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Abstract— In this paper, we propose a novel safe, passive,
and robust control law for mechanical systems. The pro-
posed approach addresses safety from a physical human-robot
interaction perspective, where a robot must not only stay
inside a pre-defined region, but respect velocity constraints and
ensure passivity with respect to external perturbations that
may arise from a human or the environment. The proposed
control is written in closed-form, behaves well even during
singular configurations, and allows any nominal control law to
be applied inside the operating region as long as the safety
requirements (e.g., velocity) are adhered to. The proposed
method is implemented on a 6-DOF robot to demonstrate its
effectiveness during a physical human-robot interaction task.

I. INTRODUCTION

Much of today’s robotics research aims to place humans
in the vicinity of, and in contact with, robots for cooperative
or co-existing tasks [1], [2]. This cooperative behaviour
exploits the abilities of the human and robot to synergistically
complete a task. One obvious requirement in such a physical
human-robot interaction (pHRI) setting is to ensure safety.

Safety in the context of pHRI has different definitions [3].
Many methods share the philosophy that “passivity implies
safety” [4]–[6]. Passivity is a desirable property because it
is necessary to ensure a stable interaction with any unknown
environment [7], [8]. However, passivity alone may not
be “safe” according to industry standards where machines
must satisfy velocity/power/force constraints and stay within
an operating region [9]. Even methods that focus on ISO
(International Organization for Standardization) standards or
passivity may succumb to “ill-posedness”, i.e., they may fail
under singular/non-full rank Jacobians [4], [5], [10]. Control
laws should be robust, i.e., provide asymptotic stability
guarantees [6] and be well-defined in the robot workspace
to ensure safety. For a full survey of safe pHRI see [3], [6].

To address safety, we focus on the concept of “novel,
robust, and generalizable safety methods” and compliance
of the robot to human actions [3]. We aim to augment
existing work by designing a control law with respect to
a safe operating region in which a human and robot may
be in close proximity or in contact. In this region, the robot
must obey strict velocity constraints to minimize injury [9].
For generality, we allow any existing pHRI controller [3],
referred to as the “nominal” controller, to be implemented
inside the safe operating region, while respecting the velocity
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constraints. Thus despite any dangerous behaviour of the
nominal control law, the system will remain inside the safe
operating region and satisfy velocity constraints. Finally, in
the event that a human or environment pushes the robot
outside of the safe operating region, the control law will
apply a passive restoring force to return the robot to the safe
operating region. Our aim is to design a control law to realize
this generalized, robust, and passive concept of safety.

To address this, we consider existing “safety-critical” con-
trollers [11]–[15]. Safety-critical control prioritizes safety,
while attempting to implement a nominal control. Those
methods are based on control barrier functions, which are
shown to be more general, rigorously proven methods com-
pared to artificial potential fields, which are common in
existing pHRI techniques [3], [16]. Although many safety-
critical controllers exist, they do not satisfy the concept of
“safety” considered here. “Reciprocal” type barriers are not
well-defined outside of the operating region and may require
exceedingly high (possibly unbounded) control actions to
ensure safety [12], [13]. Methods based on the more recent
zeroing control barrier function formulation do not ensure
passivity outside the operating region [11], [14], [15]. We
note a promising energy-based form of zeroing control
barrier functions from [15], however that method is not appli-
cable here as it is not well-defined everywhere outside of the
operating region and does not address passivity/robustness.

In this paper, we develop a novel, closed-form control
strategy to ensure safety of a mechanical system in the
presence of a human. In contrast to [15], the proposed
approach exploits the energy-based barrier function to ensure
passivity, robustness, and satisfaction of velocity constraints.
The approach also admits any nominal control law [3] in
a pre-defined subset of the operating region. Our technique
applies to joint and task space operating regions, and behaves
well despite singularities that may be encountered in the
Jacobian of the forward kinematics. The results are imple-
mented on a 6-DOF robotic arm during a pHRI task.

Notation: The inequality A ≤ B for square matrices A
and B means that B − A is positive semi-definite. The
interior and boundary of a set A are denoted Å and ∂A,
respectively. An extended class-K function α : (−b, a)→ R,
for a, b ∈ R>0, is a continuous function which is strictly
increasing and α(0) = 0. The Euclidean norm is denoted by
‖·‖2. We say a uniformly continuous function x : R≥0 → Rn
asymptotically approaches a set X ⊂ Rn, if as t → ∞, for
each ε ∈ R>0, ∃T ∈ R>0, such that dist(x(t),X ) < ε ∀t ≥
T , where dist(x,X ) := inf

z∈X
‖x− z‖.
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II. PRELIMINARIES

A. System Dynamics

Consider the following mechanical system:

q̇ = v

v̇ = M(q)−1(−C(q,v)v − Fv − g(q) + u)
(1)

where M(q) ∈ Rn×n is the inertia matrix, C(q,v) ∈ Rn×n
is the Coriolis and centrifugal matrix, g(q) ∈ Rn is the
generalized gravity on the system, F ∈ Rn×n is the positive
definite damping matrix, and u ∈ Rm is the control input for
the general joint and velocity states q,v ∈ Rn, respectively.
Let (q(t, q0),v(t,v0)) ∈ R2n be the solution of (1) starting
at t = 0, which for ease of notation is denoted by (q,v).

Here we consider the following well-known properties for
mechanical systems [17]:

Property 1. : M(q) is symmetric and positive-definite such
that there exists µ1 ∈ R>0, with µ1In×n ≤M(q), ∀q ∈ Rn.

Property 2. : xT
(
Ṁ(q)− 2C(q,v)

)
x = 0, ∀x ∈ Rn.

B. Problem Formulation

Let c : Rn → R be a continuously differentiable function
that encodes the constraint set defined as:

Q = {q ∈ Rn : c(q) ≥ 0} (2)

The constraint function c(q) represents any position-based
constraint, written in either joint-space or task-space vari-
ables. Here we address the case when Q is compact, but
can otherwise be convex or non-convex. Examples include a
region bounded away from a human, a region of non-singular
configurations, or a pre-defined workspace for the robot.

We define the velocity constraint set as:

V = {q ∈ Rn : ‖v‖22≤ v̄} (3)

for some maximum velocity bound v̄ ∈ R>0.
We now formally define the problem of designing a control

law to enforce safety for mechanical systems:

Problem 1. Given the system (1), a nominal control law
unom : Rn×Rn×R≥0 → Rn, and the compact, non-empty
constraint sets Q,V defined by (2) and (3), define a control
law u that ensures:

1) if (q(0),v(0)) ∈ Q × V , then (q(t),v(t)) remains in
Q× V for all t ≥ 0

2) u = unom in a pre-defined subset of Q× V .
3) if (q(0),v(0)) /∈ Q × V , then the system is passive

and furthermore (q(t),v(t)) asymptotically approaches
Q× V .

III. PROPOSED SOLUTION

A. Background

Here we introduce the existing work on the energy-based
barrier function from [15] using the notation here:

Definition 1 ( [15]). Given a kinematic safety constraint
expressed as a function c : Q ⊂ Rn → R, only dependent

on q, and the corresponding safe set S = {(q,v) ∈ Q×Rn :
c(q) ≥ 0}, the associated energy-based safety constraint is
defined as:

h(q,v) = khc(q)− 1

2
vTM(q)v (4)

with kh ∈ R>0. The corresponding energy-based safe set is:
SD := {(q,v) ∈ Q× Rn : h(q,v) ≥ 0}.

Forward invariance of SD is ensured in Theorem 2 of [15]
under the following control law:

u∗(q,v) = argmin
u∈Rm

‖u− unom(q,v, t)‖22

s.t. vT (kh∇c(q) + g(q)− u) ≥ −α(h(q,v))
(5)

where α is an extended class-K function.
There are a few important aspects to note regarding the

control law (5). The control formulation is dependent on
the zeroing control barrier function formulation from [11].
Under ideal conditions, this control should work well to
ensure safety. However the control law is not well defined
outside of SD. To see this, consider any point for which
h < 0 (i.e. the system is outside the set SD), where we note
that −α(h) > 0. Then the constraint in (5) can never be
satisfied for a static system, i.e., when v = 0. Furthermore
as ‖v‖→ 0, ‖u‖→ ∞ in an attempt to satisfy (5). This
ill-posedness is noted in Definition 1 of [15] where the
barrier condition does not need to hold everywhere outside
of SD. Should a perturbation arise (e.g., from human-robot
interaction) then the control law may in fact be dangerous in
the presence of a human. Here we extend the approach from
[15] to ensure safety, passivity, and robustness of mechanical
systems in the presence of humans.

B. Passivity-based Set-Invariance Control for Mechanical
Systems

In this section, we address safety, robustness, and passivity
of the mechanical system with respect to a safe operating
set. The idea here is to exploit properties of mechanical
systems, namely the skew-symmetric Property 2 to ensure
safety and passivity. Recall the function (4). We will refer
to this function as the “energy-based barrier function.” We
similarly define the “safe set” as:

C = {(q,v) ∈ Rn × Rn : h(q,v) ≥ 0} (6)

Our first task to comply with standard safety specifications
is to satisfy velocity constraints, i.e., v ∈ V . To do so,
first we inspect the energy-based barrier function (4). The
velocity term in h acts to moderate the speed at which
the system approaches the boundary of Q. The velocity is
moderated by the inertia matrix, which intuitively means
that for systems with large inertia, the system will quickly
approach the boundary of the safe set C (i.e. h = 0). On
the other hand, systems with low inertia can approach the
boundary at higher speeds with milder consequences as they
can be slowed down more easily.
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We can moderate the speed of the system in C by
tuning kh. The reason for this is that h ≥ 0 implies that
1
2v

TM(q)v ≤ khc(q). For a compact Q, it is straightfor-
ward to see that h(q,v) ≥ 0 ensures bounded velocities in
C. In the following Lemma we show that for certain kh, if
the state (q,v) remains in C, then the state also remains in
the constraint sets Q and V:

Lemma 1. Consider the system (1) with constraint sets (2)
and (3). If Q is compact, then the set C is also compact.
If additionally kh ≤

µ1v̄

2c̄
for c̄ = maxq∈Q c(q), then C ⊂

Q× V .

Proof. Consider C. For h(q,v) ≥ 0 it follows that
1
2v

TM(q)v ≤ khc(q). Since M(q) is positive-definite and
c(q) is bounded in Q, it follows that vTM(q)v is bounded
and thus C is compact.

Now we show that if (q,v) ∈ C, then q ∈ Q. We note
that since M(q) is positive-definite vTM(q)v ≥ 0. Now for
(q,v) ∈ C, h ≥ 0 implies that khc(q) ≥ vTM(q)v ≥ 0,
and thus q ∈ Q.

Finally, by Property 1 and the fact that 1
2v

TM(q)v ≤
khc(q) ≤ khc̄ for (q,v) ∈ C, it follows that µ1

2 ‖v‖
2
2≤

1
2v

TM(q)v ≤ khc̄. Solving for v yields: ‖v‖22≤ 2khc̄
µ1

, and
substitution of kh ≤ µ1v̄

2c̄ yields ‖v‖22≤ v̄. Thus, if (q,v) ∈
C, then v ∈ V . Since for any (q,v) ∈ C, (q,v) ∈ Q× V , it
follows that C ⊂ Q× V .

Lemma 1 ensures that h, is properly defined such that the
task of ensuring safety i.e. (q,v) ∈ Q × V , boils down to
ensuring C can be rendered forward invariant.

To show forward invariance of C, we depart from the
“zeroing control barrier function” framework from [11], [15].
Instead, we exploit the fundamentals of set invariance control
(see Brezis’ theorem [18]), which later allows us to ensure
not only passivity, but also robustness of the safe set.

Brezis’ theorem states that to ensure forward invariance of
a set, the vector field of the dynamical system at the boundary
of the set must be inside the tangent cone of the set. We re-
write this condition in our notation as follows:

ḣ(q,v) ≥ 0, ∀(q,v) ∈ ∂C (7)

We note that for the above condition to hold, we require that
the closed-loop dynamics are locally Lipschitz in an open set
D containing C. Our next task is thus to construct a locally
Lipschitz u such that (1) under u satisfies (7). To do so, we
continue by differentiating h which yields:

ḣ = −vTM v̇ − 1

2
vT Ṁv + kh∇c(q)Tv

= −vT (−Cv − Fv − g + u)− 1

2
vT Ṁv + kh∇c(q)Tv

= vT (kh∇c(q) + g − u+ Fv)

Note that Property 2 i.e. vT ( 1
2Ṁ − C)v = 0, is used in

the above sequence of equations. Furthermore, since F is
positive definite, it follows that:

ḣ ≥ vT (kh∇c(q) + g − u) (8)

Next, we define the point-wise set Ku(q, v) for which any
u(q,v) ∈ Ku(q,v) will ensure forward invariance of C:

Ku(q,v) = {u ∈ Rn : vT
(
kh∇c(q) + g(q)− u

)
≥ 0}

(9)

We are now ready to guarantee forward invariance of C:

Theorem 1. Suppose Q defined by (2) is compact for a
continuously differentiable function c : Rn → R. Let D ⊂
Rn × Rn be any bounded, open set containing C such that
C ⊂ D for C defined by (6) and h defined by (4). If ∇c(q)
is locally Lipschitz for all (q,v) ∈ D, then there always
exists a locally Lipschitz u ∈ Ku(q,v) for all (q,v) ∈ D.
Furthermore, for any u that is locally Lipschitz on D and
satisfies: u ∈ Ku(q,v) for all (q,v) ∈ ∂C, if q(0),v(0)) ∈
C, then (1) under u ensures (q(t),v(t)) ∈ C for all t ≥ 0.

Proof. Differentiation of h(q,v) yields (8). It is clear that the
choice of u = g+kh∇c(q) is locally Lipschitz and always a
member of the set Ku(q,v). Furthermore, u is well-defined
for all (q,v) ∈ D.

For any u ∈ Ku(q,v) locally Lipschitz on D, it follows
that the closed-loop system (1) under this u is locally
Lipschitz for all (q,v) ∈ D and also ḣ ≥ 0 for any
(q,v) ∈ ∂C. Since q(0),v(0) ∈ C, the unique, uniformly
continuous solution (q(t),v(t)) exists for t ∈ [0, T ), for
some T ∈ R>0 via Theorem 3.1 of [19], and so Brezis’
theorem ensures that (q(t),v(t)) ∈ C for t ∈ [0, T ) [18].

Now since C is compact, the state (q,v) will never leave
D for which local Lipschitz properties of the closed-loop
system hold. Thus we can repeat the previous analysis ad
infinitum and extend T → ∞, and so (q(t),v(t)) ∈ C for
all t ≥ 0.

We note that Theorem 1 requires local Lipschitz continuity
of∇c. In practice, this is not restrictive as in many cases c(q)
is a twice-continuously differentiable function and so ∇c is
locally Lipschitz. A common example of c(q) satisfying this
local Lipschitz condition is the spherical/ellipsoidal operating
region (see Section IV).

With the analysis herein, we can take the results of
Theorem 1 one step further by ensuring robustness and then
passivity of the system outside of C. We list these results in
order of increasing conditions required on u. First we state
robustness results:

Theorem 2. Suppose the conditions of Theorem 1 hold, and
for all (q,v) ∈ D\C, u ∈ Ku(q,v) and u 6= g(q). Then for
all (q,v) ∈ D\C, (q(t),v(t)) asymptotically approaches C.

Proof. From Theorem 1, it follows that C is forward invariant
and furthermore (q(t),v(t)) is forward complete in D. Con-
sider the following continuously differentiable Lyapunov-like
function:

V (q,v) =


−h(q,v), if h(q,v) ≤ −1

h(q,v)3 + 2h(q,v)2, if − 1 ≤ h(q,v) ≤ 0

0, if h(q,v) ≥ 0
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We differentiate V with respect to the three cases as
follows. First, for h ≤ −1 and from the definition of Ku:
V̇ = −ḣ = −vTFv − vT (kh∇c(q) + g − u) ≤ 0. Next,
when h ∈ [−1, 0], V̇ = (3h2 + 4h)ḣ. Since for h ∈ [−1, 0],
3h2+4h ≤ 0 and ḣ ≥ 0 from u ∈ Ku, it follows that V̇ ≤ 0.
Finally for h ≥ 0, i.e. in C, V̇ = 0. Thus by construction,
V̇ ≤ 0 in D \ C and V̇ = 0 in C. Thus V̇ is negative semi-
definite and V is decreasing or possibly constant in D \ C.

Also, we claim that in D \ C (i.e when h < 0), V̇ =
0 if and only if v = 0. To see this, we note that when
h ≤ −1, v = 0 implies V̇ = 0. Now if V̇ = 0, then
−vTFv − vT (kh∇c(q) + g − u) = 0. Since u ∈ Ku, then
both terms of V̇ are non-positive. Thus for V̇ = 0, then
v = 0 must hold since F is positive-definite. Similarly when
h ∈ [−1, 0), V̇ = (3h2 + 4h)ḣ for which 3h2 + 4h < 0.
Thus using the same argument for when h ≤ −1, we see
that V̇ = 0 if and only if v = 0 for h ∈ [−1, 0), and the
claim holds for h < 0 i.e. in D \ C. Thus it follows that the
set A = {(q,v ∈ D \ C : V̇ = 0} is equivalent to the set
B = {(q,v) ∈ D \ C : ‖v‖= 0}.

Next we show that no solution of (1) can stay identically
in the set A. We prove this by contradiction. Since the set A
is equivalent to B, we suppose there is a stationary state, i.e.,
v ≡ 0 for (q,v) ∈ D\C. Since v ≡ 0, v̇ = 0 and substitution
into (1) yields: 0 = M−1(u − g) = u − g =⇒ u = g.
However, by assumption u 6= g. Thus a contradiction and
so no solution can stay identically in A.

Finally, since C is forward invariant from Theorem 1 and
the solution (q(t),v(t)) is bounded via Lemma 1, there
exists a non-empty, largest invariant set M ⊂ C via Lemma
4.1 of [19]. Now since no solution can stay in A, then
the largest invariant set contained in D, is M ⊂ C. From
Theorem 4.4 of [19], this implies that for any (q(t),v(t)) ∈
D \ C, (q(t),v(t)) asymptotically approaches M⊂ C. Thus
the solution asymptotically approaches C.

An immediate result of Theorem 2 is that the system is
robust to perturbations either from the environment or from
model uncertainty. To incorporate model uncertainties into
the safety-critical control, we further shrink the set C using
a robustness margin that is dependent on the upper bound
of the perturbation. We refer to [20] for further reference on
how this can be done.

To state passivity results, we consider the following system
dynamics with an exogenous input to the system, µ ∈ Rn,
which can represent a disturbance from the human or the
environment:

q̇ = v

v̇ = M(q)−1(−C(q,v)v − Fv − g(q) + u+ µ)
(10)

Corollary 1. Suppose the conditions of Theorem 1 hold for
the system (10) for any µ ∈ Rn. If u = g(q) + kh∇c(q) in
D \ C̊, then the system is passive with respect to µ in D \ C̊.
Furthermore, if ∇c(q) 6= 0 in D \ C and µ ≡ 0, then also
(q(t),v(t)) asymptotically approaches C in D \ C.

Proof. Consider the storage function S(q,v) = −h(q,v),
and note that S is non-negative in D \ C̊. Differentiation of

S yields: Ṡ ≤ −vT (kh∇c(q) + g − u − µ). Substitution
of u = g(q) + kh∇c(q) yields: Ṡ ≤ vTµ. We consider µ
as the input and y = v the output of the system (10). It
follows that the system is passive (see Definition 3.1.4 of
[7]) in D \ C̊.

Furthermore, if ∇c(q) 6= 0 then clearly u 6= g(q) in
D \ C. So if additionally µ ≡ 0, we recover the result from
Theorem 2. Note that the condition that ∇c(q) 6= 0 in D\C
also ensures zero-state observability in D \ C.

In Corollary 1, the condition ∇c 6= 0 in D \ C is required
for robustness to hold, although passivity will hold regardless
if ∇c = 0 or not. In many practical cases, e.g., ellipsoidal
operating regions defined in joint space, ∇c = 0 only occurs
inside Q and so robustness is preserved. In non-convex sets,
possibly including task-space constraints, this may not hold
and may need to be checked a priori (see Section IV).

C. Control Design

Theorems 1, 2, and Corollary 1 highlight key requirements
that any control law should satisfy to ensure forward invari-
ance, robustness, and passivity of the mechanical system, i.e.,
safety. We proceed by defining a safety-critical control law,
u, that satisfies these requirements, while also admitting an
existing nominal control law unom : Rn×Rn×R≥0 → Rn
to be applied inside C. We define this control as follows:

u =
(
1− φε(h)

) (
g(q) + kh∇c(q)

)
+ φε(h)unom(q,v, t)

(11)
where φε : R→ [0, 1] is defined by:

φε(h) =


1, if h > ε

κ(h), if h ∈ [0, ε]

0, if h < 0

(12)

and κ : R → [0, 1] is any locally Lipschitz continuous
function that satisfies κ(0) = 0 and κ(ε) = 1, for some ε ∈
R>0. The design parameters κ and ε tune how “aggressive”
the system behaves to ensure safety.

The role of φε is to define how the control law (11)
transitions between unom and a safe control law that satisfies
Theorems 1, 2 and Corollary 1. This is less conservative than
the original methods from [11], [15] because we only enforce
ḣ ≥ 0 for h ≤ 0. This is done via φε(h). In [11], [15], the
zeroing barrier function formulation requires ḣ ≥ −α(h) for
all h, which restricts what control can be implemented in
D. Furthermore, the proposed control is well-defined in D,
whereas the control (5) is not (see Section III-A), and so
cannot provide any guarantees of robustness or passivity. To
see this, we step through each region of D. First, in the region
of C for which h ≥ ε, φε = 1 so that u = unom. Thus the
designer knows a priori when unom will be implemented,
and we define this set as:

Cε := {(q,v) ∈ Rn × Rn : h(q,v) ≥ ε} ⊂ C (13)

This design ensures that the original task, whether it be
teleoperation with a human-in-the-loop, a learning-based
task, or a stabilizing controller, will always be implemented
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to ensure performance is unchanged in Cε. The term ε is
a tuning parameter that can be adjusted by the designer. In
theory, ε can be arbitrarily small, however this would result
in a quick transition between unom and g + kh∇c, which
may cause issues in implementation with respect to noise
and low sampling rates.

Next, in the region between C and Cε, φε transitions
between unom and the safe, passive control: u = g+kh∇c.
This transition is defined by κ, which is also freely chosen
by the designer so long as it is locally Lipschitz and ensures
continuity of (11). Finally, at the boundary of C, where
h = 0, and for all states outside of C, u = g + kh∇c. From
Theorem 1, we know that this choice of control is always
in Ku so that forward invariance of C is guaranteed. From
Corollary 1, this control ensures passivity outside of C, and
if in addition ∇c 6= 0 outside of C, then the control also
ensures robustness in the form of asymptotic stability to C.

We state the formal guarantees of safety, passivity, and
robustness of the proposed control in the following theorem:

Theorem 3. Suppose Q defined by (2) is compact for a
continuously differentiable function c : Rn → R. Let D ⊂
Rn be any bounded, open set containing C such that C ⊂ D
for C defined by (6) and h defined by (4). If ∇c(q) and
unom(q,v, t) are locally Lipschitz for all (q,v) ∈ D, t ≥ 0,
the system (1) under the control (11) ensures:

1) u = unom in Cε
2) if (q(0),v(0)) ∈ C, then (q(t),v(t)) remains in C for

all t ≥ 0
3) the system is passive in D \ C̊
4) if (q(0),v(0)) ∈ D \ C and ∇c(q) 6= 0 in D \ C,

(q(t),v(t)) asymptotically approaches C.

Proof. Follows from Theorems 1, 2, and Corollary 1.

Theorem 3 ensures the proposed control is well-posed
in that it always exists to ensure safety. Furthermore, since
the control is in closed-form, continuous, and defined on a
bounded set, it is also bounded. This means the proposed
controller can be designed to also satisfy input constraints.
One way of doing this is by applying a saturation function
on unom and restricting the maximum allowable unom with
respect to the maximum values of g and ∇c to satisfy input
constraints. This will be a focus of future work.

IV. HUMAN-ROBOT INTERACTION-BASED
EXPERIMENTAL RESULTS

This section is devoted to the experimental verification
of the proposed framework on the 6-DOF Hebi robotic
manipulator. We define the safety region as a region where
the manipulator can safely operate without harming the
humans around it, via a task-space constraint. Then we
consider two scenarios. Firstly, we design the nominal input
unom to track a time-varying trajectory that violates this
region. We show that by implementing the proposed control
with this nominal control via (11) that the systems stays
within the operating region. Secondly, we implement the

Fig. 1: Experimental setup with a human interacting with the Hebi
robot.

proposed control as the human interacts with the manipulator.
We show that the manipulator is compliantly attempting to
stay within the operating region despite disturbances from the
human. The commands are sent to the robotic manipulator
via a ROS node over Ethernet network at a frequency of
500 Hz. The control algorithms are implemented in C++
environment in a laptop computer system equipped with 15.3
GB RAM and 12-core i7-8750H CPU at 2.2GHz.

The safe set is designed as follows. Let the position of
the manipulator end-effector (here we consider the position
of the motor) be given by the forward kinematics x = f(q),
where f : Rn → R3. The linear Jacobian is J(q) = ∂f

∂q ,
such that ẋ = J(q)v. The safe set is defined via the
ellipsoidal constraint c(q) = 1−(x(q)−x0)>P (x(q)−x0),
where x0 = [0.43,−0.12, 0.12]> represents the center of the
ellipsoid, and P = diag{[1.78, 1.78, 4.95]}, which defines
the lengths of the semi-axes as 0.75m (in x, y) and 0.45m
(in z). The gradient ∇c(q) in (11) takes the form ∇c(q) =
−2J(q)>P (x(q) − x0). For the following demonstrations
we use κ(h) = − 2

ε3h
3 + 3

ε2h
2, and ε = 0.1 in (12).

Here we make a few key observations of the controller for
this task-space operating region. First, the control law (11)
is in closed-form and thus can always be defined. It is not
a solution to an optimization problem which may have no
solution or may fail to find a solution in real-time. Second,
we see the influence of the Jacobian in the gradient ∇c(q).
Unlike many existing methods that require the inversion of
J(q) [3], the proposed control can be implemented despite
any singularities encountered in the workspace. We see this
in the extreme case when ∇c(q) = 0. Despite this, Theorem
3 still ensures forward invariance of C and even in the
presence of perturbations, the system is still passive in D\C̊.
The only, minor, impact of a singularity is that we lose
asymptotic stability in regions outside the operating region
where J(q)>P (x(q)− x0) = 0.

A. Safe Implementation of a Nominal Control Law

We first show how the proposed control behaves when
a nominal input unom attempts to violate the operating
region. In particular, we design a standard inverse dynamics
controller to track a given reference trajectory. The top plot of
Fig. 2 shows that the trajectory associated with the nominal
control violates the safe region defined by c(q) and h(q,v).
Next, we place a human in the vicinity of the robot, outside
of the pre-defined operating region, and we implement the
proposed control law (11) for kh = 0.25. The results seen
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Fig. 2: The evolution of c(q), h(q,v) when u = unom (top) and
the barrier control scheme (11) (bottom), where vertical dashed
lines signify the time instants where h(q,v) = ε = 0.1.

Fig. 3: The evolution of the control inputs for the barrier control
scheme (11), where vertical dashed lines signify the time instants
where h(q,v) = ε = 0.1.

in the bottom plot of Fig. 2 show that both h and c remain
non-negative throughout the entire trajectory. We do note
that effects of (unmodeled) noise and sampling can be seen
in the brief instance near t = 45 seconds at which point h is
negative. However the robustness of the control law handles
the perturbation by pushing the system back into the set C
as expected. Also, Fig. 3 shows that when h ≥ ε (regions
between dashed lines), u = unom as dictated by the control
design. In the accompanying video file [21], we see that
these results correlate with the robot never leaving the safe
operating region to ensure safety of the human.

B. Passivity in Physical Human-Robot Contact

We now show how the proposed scheme behaves when the
robotic manipulator is in contact with a human. Here we set
the nominal control as a gravity compensator, unom = g. The
human attempts to violate the set C both by pushing the robot

Fig. 4: The evolution of c(q), h(q,v) (top) along with the inputs
u (bottom) for human-robot contact experiment.

outside the safe region Q as well as moving the end-effector
at excessive speeds. The results of applying the proposed
control law (11) are show in Fig. 4 and are depicted in the
accompanying video file [21]. Within the first 70 seconds,
the human pushes the robot outside of the operating region.
This is seen as both c and h become negative at which point
the safe control law (i.e. u = g + kh∇c ) passively pushes
the system back into the operating region. At about t =
55 seconds, the human pushes the robot into and beyond a
singular configuration. Despite the proximity to singularity,
the control is still well-defined (see the bottom plot of Fig.
4), and the robot is still able to return to the safe set. After
70 seconds, the human attempts to push the system to large
velocities, while remaining inside the operating region. This
is seen as c remains positive while h becomes negative. Here
the control acts to resist the excessive speed and dampen
out the humans actions. This demonstration shows that the
proposed method “behaves well” in the sense that it is well-
defined, passive, and robust to (human) perturbations.

V. CONCLUSION

In this paper, we developed a safe, passive, and robust
control law for mechanical systems. The proposed control is
used to ensure forward invariance of a specified operating
region and ensures velocity requirements are always re-
spected in the operating region. Furthermore, the control law
allows any existing, nominal control law to be implemented
in the operating region as long as the safety requirements
are adhered to. Finally, the control is well-defined in the
robot workspace and ensures robustness and passivity of the
system outside the operating region. The results presented
include formal guarantees of safety and a demonstration of
the proposed method for a task-space based operating region
on a 6-DOF robot. Future work will consider extensions to
multi-robot and human interactions.
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