj+1(xc) > 0 for j ∈ {1, . . . , n}, and by
applying similar arguments as in the proof of Th. 3 for each
fixed j ∈ {1, . . . , n+ 1}.

VI. SIMULATION RESULTS

We validate the proposed algorithm with a simulation
example. More specifically, we consider an underactuated
unmanned aerial vehicle (UAV) with state variables x =
[x1, . . . , x6] = [px, py, φ, vx, vy, ω]> evolving subject to the
dynamics ṗx = vx, ṗy = vy , φ̇ = ω, and

mv̇x = −CvDvx − u1 sin(φ)− u2 sin(φ)

mv̇y = −(mg + CvDvy) + u1 cos(φ) + u2 cos(φ)

2Iω̇ = −CφDω − lu1 + lu2,

where m = 1.25, I = 0.03 are the quadrotor’s mass and mo-
ment of inertia, respectively, g = 9.81 is the gravity constant,
l = 0.5 is the arm length, and CvD = 0.25, CφD = 0.02255
are aerodynamic constants. We consider that the UAV aims
to track the helicoidal trajectory pxr := 1

2 sin( 3
2 t), pyr :=

1
2 sin( 3

4 t) (see Fig. 2) via an appropriately designed nominal
control input un. We wish to bound the vertical and angular
velocities of the UAV through via the ellipsoid h(x) =
1− [vy, ω+0.5]diag{7, 0.5}[vy, ω+0.5]>, which is pictured
in Fig. 3. We use the local safety controller (15), with β = 1

h ,
µ = 0.5, and κ = 1, while setting ε = 0.2, ε̄ = 0.6 in Alg.
2. The data measurement and hence the execution of Alg. 1
occurred every 0.5 seconds. The simulation results from the
initial condition [0, 0, 0,−0.1, 0, 0]> are illustrated in Figs.
2-4 for t = 10 seconds. In particular, Fig. 2 depicts the
reference helicoidal trajectory (red) and the system trajectory
under the nominal un (blue) and local safety controller (15)
(green); Fig. 3 depicts the barrier and local barrier function
boundaries h(x) = 0 (red), h(x) = µ = 0.5 (magenta),
respectively, as well as the vertical and angular velocities
under the nominal un (blue) and local safety controller
(13) (green). One can verify that the system is successfully
confined in the set Int(C) defined by h(x) > 0, verifying thus
the theoretical findings. Finally, Fig. 4 depicts the resulting
control input u(t) (top) and the approximation error 2-norm
‖g̃i(x)‖ (bottom). From Fig. 4 it can be verified that the
condition (14b) does not always hold and hence it is not
necessary for Th. 3, 4. We note also that in this example
‖ĝi(x)>∇h(x)‖ ≥ ε is always satisfied.

VII. CONCLUSION AND FUTURE WORK

We consider the safety problem for a class of nonlinear
unknown systems. We propose a two-layered control solu-
tion, integrating approximation of dynamics from limited
data with closed form nonlinear control laws using reciprocal
barriers. Future efforts will be devoted towards extending
the proposed framework to stabilization/tracking and provide
conditions on the frequency of the measured data.
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