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Abstract— We develop an algorithm for the optimal control
of systems governed by unknown, nonlinear dynamics to
deliver tasks expressed as timed temporal logic constraints.
The algorithm first computes a sequence of points—along with
associated time stamps—in the operating environment such
that, if the system follows the sequence, it completes its task. For
the second step of the algorithm, we develop a novel data-driven,
on-the-fly control mechanism that learns how to transition from
a point in the sequence to the next within a pre-specified time
horizon accounting for the unknown dynamics, unsafe zones in
the operating environment and additional optimality criteria.
We show that, after a finite period of data gathering, the
resulting controller guarantees that the system indeed follows
the sequence of points, leading to the satisfaction of the task.

I. INTRODUCTION

Autonomous systems are prone to failures and abrupt
changes that might render the underlying dynamics unknown.
Hence, the control of such systems necessitates data-driven,
learning-based techniques. Moreover, abrupt changes in the
dynamics prevent the use of data obtained offline, and the
learning-based techniques should rely on data obtained on the
fly from the current system trajectory. Additionally, express-
ing the objectives of autonomous systems via temporal logic
languages has gained significant attention recently, since
temporal logic can describe more complex tasks than the
well-studied point-to-point navigation [1]. A special form
of temporal logic, namely timed temporal logic, offers the
incorporation of time constraints in the planning objectives,
providing a rich variety of tasks [2]. At the same time,
resource limitations call for algorithms that minimize the
exerted control effort of the underlying system by solving
the optimal control problem [3].

This paper addresses the optimal control problem of an
unknown control-affine system to deliver tasks expressed as
timed temporal logic constraints. The system is assumed to
be continuous in state and time and operating in an envi-
ronment with unsafe zones. Our contribution with respect to
the related literature lies in the integration of timed temporal
tasks with control optimality for unknown nonlinear systems.

We develop a two-step algorithm to solve the aforemen-
tioned problem. The first step is the computation of a discrete
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timed path, i.e., a sequence a points to be visited at specific
time stamps, that yields the execution of the task if followed
by the system. The second step, which constitutes the main
contribution of our work, is the design of a control algorithm
that exhibits the following properties: (i) it achieves the
sequential navigation of the system to the points dictated
by the computed path in the given time stamps, (ii) it
minimizes the exerted control effort, and (ii) it guarantees
the avoidance of the unsafe zones. In particular, we transform
the problem to a finite-horizon optimal control problem with
safety constraints and we use data obtained online from the
current trajectory to accommodate the unknown dynamics.
We prove that, after obtaining a sufficient amount of data,
the system learns to navigate among the predefined points
within the time intervals dictated by the derived path while
minimizing the control effort and avoiding the unsafe zones,
which leads to the successful execution of the task.

There exist numerous related works that consider planning
and control under timed temporal logic specifications [4]–
[15]. Most of the aforementioned works, however, consider
simplistic single integrator models [5], [7], [11], finite-state
systems [15] or neglect entirely the underlying dynamics
[4]. The works [8]–[10], [12]–[14] consider more complex
models that are either fully [10], [12]–[14] or partially [8], [9]
known; [2] assumes unknown dynamics, restricted, however,
to second-order Lagrangian models with positive-definite
input matrices. This paper considers a larger class of systems,
governed by fully unknown nonlinear dynamics.

Another issue with the related works on timed temporal
logic-based planning is the lack of optimality characteristics;
[11] aims to minimize the system’s control effort by online
modifying the timed paths, whereas [8] embeds a policy
improvement algorithm to a feedback control law for si-
multaneous satisfaction of timed temporal specifications and
minimization of a given cost. The work in [13] considers
the optimal control problem by incorporating timed temporal
logic specifications as constraints using quadratic programs.
Nevertheless, except for using the underlying dynamics,
the aforementioned works fail to guarantee optimality of
the resulting controller. In this paper, on the other hand,
we propose a neural-network-based learning scheme that
guarantees the optimality of the resulting controller up to
an approximation error that depends on the size of the
neural network. In particular, we extend previous works on
actor-critic learning [16]–[18] by solving a series of optimal
control problems over finite time horizons for the safe timed
transitions among the predefined points that are related
to the timed temporal task. We provide formal guarantees



regarding the optimality of the resulting closed-loop system,
which, according to the authors’ best knowledge, has not
been considered before for the finite-horizon optimal control
problem with unknown continuous-time nonlinear dynamics.

II. PRELIMINARIES

Notation: We denote by N0 :“ N Y t0u the set of
nonnegative integer numbers, where N is the set of natural
numbers. The sets of n-dimensional nonnegative and positive
reals, with n P N, are denoted by Rně0 and Rną0, respectively;
Z1 b Z2 is the Kronecker product of matrices Z1 and Z2.
The operator vecp¨q denotes the vectorization of a matrix.
Given an infinite sequence s “ s0s1s2 . . . , we denote its
j-suffix by suffps, jq “ sjsj`1 . . . , respectively; Iq P Rqˆq
denotes the identity matrix. The closed ball centered at ck
with radius rk is denoted by B̄pck, rkq.

Definition 1 ( [19]). A time sequence t1, t2, . . . is a (infinite
unless otherwise stated) sequence of time values tj P Rě0,
for all j P N, satisfying (i) tj ă tj`1, for all j P N and (ii)
for all t1 P Rě0 there exists j ě 1 such that tj ě t1. l

An atomic proposition is a statement over the variables or
parameters of a problem that is either True pJq or False (K),
and let AP be a finite set of such atomic propositions.

Definition 2. Let AP be a finite set of atomic propositions.
A timed word w over AP is an infinite sequence w :“
pw1, t1qpw2, t2q . . . where w1, w2, . . . is an infinite word
over 2AP and t1, t2, . . . is a time sequence. l

Definition 3. A Weighted Transition System (WTS) is a tuple
pΠ, SΠ0,ÝÑ,AP,L, γq, where Π is a finite set of states,
Π0 Ď Π is a set of initial states, ÝÑĎ S ˆ S is a transition
relation, AP is a finite set of atomic propositions, L : Π Ñ
2AP is a labeling function, and γ :ÝÑÑ Rą0 is a map that
assigns a positive weight to each transition. l

Definition 4. A timed run of a WTS is an infinite sequence
r “ pr1, t1qpr2, t2q . . . , such that r1 P S0 and rj P S,
prj , rj`1q PÝÑ, for all j P N. The time stamps tj are
inductively defined with t1 “ 0 and tj`1 “ tj`γprj , rj`1q,
for all j P N. The timed run r generates a timed word
wprq “ w1pr1q, w2pr2q, ¨ ¨ ¨ “ pLpr1q, t1q, pLpr2q, t2q, . . .
over the set 2AP , where Lprjq is the subset of atomic
propositions AP that are true at state rj at time tj , j P N.

l

The syntax of a timed temporal logic formula over AP is
defined by a grammar that has the form

ϕ :“ p |  ϕ | ϕ1^ϕ2 | ©I ϕ | ♦Iϕ | lIϕ | ϕ1UIϕ2, (1)

where ϕ P AP , and ©, ♦, l, and U are the next,
future, always, and until operators, respectively; I is a
nonempty time interval in one of the followings forms:
ri1, i2s, ri1, i2q, pi1, i2s, pi1, i2q, ri1,8q, pi1,8q, with i1, i2
P Q. Several languages are subsets of the form (1), such
as Metric Temporal Logic (MTL), Metric Interval Temporal
Logic (MITL), Bounded MTL, coFlat MTL, or Time Win-
dow Temporal Logic (TWTL) [20], [21]. Here we define

the generalized semantics of (1) over discrete observations
(point-wise semantics) [22]. The next definition considers the
satisfaction of a formula by a timed run.

Definition 5. [22], [23] Given a sequence R “

pπ0, t0qpπ1, t1q . . . and a timed formula ϕ, we define
pR, iq |ù ϕ, i P N0 (R satisfies ϕ at i) as follows:

pR, iq |ùpô p P Lpπiq, pR, iq |ù  ϕô pR, iq |ù ϕ,

pR, iq |ùϕ1 ^ ϕ2 ô pR, iq |ù ϕ1 and pR, jq |ù ϕ2,

pR, iq |ù©I ϕô pR, i` 1q |ù ϕ and tj`i ´ ti P I,
pR, iq |ùϕ1UIϕ2 ô Dk ě i such that pR, kq |ù ϕ2,

tk ´ ti P I and pR,mq |ù ϕ1,@m P tj, . . . , ku.

Also, ♦Iϕ “ JUIϕ and lIϕ “  ♦I ϕ. Finally, R satisfies
ϕ, denoted by R |ù ϕ, if and only if pR, 0q |ù ϕ. l

III. PROBLEM FORMULATION

Consider, for all t ě t0 ě 0, a nonlinear system with
dynamics

9xptq “ fpxptqq ` gpxptqqupxptq, tq, xpt0q “ x0, (2)

where x : rt0,8q Ñ Rn denotes the system’s states with
initial condition x0 P Rn at t “ t0, u : Rn ˆ rt0,8q Ñ Rm
is a control input, and f : Rn Ñ Rn, g : Rm Ñ Rnˆm are
unknown, locally Lipschitz functions.

Moreover, consider K P N points of interest in the state
space, denoted by ck P Rn, for k P K :“ t1, . . . ,Ku, and
let Π :“ tc1, . . . , cKu. Each point ck, k P K, corresponds to
certain properties of interest, which are expressed as Boolean
variables via the finite set of atomic propositions AP . The
properties satisfied at each point are provided by the labeling
function L : Π Ñ 2AP . Informally, L assigns to each point
ck, k P K, the subset of the atomic propositions that hold true
in that point. Since the aforementioned properties shared by a
point of interest are naturally inherited to some neighborhood
of that point, we also define for each k P K the region of
interest πk, corresponding to the point of interest ck, as the
set πk :“ B̄pck, ρkq, with ρk ą 0 chosen such that πkXπk1 “
H, for all k, k1 P K with k ‰ k1. The system is assumed
to be in a πk simply when x P πk. We further need the
following assumption.

Assumption 1. It holds that fpckq “ 0 for all k P K. l

Along with Π, we further consider a set of Ko unsafe
pairwise disjoint spherical zones O :“ to1, . . . , oKou, with
ok :“ B̄pcok , ρokq, k P Ko :“ t1, . . . ,Kou satisfying
ok X πk1 “ H, for all pk, k1q P Ko ˆ K, which defines
the free space F :“ RnzO. We are interested in achieving
timed temporal specifications over the atomic propositions
AP while avoiding the unsafe zones. We achieve that by
guaranteeing safe timed transitions between the regions of
interest in Π. We first need the following definition regarding
the behavior of the system.

Definition 6. Consider an agent trajectory x : rt0,8q Ñ Rn
of (2). Then, a timed behavior of x is the infinite sequence
bpt0q :“ pxpt0q, σ0, t0qpxpt1q, σ1, t1q . . . , where t0, t1, . . . is



a time sequence according to Definition 1, xptiq P πji , ji P K
for all i P N0, and σi “ Lpπjiq Ď 2AP , i.e., the subset
of atomic propositions that are true when xptjq P πji , for
i P N0. The timed behavior b satisfies a timed formula ϕ
safely if bσpt0q :“ pσ0, t0qpσ1, t1q . . . |ù ϕ and xptq P F ,
for all t ě t0. It eventually satisfies ϕ safely if there exists
j P N such that suffpbσpt0q, jq “ suffpaσpt0q, jq, for some
aσpt0q |ù ϕ and xptq P F , for all t ě tj . l

We develop a learning-based control strategy such that
the system learns how to safely execute transitions in Π,
resulting in eventual satisfaction of ϕ, while also achieving
optimality with respect to some user-defined cost. Note that
eventual satisfaction implies that ϕ dictates repetitive tasks
and/or tasks over long time horizons that the system is able
to learn to execute. The latter, however, is not a restrictive
assumption, since such tasks encompass the full potential of
timed temporal logic languages.

Define now, for each point of interest ci, the error ei :“
x´ ci, evolving according to the dynamics

9ei “ Fipeiq `Gipeiqu :“ fpei ` ciq ` gpei ` ciqu, (3)

for all i P K, and define the performance criteria:

Jpeipt0q, t0, tf , uq :“

ż tf

t0

rpeipτq, upeipτq, τqqdτ, (4)

with t0 ě 0, tf ą t0, where rpe, uq :“ Qpeq ` Spuq is a
metric of performance, with Spuq :“ uJRu, R ą 0, and
Q : Rn Ñ Rě0 being a positive-definite function. This gives
rise to the timed behavior cost of a timed behavior b.

Definition 7. Consider a system closed-loop trajectory x :
rt0,8q Ñ Rn along the control input u and the associated
timed behavior b “ pxpt0q, σ0, t0qpxpt1q, σ1, t1q . . . , with
xptiq P πji , ji P K for all i P N0. The timed behavior
cost J is the infinite sequence of functions J :“ J0J1 ¨ ¨ ¨ ,
where Ji :“ Jpeji`1

ptiq, ti, ti`1, uq, for all i P N0. l

The cost of the timed behavior naturally leads to the ε-
optimal timed behavior defined next, where Apta, tbq is the
set of all functions from Rn ˆ rta, tbs to Rm, tb ą ta ě t0:

Definition 8. Consider a system trajectory x : rt0,8q Ñ
Rn. Given ε ą 0, its timed behavior bpt0q “

pxpt0q, σ0, t0qpxpt1q, σ1, t1q . . . is said to be ε-optimal, if
the associated timed behavior cost J “ J0J1 . . . satis-
fies }Ji ´ J‹i } ď ε, for all i P N, where J‹i :“

min
αPApti,ti`1q

Jpeji`1
ptiq, ti, ti`1, αq. l

We can now state the problem considered in this work.

Problem 1. Let a system evolve with unknown dynamics
(2), with initial position xpt0q P πj0 , j0 P K. Given a
timed formula ϕ over AP and a labeling function L, design
a control law u : Rn ˆ rt0,8q Ñ Rm that results in a
solution x : rt0,8q Ñ Rn, which achieves an ε-optimal
timed behavior that eventually satisfies ϕ safely. l

The next sections describe our two-layered solution to
Problem 1. We first synthesize a high-level timed path over

Π that satisfies ϕ, by neglecting the unknown dynamics (2).
Then, we design a novel learning-based control algorithm
that learns how to execute safe timed transitions over Π
based on data obtained online from the current trajectory,
which leads to the eventual safe satisfaction of ϕ.

IV. HIGH-LEVEL PLAN GENERATION

The first ingredient of the proposed solution is the deriva-
tion of a high-level plan that satisfies the given formula ϕ.
To this end, we abstract the motion of the system as a finite
weighted transition system [1]

T :“ pΠ,Π0,ÝÑ,AP,L, γq (5)

where Π is the discretized state space, Π0 Ď Π is the initial
region, computed as Π0 :“ πk0 , k0 :“ arg minkPKt}xpt0q´
ck}u, ÝÑĎ ΠˆΠ is a transition relation, AP and L are the
set of atomic propositions and labeling function, respectively,
defined in the previous section, and γ :ÝÑÑ Rą0 is a map
that assigns a positive weight to each transition. For now we
assume that the system can execute the transitions among the
regions in Π within the time interval dictated by γ; the latter
can be chosen according to several criteria, such as input
capabilities of the system, Euclidean distance among points
of interest, etc1. In the next section we will consider the
control design for the execution of these timed transitions.

Given the transition system T and the formula ϕ, we can
apply standard formal verification methodologies in order
to compute a timed path over Π that satisfies ϕ. The most
common practice to achieve this is the following: Firstly, ϕ
is algorithmically translated to a Timed Büchi Automaton
(TBA) AB , a system consisting of a discrete set of states
associated with AP , whose accepting runs satisfy ϕ [1].
Secondly, we compute the product between the two discrete
systems rT :“ T bAB ; Finally, rT is viewed as a graph and
standard graph-based algorithms are used to derive a timed
path that satisfies ϕ. This path has the prefix-suffix form

p “ pπk0 , t0q . . . pπkµ´1 , tkµ´1q

„

pπkµ , tkµ1 q . . . pπkµ`ν , tkµ2 q

ω

,

where µ1 :“ µ ` ιν, µ2 :“ µ ` pι ` 1qν, for positive µ,
ν, where the superscript ω denotes infinite repetition and
ι “ 0, 1, . . . denotes the repetition index. The execution of p
produces a trajectory xptq, t ě t0, with timed behavior bpt0q
that satisfies ϕ, i.e., bσpt0q |ù ϕ (see Definition 6). One can
also obtain a timed path p satisfying ϕ using optimization
methodologies. In particular, it has been shown that the
satisfaction of a timed temporal formula can be formulated
as a Mixed Integer Linear Programming (MILP) problem [4],
where binary variables are introduced to represent the several
atomic propositions and the time constraints involved in ϕ.

After obtaining the timed path p, we design in the next
section a data-based learning control protocol that learns over
time how to successfully execute the timed transitions in
p while avoiding the unsafe zones, leading to the eventual
satisfaction of ϕ, as per Def. 6.

1One can also consider online reconfiguration algorithms that give an
optimal time duration based on exerted control effort [11].



V. OPTIMAL TRANSITION

This section describes the data-based optimal control de-
sign for the optimal timed transition among two regions πk,
and π`, which is defined as follows.

Definition 9. Assume that xptkq P πk, for a tk P Rě0.
Then, the system performs an optimal timed transition to π`,
` P Kztku, denoted by πk ÝÑ π`, if it applies a time-varying
feedback control law u : Rn ˆ rtk, t`s Ñ Rm such that, for
some δ P Rą0, the solution of the closed loop system (2)
satisfies the following:
1) xptq P π` for all t P rtk ` δ, t`q,
2) xptq P Fz

Ť

mPKzt`u πm for all t P rtk, t`s,
3) upxptq, tq “ arg J‹i , where J‹i “

minαPAptk,t`q Jpe`ptkq, tk, t`, αq.
The timed transition is ε-optimal, if 3) is replaced by
}Jpe`ptkq, tk, t`, upxptq, tqq ´ J

‹
i } ď ε. l

A. Optimal Control with Soft Constrains

Evidently, it is not necessary that a control law u that
minimizes (4) can always achieve the timed behavior de-
scribed in Problem 1. Hence, the minimization of (4) has
to be subject to some hard constraints imposing the desired
timed behavior, or the desired behavior can be incorporated
as a soft constraint in the cost (4). To achieve the latter, let
us consider two regions of interest πk, π` corresponding to
two subsequent time instances tk and t`, with k, ` P K.
Then, we redefine the performance criterion (4) into:

J`pe`ptkq, tk, uq:“

ż t`

tk

´

γrpe`pτq, upe`pτqqq

` Lk,`pe`pτqq
¯

dτ ` φpe`pt`qq, (6)

subject to: 9e` “ F`pe`q `G`pe`qu, (7)

where we also drop the final time t` argument for brevity. In
(6), φ : Rn Ñ Rě0 is a positive-definite term that penalizes
the deviation of the terminal state e`pt`q from the point
of interest c`. In addition, Lk,` : Rn Ñ Rě0 is another
penalty term satisfying Lk,`p0q “ 0 and designed so that
the system, under the controller that minimizes (6), avoids
all unsafe zones O and regions πi, i P Kzt`u. A possible
implementation of Lk,` is given in the Appendix. Finally,
γ ą 0 dictates a trade-off between a) ensuring avoidance
of the unsafe zones and the regions πi, i P Kzt`u and
satisfaction of the terminal region specification; b) achieving
good performance according to the metric rp¨, ¨q.

Following [3], it can be shown that an infinitesimal
expression for a continuously differentiable value function
V u` :“ J`p¨, ¨, uq, which is equivalent to (6), is given by

LEpV u` , uq “ ∇tV u` pe`, tq `∇`V u` pe`, tqTpF`pe`q
`G`pe`quq ` γrpe`, uq ` Lk,`pe`q “ 0, (8)

which is a partial differential equation. If we let tk “ t`,
then owing to (6) the boundary condition of (8) is

V u` pe`pt`q, t`q “ φpept`qq. (9)

Define the optimal value function as V ‹` pe`, tq “

minu J`pe`, t, uq, for all e` P Rn, t P rtk, t`s. If V ‹` is
continuously differentiable, by following [3] we can derive
the corresponding minimizing controller u‹` as:

u‹`pe`, tq “ ´
1

2γ
R´1G`pe`q

T∇e`V ‹` pe`, tq. (10)

Combining (10) with LEpV ‹` , u
‹
`q “ 0, we obtain the

Hamilton-Jacobi-Bellman (HJB) equation:

∇tV ‹` pe`, tq ` γQpe`q ` Lk,`pe`q `∇e`V ‹` pe`, tq
T
F`pe`q

´
1

4γ
∇e`V ‹` pe`, tq

T
G`pe`qR

´1G`pe`q
T∇e`V ‹` pe`, tq “ 0,

V ‹` pe`, t`q “ φpe`q. (11)

Equation (11) needs to be solved in order to compute (10).
The following theorem shows that if γ is picked suffi-

ciently small and a controllability condition holds, then the
optimal policy u‹` can achieve an optimal timed transition.

Theorem 1. Assume that there exists a control law uc` :
Rn ˆ rtk, t`s such that the closed-loop system e`ptq under
u “ uc` satisfies: a) e`pt`q “ 0; b) Lk,`pe`ptqq “ 0, for
all t P rtk, t`s. Then, there exists γ‹ ą 0, such that if
γ ă γ‹, the closed-loop system e`ptq under u “ u‹` executes
an optimal timed transition, according to Def. 9.

Proof. Denote by ec` the trajectories of e` under u “ uc`, and
by e‹` the trajectories of e` under u “ u‹` . By definition,
it holds that Lk,`pec`ptqq “ 0 for all t P rtk, t`s, and
φpec`pt`qq “ 0. Hence,

J`pe`ptkq, tk, u
c
`q “

ż t`

tk

γrpec`pτq, u
c
`pe

c
`pτqqdτ. (12)

By optimality, it follows that

0 ď J`pe`ptkq, tk, u
‹
`q ď J`pe`ptkq, tk, u

c
`q. (13)

Due to (12), limγÑ0` J`pe`ptkq, tk, u
c
`q “ 0. As a result,

it follows from (13) that limγÑ0` J`pe`ptkq, tk, u
‹
`q “ 0,

hence also limγÑ0` Lk,`pe
‹
`ptqq “ 0 for all t P rtk, t`s,

and limγÑ0` φpe
‹
`pt`qq “ 0. Hence, for all ε‹ ą 0 there

exists γ‹ ą 0, such that if γ ă γ‹, then Lk,`pe
‹
`ptqq ă ε‹

for all t P rtk, t`s and φpe‹`pt`qq ă ε‹. The result follows by
the design properties of Lk,` and φ.

In what follows, we drop the subscript ` for ease of
exposition.

B. Policy Iteration

Equation (11), which has to be solved in order to obtain
the optimal controller (10), is highly nonlinear. Therefore,
its analytic solution is hard to obtain, and we have to resort
to approximate solution methods. To do so, we will require
a few definitions and assumptions. First, for the cost (6) to
be properly defined and for the corresponding value function
to be continuously differentiable, we only consider control
laws that are admissible, as per the following definition.

Definition 10. A control law u : Rn ˆ rtk, t`s Ñ Rm is
admissible with respect to the cost (6), denoted by u P U , if



‚ u is continuous over Rnˆ rtk, t`s with up0, tq “ 0 for
all t P rtk, t`s; and

‚ the origin of system (7) is uniformly Lyapunov stable
under u, the trajectories of (7) are bounded for all t P
rtk, t`s, and the cost (6) is finite for all e`, tk. l

Next, let P` denote the set of continuously differentiable
functions from Rnˆrtk, t`s to R. For any function V P P`,
assume that V p¨, t̄q is positive-definite for all t̄ P rtk, t`s. We
need the following assumption for the optimal value function,
which is standard in the literature [16], [18].

Assumption 2. The optimal value function V ‹, which solves
the HJB equation (11), belongs to P`, i.e., V ‹ P P`. l

Next, we present the Policy Iteration (PI) algorithm for
solving the finite-horizon, time-varying HJB equation.

Policy Iteration
Let u0 P U . Then, for all i P N, perform the iteration:

1) Evaluate the value function V ui by solving (8):

∇tV uipe, tq `∇eV uipe, tqT pF peq `Gpequiq
` γrpe, uiq ` Lpeq “ 0, @t P rtk, t`s, (14)

with V uipept`q, t`q “ φpept`qq.
2) Choose the next control law ui`1 as

ui`1pe, tq “ ´
1

2γ
R´1GpeqT∇eV uipe, tq. (15)

The following lemma is crucial to establishing convergence
of the PI algorithm.

Lemma 1. Consider the sequence of control laws tuiuiPN
and continuously differentiable value functions tV uiuiPN
generated by the PI algorithm through equations (14)-(15).
Let ui be admissible, for some i P N. Then:

1) ui`1 is admissible.
2) V ‹pe, tqďV ui`1pe, tqďV uipe, tq, @pe, tqPRnˆrtk, t`s.

Proof. For the first part, notice that G is continuous by
assumption, and ∇eV ui is also continuous since V ui is
assumed to be continuously differentiable. Therefore, ui`1
is continuous. In addition, owing to the admissibility of ui,
it holds that V uip0, tq “ 0, for all t P rtk, t`s. Hence,
since V ui is non-negative, it follows that ∇eV up0, tq “ 0
because V ui attains a minimum at p0, tq, which yields
ui`1p0, tq “ 0, for all t P rtk, t`s. Next, over the trajectories
of (3) and under the control law u “ ui`1, one has

9V ui “ ∇tV
ui ` p∇eV

u
i q

T
pF `Guiq ` p∇eV

u
i q

TGpui`1 ´ uiq

“ ´γQpeq ´ γSpuiq ´ Lpeq ´ 2γuT
i`1Rpui`1 ´ uiq

“ ´γQpeq´Lpeq´γSpui`1q ´ γSpui`1 ´ uiq ď 0, (16)

where we used (14) and (15). Moreover, for any pe, tq P Rnˆ
rtk, t`s it holds that V uipe, tq ě V ‹pe, tq. Since V ‹ P P`,
for any fixed t̄ P rtk, t`s there exists a class K8 function at̄1
so that at̄1p‖e‖q ď V ‹pe, t̄q. Hence we deduce the existence
of a class K8 function a1 such that V ‹pe, tq ě a1p‖e‖q :“
mintat̄1p‖e‖q, t̄ P rtk, t`su. Combining this result with (16)
we obtain a1p‖e‖q ď V ‹pe, tq ď V uipe, tq ď V uipek, tkq,
hence ‖e‖ ď a´1

1 pV uipek, tkqq, proving boundedness of the
system’s trajectories as well as the finiteness of (6). Finally,

it can be seen that the function W peq :“ maxtV uipe, t̄q, t̄ P
rtk, t`su satisfies W p0q “ 0 owing to F p0q “ 0, Lp0q “ 0
and up0, tq “ 0 for all t P rtk, t`s, and W peq ą 0 for any
x ‰ 0 owing to the positivity of the running and the terminal
cost in (6), and V uipe, tq ď W peq for all t P rtk, t`s.
Hence, it follows from [24] that the origin of (7) is uniformly
Lyapunov stable under the control ui`1.

For item 2q, integration of (16) over t P rtk, t`s yields:

V uipept`q, t`q ´ V
uipek, tkq “ ´

ż t`

tk

´

γQpeq

` γSpui`1q ` Lpeq
¯

dτ ´
ż t`

tk

γSpui`1 ´ uiqdτ. (17)

Owing to (9), we have V uipept`q, t`q “ V ui`1pept`q, t`q “
φpept`qq. Therefore, (17) is equivalent to:

V uipek, tkq “ V ui`1pek, tkq `

ż t`

tk

γSpui`1 ´ uiqdτ

Hence, V ui`1pe, tq ď V uipe, tq, for all pe, tq P Rnˆrtk, t`s,
while the inequality V ‹pe, tq ď V uipe, tq holds by optimal-
ity.

Theorem 2. Let u0 P U . Then, the PI algorithm described
through equations (14)-(15) guarantees that lim

iÑ8
V ui “ V ‹

and lim
iÑ8

ui “ u‹. The convergence is uniform on any
compact subset of Rn ˆ rtk, t`s.

Proof. Given the monotonicity results of Lemma 1, the proof
follows similar steps with [25] and is thus omitted.

C. Approximate Solution to the Time-Varying HJB Equation

The PI algorithm requires knowledge of the system’s
dynamics functions F, G. Towards implementing a model-
free version of PI, we rewrite the system error dynamics as

9e “ F peq `Gpequipe, tq `Gpeqvipe, tq, t ě 0, (18)

where vi “ u´ui, i P N, and ui is as defined in (15). Taking
the total time derivative of the value function V ui , i P N,
along the trajectories of (18), and using (14)-(15), we obtain

9V ui“∇tV
ui`p∇eV

uiq
T
pF peq `Gpequipe, tq `Gpeqvipe, tqq

“ ´ γQpeq ´ γSpuq ´ Lpeq ´ 2γui`1pe, tq
TRvipe, tq. (19)

Integrating (19) over any time interval rt, t`T s Ď rtk, t`s,
with T ą 0 and for all t P rtk, tl ´ T s, we derive

V uipept` T q, t` T q ´ V uipeptq, tq “ ´

ż t`T

t

´

γQpeq

`Lpeq`γSpuipe, τqq ` 2γui`1pe, τq
TRvipe, τq

¯

dτ, (20)

V uipept`q, t`q “ φpept`qq. (21)

Notice that (20)-(21) is a model-free version of (14), as it is
independent of the functions F, G. However, owing to the
infinite dimensionality of this equation, we need to resort
to approximation theory in order to solve it with respect
to ui`1 and V ui . Particularly, we can use the Weierstrass
approximation theorem [3] and deduce that V ui , ui can be



uniformly approximated on a compact set Ωˆrtk, t`s “: D,
with Ω Ă Rn. Then, we can express V ui , ui`1, @i P N, as

V uipe, tq “ pwvi q
Tψvpe, tq ` φpeq ` εvi pe, tq, (22a)

ui`1pe, tq “ pw
u
i q

Tψupe, tq ` εui pe, tq, (22b)

where wvi P RNv , wui P RNuˆm are weights, ψv : Rn ˆ
rtk, t`s Ñ RNv , ψu : Rn ˆ rtk, t`s Ñ RNu are basis
functions and εvi : Rn ˆ rtk, t`s Ñ R, εui : Rn ˆ rtk, t`s Ñ
Rm are the approximation errors. The approximation errors
εvi , εui converge to zero, uniformly on D, as Nv, Nu Ñ8.

As wvi and wui in (22) are unknown, we construct a critic
and an actor neural network to approximate V ui , ui`1 as

V̂ uipe, tq :“ pŵvi q
Tψvpe, tq ` φpeq, (23a)

ûi`1pe, tq :“ pŵui q
Tψupe, tq, (23b)

where ŵvi P RNv , ŵui P RNuˆm are the critic and the actor
weights respectively, and i P N. Notice that a bias term has
been introduced for the approximation of the value function
in (22)-(23). Its purpose is to impose the boundary condition
(21) to hold irrespectively of how the critic weights ŵui are
chosen, as long as the basis functions are appropriate.

Corollary 1. Let ψvp0, tq “ 0 for all t P rtk, t`s, and
ψvpe, t`q “ 0 for all e P Rn. Then, for all i P N, it holds
that: V̂ uipe, t`q “ φpeq, for all e P Rn, and V̂ uip0, tq “ 0,
for all t P rtk, t`s.

Proof. The proof follows by direct substitution in (23).

Consider now a number of time instances τj , j P

t0, . . . , Nu “: N such that tk “ τ0 ă τ1 ă . . . ă τN “ t`.
Using the approximation (23), the left hand side of (20) for
t “ τj and t` T “ τj`1, j P N ztNu, is approximated as:

V̂ uipepτj`1q, τj`1q´V̂
uipepτjq, τjq “φpepτj`1qq ´ φpepτjqq

` pŵvi q
Tpψvpepτj`1q, τj`1q ´ ψ

vpepτjq, τjqq. (24)

In addition, the term 2γui`1pe, τq
TRvipe, τq at the right hand

side of (20) can be approximated using the actor as:

2γûi`1pe, τq
TRv̂ipe, τq “ 2γψupe, τqTŵui Rv̂ipe, τq

“ 2γ
´

`

v̂ipe, τq
TR

˘

b ψupe, τqT
¯

vecpŵui q
(25)

where v̂i “ u ´ ûi. Hence, the residual error created by
approximating equation (20) through (24)-(25) is

ej,i:“V̂
uipepτj`1q, τj`1q´V̂

uipepτjq, τjq`

ż τj`1

τj

´

γQpeq

`Lpeq`γSpûipe, τqq`2γûi`1pe, τq
TRv̂ipe, τq

¯

dτ,

which can be written as:

ej,i “ Θj,iŴi `Ψj,i, (26)

where Θj,i :“ rΘv
j,i Θu

j,is, Ŵi :“ rpŵvi q
T vecpŵui q

TsT, and

Θv
j,i :“

´

ψvpepτj`1q, τj`1q ´ ψ
vpepτjq, τjq

¯T

,

Θu
j,i :“

ż τj`1

τj

2γ
´

`

v̂ipe, τq
TR

˘

b ψupe, τqT
¯

dτ,

Algorithm 1 Model-Free PI
1: Employ an arbitrary behavioral policy ub to the system

(3), and collect input-state data online.
2: Let u0 P U be admissible, select ε ą 0 and set i “ 0.
3: repeat
4: Solve for ŵvi and ŵui from equation (27) and i “ i`1.
5: until

∥∥ŵvi ´ ŵvi´1

∥∥ ă ε
6: Switch from ub to the learnt control policy ûi.

Ψj :“ φpepτj`1qq ´ φpepτjqq

`

ż τj`1

τj

´

γQpeq ` Lpeq ` γSpûipe, τqq
¯

dτ.

If enough data is obtained along the system’s trajectories, we
can find Ŵi by least squares to minimize the error (26). To
that end, we impose a standard assumption [17], [18].

Assumption 3. There exist δ ą 0 and l0 P N , so that for
all l ě l0 it holds that

řl
j“0 ΘT

j,iΘj,i ą lδINv`mNu . l

Given Assumption 3, the least squares solution to (26) is:

Ŵi “ ´

´

l
ÿ

j“0

ΘT
j,iΘj,i

¯´1´ l
ÿ

j“0

ΘT
j,iΨj,i

¯

. (27)

As a result, we can obtain the model-free version of PI, as
shown in Algorithm 1. Its convergence is shown next.

Theorem 3. Let Assumption 3 hold. Then, for all ε ą 0 there
exist constants Nm

v , N
m
u , i

‹ P N, such that if Nv ě Nm
v

and Nu ě Nm
u , then for all pe, tq P D, i ě i‹, it holds that∥∥∥V̂ uipe, tq ´ V ‹pe, tq∥∥∥ ď ε, ‖ûi`1pe, tq ´ u

‹pe, tq‖ ď ε.

Proof. For i P N, let Ṽ ui be the value function of ûi, where
û0 “ u0, so that LEpṼ ui , ûiq “ 0, Ṽ uip0, tq “ 0, for all
t P rtk, t`s, and Ṽ uipe, t`q “ φpeq, for all e P Ω. Let also
ũi`1pe, tq “ ´

1
2γR

´1GpeqT∇eṼ uipe, tq, @pe, tq P D. Then,
using the integral form of expression for value functions (20)
over the trajectories of (3), it follows for all j P N that

Ṽ uipepτj`1q, τj`1q ´ Ṽ
uipepτjq, τjq “ ´

ż τj`1

τj

´

γQpeq

`Lpeq`γSpuipe, τqq ` 2γũT
i`1pe, τqRv̂ipe, τq

¯

dτ (28)

The value function Ṽ ui and the controller ũi`1 can be
uniformly approximated on D. Hence, there exist w̃vi P RNv ,
w̃ui P RNuˆm such that Ṽ uipe, tq “ pw̃vi q

Tψvpe, tq `
φpeq ` ε̃vi pe, tq and ûi`1pe, tq “ pŵui q

Tψupe, tq ` ε̃ui pe, tq.
The approximation errors ε̃vi : Rn ˆ rtk, t`s Ñ R, ε̃ui :
Rnˆrtk, t`s Ñ Rm vanish uniformly on D as Nv, Nu Ñ8.
Substituting these expressions in (28), we have:

0 “ Θj,iW̃i `Ψj,i ` Ej,i, @j P N , i P N, (29)

where W̃i“rw̃
vT
i vecpw̃ui q

TsT and Ej,i“ε̃vi pepτj`1q, τj`1q´

ε̃vi pepτjq, τjq`
şτj`1

τj
2γε̃ui pe, τq

TRv̂ipe, τqdτ . Deducting (29)
from (26) yields ej,i “ Θj,iW̄i ´ Ej,i, where W̄i “ Ŵi ´

W̃i. Due to Assumption 3, the least squares estimate Ŵi



from equation (27) is well-defined and bounded. As a result,
the least squares algorithm yields

řl
j“0 e

2
j,i ď

řl
j“0E

2
j,i. In

addition, since
řl
j“0 W̄

T
i ΘT

j,iΘj,iW̄i “
řl
j“0pej,i ´ Ej,iq

2,
using the condition of Assumption 3 we derive

∥∥W̄i

∥∥2
ď

4
δ max0ďjďlE

2
j,i. Due to its dependence on ε̃vi , ε̃

u
i , it follows

that as Nv, Nu Ñ 8, E2
j,i converges uniformly to zero on

D for all i P N, j P N , hence W̄i also converges uniformly
to zero on D . Thus, for all ε ą 0 there exist N‹v , N

‹
u ą 0,

such that if Nv ě N‹v , Nu ě N‹u then @pe, tq P D it holds

|V̂ uipe, tq ´ Ṽ uipe, tq| “ |pŵvi ´ w̃
v
i q||ψ

v
i pe, tq| (30)

` |ε̃vi pe, tq| ď
ε

2
`
ε

2
“ ε,

‖ûipe, tq ´ ũipe, tq‖ “ |ŵui ´ w̃ui ||ψui pe, tq| (31)

` |ε̃ui pe, tq| ď
ε

2
`
ε

2
“ ε.

Finally, we use an induction to derive the final result.
1) For i “ 0, we have Ṽ u0 “ V u0 and ũ1 “

u1. Hence, due to the uniform convergence (30)-(31),
it follows that limNv,NuÑ8 V̂

u0pe, tq “ V u0pe, tq and
limNv,NuÑ8 û1pe, tq “ u1pe, tq, uniformly on D.

2) Suppose that limNv,NuÑ8 V̂
ui´1pe, tq “ V ui´1pe, tq

and limNv,NuÑ8 ûipe, tq “ uipe, tq, uniformly on D, for
some i P N. Then, exploiting (20)-(21), we have
ˇ

ˇ

ˇ
Ṽ uipept`q, t`q´Ṽ

uipeptq, tq ´ pV uipept`q, t`q

´V uipeptq, tqq
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
V uipeptq, tq ´ Ṽ uipeptq, tq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ż t`

t

γ
´

Spuipe, τqq ` 2uT
i`1pe, τqRvipe, τq

¯

dτ

´

ż t`

t

γ
´

Spûipe, τqq ` 2ũT
i`1pe, τqRv̂ipe, τq

¯

dτ
ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ż t`

t

γ
´

Spuipe, τqq ´ Spûipe, τqq
¯

dτ
ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż t`

t

2γ
´

pui`1pe, τq ´ ũi`1pe, τqq
TRv̂ipe, τq

¯

dτ
ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż t`

t

´

2γuT
i`1pe, τqRpuipe, τq ´ ûipe, τqq

¯

dτ
ˇ

ˇ

ˇ

ˇ

(32)

However, due to the inductive assumptions we know that

lim
Nu,NvÑ8

ż t`

t

γ
´

Spuipe, τqq ´ Spûipe, τqq
¯

dτ “ 0,

lim
Nu,NvÑ8

ż t`

t

´

2γuT
i`1pe, τqRpuipe, τq ´ ûipe, τqq

¯

dτ“0,

uniformly on D. In addition, due to Assumption 3, it holds
that limNu,NvÑ8 ũi`1pe, tq “ ui`1pe, tq. Therefore, due
to the three limits, (32) yields limNu,NvÑ8 Ṽ

uipe, tq “
V uipe, tq. Hence, since |V uipe, tq´V̂ uipe, tq| ď |V uipe, tq´
Ṽ uipe, tq|` |Ṽ uipe, tq´ V̂ uipe, tq|, we can use the inductive
assumption to conclude that, @ε ą 0, there exist N‹‹v , N‹‹u ą

0 such that if Nv ě N‹‹v , Nu ě N‹‹u then @pe, tq P D:

|V uipe, tq ´ V̂ uipe, tq| ď ε, (33)

which concludes the induction. The result follows from (33)
and Theorem 2, by using the triangular inequality.
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Fig. 1. Evolution of the Frobenius norms of the actor and the critic
weights, as derived by Alg. 1.
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Fig. 2. Evolution of q after employing the policy given by Alg. 1.

Remark 1. Due to Theorems 1 and 3, if Nv, Nu are large
enough and γ is small, the closed-loop system eventually
guarantees an ε-optimal safe timed transition between πk and
π` as per Def. 9. Since the aforementioned results apply for
the transition among any pair of regions, we conclude that
the closed-loop system eventually satisfies ϕ safely. l

VI. SIMULATIONS

We consider a two-link manipulator [26], Mpqq:q `
Vmpq, 9qq 9q ` Fd 9q ` Fsp 9qq “ u, where q “ rq1 q2s

T

and 9q “ r 9q1 9q2s
T are the angular positions (in rad) and

the angular velocities (in rad/s), respectively. The matri-
ces Mpqq P R2ˆ2 and Vmpq, 9qq P R2ˆ2 are the inertia
and the centripetal–Coriolis matrices, while Fd 9q and Fsp 9qq
model the dynamic and static friction, respectively [26].
We consider three regions of interest Π “ tπ1, . . . , π3u

centered at c1 “ r´0.2,´0.2, 0, 0sT, c2 “ r0.5,´0.4, 0, 0sT,
c3 “ r0, 0.2, 0, 0sT, and a joint-state obstacle centered at
o4 “ r0.2,´0.46sT, all with radius 0.05. Further, we consider
AP:“t‘1’, ‘2’, ‘3’u and Lpπiq“t‘i’u, i P t1, . . . , 3u.

We impose a timed temporal logic task dictated by the
formula ϕ “ l♦r0,5s‘i’, i P t1, 2, 3u, implying periodic
visit to regions π1, π2, π3 every 5 seconds; we also require
avoidance of the obstacle, for which we compute L using
o4. By setting γp¨q “ 5 for all transitions in Π ˆ Π
in (5), and following the methodology of Section IV, we



obtain the repetitive timed path p “
“

pπ1, 5k ` 5qpπ2, 5k `

10qpπ3, 5k ` 15q
‰ω

for k P t0, 1, . . . , u. We perform Alg.
1 by employing a sinusoidal behavioral policy ub for 150
seconds, and then executing the model-free PI by solving
Eq. (27) iteratively. The evolution of the critic-actor weight
norms during the execution of Alg. 1 are illustrated in
Fig. 1, showing their convergence. After the passage of the
150 seconds, the policy derived by Alg. 1 substitutes the
behavioral policy, and the resulting closed-loop trajectories
for t ě 150 [sec] can be seen in Fig. 2. It can be verified
that the closed-loop system executes successfully the timed
path, leading to the eventual satisfaction of ϕ. For all three
repetitive optimal control problems, we chose R“0.5I2,
φpeq“Qpeq“eT pdiagr20 20 10 10sq e, and γ“0.1.

VII. CONCLUSION

We develop a two-layered algorithm for the planning and
control of unknown systems with timed temporal logic tasks.
We design a novel data-driven control protocol that learns
how to execute optimal timed transition between regions of
the state-space, which guarantees the eventual satisfaction of
the task. Future efforts will be devoted towards addressing
continuous-time temporal tasks under the same framework.
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APPENDIX

Design of the penalty term Lk,`

Let k, ` P K with k ‰ `. We first unify the notation
for unsafe zones and regions for simplicity. Let rΠ :“
trπ1, . . . , rπK , rπK`1, . . . , rπK`Kou, rK :“ t1, . . . ,K ` Kou,
and rπi :“ B̄prci, rρiq, with rci “ ci, rρi “ ρi, for i P K, and
rci “ coi´K , rρi “ ρoi´K , for i P tK ` 1, . . . ,K `Kou.

Select ρ̄ such that }rci ´ rcj} ě rρi ` rρj ` ρ̄, for all
i, j P rKztk, `u, with i ‰ j1. Note that such a ρ̄ exists,
since the regions in Π Y O are pairwise disjoint. Let now
Li : r´rρ2

i ,8q Ñ Rě0 be twice differentiable non-increasing
functions satisfying Lipxq “ L̄ for all x P r´rρ2

i , 0s for some
L̄ ą 0, and Lipxq “ 0, for all x ě ρ̄2 and all i P rKztk, `u.
Then it can be proved that Lip}x ´ rci}

2 ´ rρ2
i q ‰ 0 for

some i P rKztk, `u implies Ljp}x ´ rcj}
2 ´ rρ2

j q “ 0 for all
j P rKzti, k, `u. Indeed, Lip}x ´ rci}

2 ´ rρ2
i q ‰ 0 implies

that }x ´ rci}
2 ´ rρ2

i ă ρ̄2, i.e., }x ´ rci} ď ρ̄ ` rρi ă
}rci ´ rcj} for all j P rKzti, k, `u. Therefore, }x ´ rcj} ě
}rci´ rcj}´ }x´ rci} ą rρi` ρ̄, implying }x´ rcj}

2 ą rρ2
j ` ρ̄

2

and consequently, Ljp}x ´ rcj}
2 ´ rρ2

j q “ 0. Moreover, it
holds that }rc` ´ rci} ě ρ` ` ρi ` ρ̄ which implies that
}rc`´rci}

2 ě rρ2
i ` rρ2

`` ρ̄
2, for all i P Kztk, `u. Consequently,

}rc`´rci}
2´ rρ2

i ą ρ̄2, which leads to Lip}rc`´rci}
2´ rρ2

i q “ 0
for all i P rKztk, `u. Finally, the function Lk,` : Rn Ñ Rě0

is defined as Lk,`pe`q :“
ř

iP rKztk,`u Lip}e``rc`´rci}
2´ rρ2

i q.
One concludes from above that Lk,`p0q “ 0.


