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Prescribed Performance Control

for Signal Temporal Logic Specifications

Lars Lindemann, Christos K. Verginis, and Dimos V. Dimarogonas

Abstract— Motivated by the recent interest in formal
methods-based control for dynamic robots, we discuss the appli-
cability of prescribed performance control to nonlinear systems
subject to signal temporal logic specifications. Prescribed per-
formance control imposes a desired transient behavior on the
system trajectories that is leveraged to satisfy atomic signal
temporal logic specifications. A hybrid control strategy is then
used to satisfy a finite set of these atomic specifications. Simula-
tions of a multi-agent system, using consensus dynamics, show
that a wide range of specifications, i.e., formation, sequencing,
and dispersion, can be robustly satisfied.

I. INTRODUCTION

Temporal logics have lately gained much attention in

robotic applications due to the possibility of formulating

complex temporal specifications leading to formal methods-

based control strategies [1], [2]. These logics have for

instance been used in multi-agent systems to perform realistic

real-world tasks such as sequencing, coverage, surveillance,

and formation control. In this multi-agent setup, linear

temporal logic (LTL) [3], [4] and metric interval temporal

logic (MITL) [5] have been used. These approaches abstract

the physical environment, including robot dynamics, and

the temporal logic formula into a finite-state automaton

representing all possible robot motions. Search algorithms

are then used to find a formula-satisfying discrete path that

is subsequently accomplished by continuous control laws.

However, these approaches may be subject to the state-space

explosion problem [6, Section 2.3].

Robustness of temporal logic formulas was discussed in

[7] with the introduction of the robustness degree and the

robust semantics, which are an under-approximation of the

robustness degree. These notions give a measure of how

robustly a formula is satisfied, i.e., a continuous scale indi-

cating if a formula is marginally or greatly satisfied. Signal

temporal logic (STL) [8] uses quantitative time properties

and entails space robustness [9], a form of robust semantics.

Prescribed performance control (PPC) [10], [11] explicitly

takes the transient and steady-state behavior of a tracking

error into account. A user-defined performance function

prescribes a desired temporal behavior that is then achieved

by a continuous state feedback control law.
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STL was introduced in the context of monitoring [8],

[9], but not control. Control of systems subject to STL is

a difficult task due to the nonlinear, nonconvex, noncausal,

and nonsmooth semantics. Previous work on STL control

synthesis has been done in [12], [13], [14] by using model

predictive control (MPC), while [15] explicitly extends the

method derived in [13] to multi-agent systems. In this paper,

we consider a nonlinear system subject to a subset of STL.

We propose to recast this constrained control problem into a

PPC framework to satisfy atomic temporal formulas. Subse-

quently, the hybrid system framework in [16], [17] is used

to satisfy a finite set of these atomic temporal formulas. To

the best of the authors’ knowledge, the approach presented

in this paper is the first approach using a continuous state

feedback control law for STL specifications.

The remainder of this paper is organized as follows:

Section II introduces notation and preliminaries. Section III

illustrates the underlying main idea and the problem defi-

nition. Section IV presents a control law satisfying atomic

temporal formulas, while Section V considers a finite set

of these atomic temporal formulas. Section VI presents

simulations of a centralized multi-agent system subject to

different STL formulas, followed by a conclusion in Section

VII. This an extended version of the 56th IEEE Conference

on Decision and Control (2017) version.

II. NOTATION AND PRELIMINARIES

Scalars are denoted by lowercase, non-bold letters x and

column vectors are lowercase, bold letters x. The vector

0n consists of n zeros. True and false are denoted by ⊤
and ⊥ with B := {⊤,⊥}; Rn is the n-dimensional vector

space over the real numbers R. The natural, non-negative,

and positive real numbers are N, R≥0, and R>0, respectively.

A. Signals and Systems

Let x ∈ R
n, u ∈ R

m, and w ∈ W be the state, input,

and additive noise of a nonlinear system

ẋ = f(x) + g(x)u +w, (1)

where W ⊂ R
n is a bounded set and the functions f and g

satisfy Assumption 1.

Assumption 1: The functions f : Rn → R
n and g : Rn →

R
n×m are locally Lipschitz continuous, and g(x)gT (x) is

positive definite for all x ∈ R
n.

For the upcoming analysis, two basic results regarding the

existence of solutions for initial-value problems (IVP) are

needed. Assume y ∈ Ωy ⊆ R
n+1 and consider the IVP

ẏ := H(y, t) with y(0) := y0 ∈ Ωy, (2)
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where H : Ωy × R≥0 → R
n+1 and Ωy is a non-empty and

open set. A solution to this IVP is a signal y : J → Ωy with

J ⊆ R≥0 obeying (2). In this paper, we will not explicitly

distinguish between the state y and the solution y of (2).

Lemma 1: [18, Theorem 54] Consider the IVP in (2).

Assume that H : Ωy ×R≥0 → R
n+1 is: 1) locally Lipschitz

on y for each t ∈ R≥0, 2) piecewise continuous on t for

each fixed y ∈ Ωy . Then, there exists a unique and maximal

solution y : J → Ωy with J := [0, τmax) ⊆ R≥0 and

τmax ∈ R>0 ∪∞.

Lemma 2: [18, Proposition C.3.6] Assume that the as-

sumptions of Lemma 1 hold. For a maximal solution y on

J = [0, τmax) with τmax < ∞ and for any compact set

Ω′
y
⊂ Ωy , there exists t′ ∈ J such that y(t′) /∈ Ω′

y
.

B. Signal Temporal Logic (STL)

Signal temporal logic is a predicate logic based on

continuous-time signals. STL consists of predicates µ that

are obtained after evaluation of a function h : R
n → R

as µ :=

{

⊤ if h(x) ≥ 0

⊥ if h(x) < 0.
Note that x is seen here as a

state and not a signal. For instance, consider the predicate

µ := (x ≥ 1), which can be expressed by h(x) := x − 1.

Hence, h determines the truth value of µ and maps from R
n

to R, while µ maps from R
n to B. The STL syntax, given

in Backus-Naur form, is

φ ::= ⊤ | µ | ¬φ | φ1 ∧ φ2 | φ1 U[a,b] φ2 , (3)

where µ is a predicate and φ1, φ2 are STL formulas. The

temporal until-operator U[a,b] is time bounded with time

interval [a, b] where a, b ∈ R≥0 ∪ ∞ such that a ≤ b.
The semantics of STL are introduced in Definition 1 where

the satisfaction relation (x, t) |= φ denotes that the signal

x : R≥0 → R
n, possibly a solution of (1) with x0 := x(0),

satisfies φ at time t.

Definition 1: [8, Definition 1] The STL semantics are

recursively given by:

(x, t) |= µ ⇔ h(x(t)) ≥ 0

(x, t) |= ¬µ ⇔ ¬((x, t) |= µ)

(x, t) |= φ1 ∧ φ2 ⇔ (x, t) |= φ1 ∧ (x, t) |= φ2

(x, t) |= φ1 U[a,b] φ2 ⇔ ∃t1 ∈ [t+ a, t+ b] s.t. (x, t1) |= φ2

∧ ∀t2 ∈ [t, t1],(x, t2) |= φ1

The disjunction-, eventually-, and always-operator can be

derived as φ1 ∨ φ2 = ¬(¬φ1 ∧ ¬φ2), F[a,b]φ = ⊤U[a,b] φ,

and G[a,b]φ = ¬F[a,b]¬φ. Additionally, robust semantics

have been introduced in [7] as a robustness measure. Space

robustness [9] ρφ(x, t) are robust semantics for STL given

in Definition 2, for which it holds that (x, t) |= φ if

ρφ(x, t) > 0. Space robustness determines how robustly a

signal x satisfies the formula φ.

Definition 2: [9, Definition 3] The semantics of space

robustness are recursively given by:

ρµ(x, t) := h(x(t))

ρ¬φ(x, t) := −ρφ(x, t)

ρφ1∧φ2(x, t) := min
(

ρφ1(x, t), ρφ2(x, t)
)

ρφ1∨φ2(x, t) := max
(

ρφ1(x, t), ρφ2(x, t)
)

ρφ1 U[a,b] φ2(x, t) := max
t1∈[t+a,t+b]

(

min
(

ρφ2(x, t1),

min
t2∈[t,t1)

ρφ1(x, t2)
)

)

ρF[a,b]φ(x, t) := max
t1∈[t+a,t+b]

ρφ(x, t1)

ρG[a,b]φ(x, t) := min
t1∈[t+a,t+b]

ρφ(x, t1).

We abuse the notation as ρφ(x(t)) := ρφ(x, t) if t is not

explicitly contained in ρφ(x, t). For instance, ρµ(x(t)) :=
ρµ(x, t) := h(x(t)) since h(x(t)) does not contain t as

an explicit parameter. However, t is explicitly contained in

ρφ(x, t) if temporal operators (eventually, always, or until)

are used. In this paper, conjunctions are approximated by

smooth functions.

Assumption 2: The non-smooth conjunction ρφ1∧φ2(x, t)
in Definition 2 is approximated by a smooth function as

ρφ1∧φ2(x, t) ≈ − ln
(

exp(−ρφ1(x, t)) + exp(−ρφ2(x, t))
)

.

Remark 1: The aforementioned approximation is an

under-approximation of the robust semantics in Defini-

tion 2, i.e., − ln
(

exp(−ρφ1(x, t)) + exp(−ρφ2(x, t))
)

≤
min

(

ρφ1(x, t), ρφ2(x, t)
)

. This means that (x, t) |= φ1 ∧φ2
if − ln

(

exp(−ρφ1(x, t)) + exp(−ρφ2(x, t))
)

> 0.

C. Prescribed Performance Control (PPC)

Prescribed performance control (PPC) [10], [11] constrains

a generic error e : R≥0 → R
n to a funnel. For instance,

consider e(t) = x(t)−xd(t) where xd is a desired trajectory.

In order to prescribe transient and steady-state behavior to

this error, define the performance function γ in Definition 3.

Definition 3: [11] A performance function γ : R≥0 →
R>0 is a continuously differentiable, bounded, positive,

and non-increasing function. We define γ(t) := (γ0 −
γ∞) exp(−lt) + γ∞ where γ0, γ∞ ∈ R>0 with γ0 ≥ γ∞
and l ∈ R≥0.

The task is to synthesize a feedback control law such that,

given −γi(0) < ei(0) < Mγi(0), the errors ei satisfy

−γi(t) < ei(t) < Mγi(t) ∀t ∈ R≥0, ∀i ∈ {1, . . . , n} (4)

with 0 ≤ M ≤ 1 and γi as in Definition 3; γi is a design

parameter by which transient and steady-state behavior of ei
can be prescribed. Similar to M in the right inequality of (4),

another constant could be added to the left inequality, which

however will not be considered here. Note also that (4) is a

constrained control problem with n constraints subject to the

dynamics in (1). Next, define the normalized error ξi :=
ei
γi

and the transformation function S as in Definition 4.

Definition 4: A transformation function S : (−1,M) →



R is a strictly increasing function, hence injective and admit-

ting an inverse. In particular, we define S(ξ) := ln
(

− ξ+1
ξ−M

)

.

Dividing (4) by γi and applying the transformation func-

tion S results in an unconstrained control problem −∞ <
S
(

ξi(t)
)

< ∞ with the transformed error ǫi := S
(

ξi
)

. If

ǫi(t) is bounded for all t, then ei satisfies (4). This is a

consequence of the fact that S admits an inverse.

III. CASTING STL CONTROL INTO A PPC FRAMEWORK

We consider a subset of STL, which is expressive enough

to formulate many real-world specifications. Considering the

predicate µ, the syntax is

ψ ::= ⊤ | µ | ¬µ | ψ1 ∧ ψ2 (5a)

φ ::= G[a,b]ψ | F[a,b]ψ (5b)

θs1 ::=

N
∧

i=1

φi with bn ≤ an+1, ∀n ∈ {1, . . . , N − 1} (5c)

θs2 ::= F[c1,d1]

(

ψ1 ∧ F[c2,d2]

(

ψ2 ∧ F[c3,d3](. . . ∧ φN )
)

)

(5d)

θ ::= θs1 | θs2 , (5e)

where ψ1 and ψ2 are formulas of class ψ, whereas φi with

i ∈ {1, . . . , N} are formulas of class φ with time intervals

[ai, bi]. This STL subset is in positive normal form [6] and

does not use disjunction- or until-operators. We refer to ψ
as non-temporal formulas. Due to the previous discussion,

we write ρψ
(

x(t)
)

:= ρψ(x, t) and sometimes even omit

t resulting in ρψ(x). In contrast, φ and θ are referred to

as temporal formulas due to the use of the always- and

eventually-operators. We further refer to formulas (5b) by the

term atomic temporal formulas, while formulas in (5e) are

denoted as sequential formulas. Note that (5e) either consists

of (5c) or (5d).

Assumption 3: Each formula of class ψ that is contained

in (5b), (5c), and (5d) is: 1) s.t. ρψ(x) is concave and 2) well-

posed in the sense that (x, 0) |= ψ implies ‖x(0)‖ <∞.

Remark 2: Part 2) of Assumption 3 is not restrictive since

ψAss.3 := (‖x‖ < c), where c is a sufficiently large positive

constant, can be combined with the desired ψ so that ψ ∧
ψAss.3 is well-posed.

The first objective in this paper is to synthesize a con-

tinuous feedback control law u(x, t) for atomic temporal

formulas φ in (5b) such that ρφ(x, 0) > r where r ∈ R≥0

is a robustness measure and x : R≥0 → R
n is the closed-

loop solution of (1) with initial condition x0. Additionally,

we will upper bound ρφ(x, 0) < ρmax with ρmax ∈ R>0.

For φ in (5b) with the corresponding ψ, we achieve r <
ρφ(x, 0) < ρmax by prescribing a temporal behavior to

ρψ
(

x(t)
)

through the design parameters γ and ρmax as

− γ(t) + ρmax < ρψ
(

x(t)
)

< ρmax. (6)

Note the use of ρψ
(

x(t)
)

and not ρφ(x, 0) itself. The

connection between the non-temporal ρψ
(

x(t)
)

and the

temporal ρφ(x, 0) is made by the performance function γ.

t

ρ1,max

−γ1(t) + ρ1,max

ρψ1
(

x(t)
)

0 1 2 3 4 5 6 7

1

−1

(a) Funnel for φ1 = F[0,∞)ψ1 s.t. ρφ1(x, t) > r with r := 0

t

ρ2,max

−γ2(t) + ρ2,max

ρψ2
(

x(t)
)

0 1 2 3 4 5 6 7

1

−1

(b) Funnel for φ2 = G[0,∞)ψ2 s.t. ρφ2(x, t) > r with r := 0

Fig. 1: Connection between ρψ(x) and ρφ(x, t)

In fact, γ prescribes temporal behavior that, in combination

with ρψ
(

x(t)
)

, mimics ρφ(x, 0) as illustrated next.

Example 1: Fig. 1a visualizes the idea for the eventually-

operator φ1 := F[0,∞)ψ1, while Fig. 1b expresses the always-

operator φ2 := G[0,∞)ψ2. Note that these figures show the

funnel in (6), hence imposing prescribed temporal behavior

on ρψ
(

x(t)
)

. It is easy to verify that if ρψ1
(

x(t)
)

∈
(−γ1(t) + ρ1,max, ρ1,max) and ρψ2

(

x(t)
)

∈ (−γ2(t) +
ρ2,max, ρ2,max) for all t ∈ R≥0 as in Fig. 1, i.e. (6) is

satisfied, then φ1 and φ2 are satisfied. For instance, in Fig. 1a

the lower funnel −γ1(t)+ρ1,max forces ρψ1
(

x(t)
)

> r := 0
by no later than approximately 4.5 time units. Thus, the

formulas φ1 := F[0,∞)ψ1 or also φ3 := F[2,5]ψ1 are satisfied,

which means that ρφ1(x, 0) > 0 and ρφ3(x, 0) > 0.

The choice of the design parameters γ, ρmax, and r will

be discussed in Section IV. Therefore, define the global

optimum of ρψ(x) as

ρψopt := sup
x∈Rn

ρψ(x). (7)

The function ρψ(x) is continuous and concave due to

Assumption 2 and 3, which makes the calculation of ρψopt
straightforward. If ρψopt > 0, it holds that φ is feasible, i.e.,

∃x : R≥0 → R
n s.t. (x, 0) |= φ.

Assumption 4: The optimum of ρψ(x) is s.t. ρψopt > 0.

Equation (6) can now be written as

−γ(t) < ρψ
(

x(t)
)

− ρmax < 0, (8)

which resembles (4) by defining M := 0 and the one-

dimensional error

e(x) := ρψ(x)− ρmax. (9)



Furthermore, define the normalized and the transformed

error as

ξ(x, t) :=
e(x)

γ(t)
, (10)

ǫ(x, t) := S
(

ξ(x, t)
)

= ln
(

−
ξ(x, t) + 1

ξ(x, t)

)

. (11)

Hence, we can write (8) as −γ(t) < e(t) < 0, which in

turn leads to −1 < ξ(t) < 0. Applying the transformation

function S to this inequality finally results in −∞ < ǫ(t) <
∞. In order to have a feasible problem, the condition

ξ
(

x(0), 0
)

∈ Ωξ := (−1, 0) needs to hold. As a notational

rule, when talking about the solution x(t) of (1) at time t,
we use e(t), ξ(t), and ǫ(t), while we use e(x), ξ(x, t), and

ǫ(x, t) when we talk about x as a state.

The second objective in this paper is to consider formulas

θ as in (5e), called sequential formulas. The name stems

from the fact, that the atomic temporal formulas contained

in (5c) and (5d) can be processed sequentially. Therefore,

the hybrid system framework of [16] will be used. We are

now ready for the formal problem definition:

Problem 1: Consider the system given in (1) subject to

a STL formula θ as in (5e). Design a piecewise-continuous

feedback control law u(x, t) such that r < ρθ(x, 0) < ρmax.

Note that θ boils down to an atomic temporal formula

φ as in (5b) if N = 1, i.e., θ is a superset of φ. Our

problem solution consists of a three-step procedure: First,

a continuous feedback control law u(x, t) is designed in

Theorem 1 such that (6) is satisfied, which means that ρψ(x)
follows a prescribed behavior. Second, γ is designed in

Theorem 2 such that r < ρφ(x, 0) < ρmax if u(x, t) from

Theorem 1 is used. Third, Theorem 3 states a hybrid control

strategy such that r < ρθ(x, 0) < ρmax. Section IV covers

Theorem 1 and 2 and hence achieves satisfaction of atomic

temporal formulas, i.e., r < ρφ(x, 0) < ρmax, while Section

V covers Theorem 3 and leads to satisfaction of sequential

formulas, i.e., r < ρθ(x, 0) < ρmax.

IV. CONTROL LAW FOR ATOMIC TEMPORAL FORMULAS

As explained previously, in a first step we derive a control

law u(x, t) such that ρψ
(

x(t)
)

satisfies (6), while in a

second step γ is designed such that ρφ(x, 0) > r. Recall

(9), (10), and (11), then the dynamics of ǫ are given by ǫ̇ =
∂ǫ
∂ξ
ξ̇ = − 1

γξ(1+ξ) (
∂ρψ(x)
∂x

T

ẋ− ξγ̇) since ∂ǫ
∂ξ

= − 1
ξ(1+ξ) and

ξ̇ = 1
γ
(ė−ξγ̇). Note that ė = ∂e(x)

∂x

T
ẋ with

∂e(x)
∂x

= ∂ρψ(x)
∂x

.

Theorem 1: Consider the system (1) and a formula φ as in

(5b) with the corresponding ψ. If ξ
(

x0, 0
)

∈ Ωξ := (−1, 0),

ρmax ∈
(

max
(

0, ρψ(x0)
)

, ρψopt
)

, and Assumptions 1-4 are

satisfied, then the control law

u(x, t) := −ǫ(x, t)gT (x)
∂ρψ(x)

∂x
(12)

guarantees that (6) is satisfied for all t ∈ R≥0 with all closed-

loop signals being well-posed, i.e., continuous and bounded.

Proof: We proceed as follows: in the first step (Step

A), we apply Lemma 1 and show that there exists a maximal

solution ξ(t) such that ξ(t) ∈ Ωξ for all t ∈ [0, τmax) = J ⊆
R≥0. The second step (step B) consists of using Lemma 2

to show that τmax = ∞, which proves the main result.

Step A: First, define the stacked vector y :=
[

x
T ξ

]T
.

Consider the closed-loop system that is obtained by insert-

ing (12) into (1) resulting in ẋ := H1(x, ξ) = f(x) −

ln(− ξ+1
ξ

)g(x)gT (x)∂ρ
ψ(x)
∂x

+ w. We also obtain ξ̇ :=

H2(x, ξ, t) = 1
γ(t)

(

∂ρψ(x)
∂x

H1(x, ξ) − ξγ̇(t)
)

, which results

in ẏ := H(y, t) =
[

H1(x, ξ) H2(x, ξ, t)
]T

. According

to the assumptions, it holds that x0 is such that ξ(x0, 0) ∈
Ωξ = (−1, 0), which is non-empty and open. Next, define the

time-varying and non-empty set Ωx(t) := {x ∈ R
n| − 1 <

ξ(x, t) = ρψ(x)−ρmax
γ(t) < 0}, which has the property that

for t1 < t2 it is true that Ωx(t2) ⊆ Ωx(t1) since γ(t) is

non-increasing in t. Note that Ωx(t) is bounded due to As-

sumption 3. We denote Ωx0
:= Ωx(0) and remark that x0 ∈

Ωx(0). Due to [19, Proposition 1.4.4], the following holds: if

a function is continuous, then the inverse image of an open

set under this function is open. With ξ0(x) = ξ(x, 0), it

holds that the inverse image ξ0
−1(Ωξ) = Ωx0

is open. Note

therefore, that ρψ(x) is a continuously differentiable function

due to Assumption 2. Finally, define the open, bounded, and

non-empty set Ωy := Ωx0 × Ωξ , which does not depend on

t. It consequently holds that y0 =
[

x
T
0 ξ0

]T
∈ Ωy.

Next, the conditions in Lemma 1 for the IVP ẏ = H(y, t)
with y0 ∈ Ωy and H(y, t) : Ωy × R≥0 → R

n+1 need to

be checked: 1) H(y, t) is locally Lipschitz on y since f(x),
g(x), and ǫ = ln

(

− ξ+1
ξ

)

are locally Lipschitz continuous

on y for each t ∈ R≥0. This also holds for
∂ρψ(x)
∂x

due

to Assumption 2. 2) H(y, t) is continuous on t for each

fixed y ∈ Ωy due to continuity of γ(t) and γ̇(t). Finally,

Ωy is non-empty and open. Applying Lemma 1, there exists

a maximal solution with y(t) ∈ Ωy for all t ∈ [0, τmax) =
J ⊆ R≥0 and τmax > 0. Consequently, there exist ξ(t) ∈ Ωξ
and x(t) ∈ Ωx0

for all t ∈ J .

Step B: From Step A), it is known that y(t) ∈ Ωy for

all t ∈ [0, τmax) = J . Next, we show that τmax = ∞ by

contradiction of Lemma 2. Therefore, assume τmax < ∞
and consider the Lyapunov function V (ǫ) = 1

2ǫ
2. Hence, it

holds that

V̇ = ǫǫ̇ = ǫ
(

−
1

γξ(1 + ξ)

(∂ρψ(x)

∂x

T

ẋ− ξγ̇
)

)

. (13)

Inserting (1) into (13) results in

V̇ = −
ǫ

γξ(1 + ξ)

(∂ρψ(x)

∂x

T
(

f(x) + g(x)u +w
)

− ξγ̇
)

.

(14)

Define α(t) = − 1
γξ(1+ξ) which satisfies α(t) ∈ [ 4

γ0
,∞) ∈

R>0 for all t ∈ J . This follows since 4
γ0

≤ − 1
γ0ξ(1+ξ)

≤

− 1
γξ(1+ξ) ≤ − 1

γ∞ξ(1+ξ)
<∞ for ξ ∈ Ωξ. Next, (14) can be



upper bounded as

V̇ ≤ |ǫ|α
(

‖
∂ρψ(x)

∂x
‖‖f(x) +w‖+ |ξγ̇|

)

+ ǫα
∂ρψ(x)

∂x

T

g(x)u

(15)

≤ |ǫ|αk1 + ǫα
∂ρψ(x)

∂x

T

g(x)u, (16)

where the last inequality and the positive constant k1 derives

as follows: it holds that ‖f(x)‖ < ∞ and ‖∂ρ
ψ(x)
∂x

‖ < ∞
since x(t) ∈ Ωx0

for all t ∈ J and due to the extreme value

theorem and continuity of f(x) and
∂ρψ(x)
∂x

. Furthermore,

w and γ̇ are bounded. Next, insert the control law (12) into

(16), which results in

V̇ ≤ |ǫ|αk1 − ǫ2α
∂ρψ(x)

∂x

T

g(x)gT (x)
∂ρψ(x)

∂x
(17)

≤ |ǫ|α
(

k1 − |ǫ|λmin(g(x)g
T (x))‖

∂ρψ(x)

∂x
‖2
)

, (18)

where λmin(g(x)g
T (x)) > 0 is the minimum eigenvalue of

g(x)gT (x), which is positive according to Assumption 1.

It holds that ‖∂ρ
ψ(x)
∂x

‖2 ≥ k2 > 0 for a positive constant

k2 since ρψ(x) is concave as a result of Assumption 3, and

hence
∂ρψ(x)
∂x

= 0 if and only if ρψ(x) = ρψopt. However, this

case has been excluded since ρψ(x) ∈ (−γ(t)+ρmax, ρmax)
for all t ∈ J , which ensures that ρψ(x) < ρψopt due to the

assumption that ρmax ∈
(

max
(

0, ρψ(x0)
)

, ρψopt
)

. Finally,

V̇ can be upper bound as

V̇ ≤ |ǫ|α
(

k1 − |ǫ|λmin(g(x)g
T (x))k2

)

. (19)

Hence, V̇ ≤ 0 if k1
λmin(g(x)gT (x))k2

≤ |ǫ| and it can

be concluded that the transformed error |ǫ| will be up-

per bounded due to the level sets of V (ǫ) as |ǫ(t)| ≤

max
(

|ǫ(0)|, k1
λmin(g(x)gT (x))k2

)

, which leads to the conclu-

sion that ǫ(t) is upper and lower bounded by some constants

ǫu and ǫl, respectively. In other words, it holds that ǫl ≤
ǫ(t) ≤ ǫu. By using the inverse of S(·), the normalized error

ξ(t) can be bounded by −1 < ξl := − 1
exp(ǫl+1) ≤ ξ(t) ≤

ξu := − 1
exp(ǫu+1) < 0, which means that ξ(t) ∈ [ξl, ξu] =:

Ω′
ξ ⊂ Ωξ for all t ∈ J . Recall (10) and note that if ξ(t)

evolves in a compact set, then ρψ
(

x(t)
)

will evolve in a

compact set Ω′
ρ := [ρl, ρu] for some constants ρl and ρu.

Again, due to [19, Proposition 1.4.4] it holds that the inverse

image ρψ
−1

(Ω′
ρ) = {x ∈ Ωx|ρl ≤ ρψ(x) ≤ ρu} =: Ω′

x
is

closed and also bounded due to Assumption 3, which hence

excludes finite escape time of the state x. Consequently, it

can be concluded that x(t) evolves in a compact set, i.e.,

x(t) ∈ Ω′
x
⊂ Ωx0

for all t ∈ J . Define the compact set

Ω′
y
:= Ω′

x
×Ω′

ξ and notice that Ω′
y
⊂ Ωy by which it follows

that there is no t ∈ J = [0, τmax) such that y /∈ Ω′
y

. By

contradiction of Lemma 2 it follows that τmax = ∞, i.e.,

J = R≥0.

The control law u(x, t) is well-posed, i.e., continuous and

bounded, because ρψ(x) is approximated by a smooth func-

tion, while ǫ(x, t) and g(x) are locally Lipschitz continuous

on x. Due to the extreme value theorem, these functions are

bounded on x. Also, γ(t) is continuous with 0 < γ(t) <∞.

It follows that all closed-loop signals are well-posed.

The second step is to show that the control law (12) in

Theorem 1 results in r < ρφ(x, 0) < ρmax if γ is properly

designed. The variable t∗ ∈ R≥0 is s.t.

t∗ ∈

{

a if φ = G[a,b]ψ

[a, b] if φ = F[a,b]ψ,
(20)

which will enforce r < ρψ
(

x(t)
)

< ρmax for all t ≥ t∗ by

the choice of γ in the remainder. This consequently leads

to r < ρφ(x, 0) < ρmax by the choice of t∗. We select

r ∈ [0, ρmax) and define feasibility of a formula φ with

respect to r, x0, and t∗. 5.

Definition 5: A formula φ as in (5b) is feasible with

respect to r, x0, and t∗ if and only if: 1) t∗ > 0 or 2)

t∗ = 0 and ρψ(x0) > r.

For the design of γ assume that φ is feasible w.r.t. r, x0,

and t∗ and recall that γ(t) := (γ0−γ∞) exp(−lt)+γ∞. The

crucial part of Theorem 1 is the assumption that ξ(x0, 0) ∈
Ωξ. It is possible to choose γ0 such that ξ(x0, 0) ∈ Ωξ , which

is equivalent to −1 < ρψ(x0)−ρmax
γ(0) < 0. It should also hold

that −γ0+ρmax ≥ r if t∗ = 0 due to (6) and since we want

r < ρψ
(

x(t)
)

for all t ≥ t∗. This is illustrated in Fig. 1b

with t∗ = 0 (since φ2 = G[0,∞)ψ2) and r := 0 and where

it should hence hold that −γ0 + ρmax ≥ 0 is satisfied as

indicated by the dashed line. To conclude, γ0 is

γ0 ∈

{

(ρmax − ρψ(x0),∞) if t∗ > 0

(ρmax − ρψ(x0), ρmax − r] if t∗ = 0.
(21)

At t = ∞, it is required that max(−γ0 + ρmax, r) ≤
−γ∞ + ρmax < ρmax, where the left inequality enforces

that −γ + ρmax is a non-decreasing function, which in turn

leads to γ being non-increasing. The right inequality stems

from (6). Therefore, we set

γ∞ ∈
(

0,min
(

γ0, ρmax − r
)

]

. (22)

The smaller γ∞ is selected, the tighter the funnel will be

as t → ∞. For the calculation of l, three cases need to be

distinguished: 1) ρψ(x0) > r, 2) ρψ(x0) ≤ r and t∗ > 0,

and 3) ρψ(x0) ≤ r and t∗ = 0. Case 3) can be excluded

since φ is feasible w.r.t. r, x0, and t∗. Next, select l as

l ∈







R≥0 if − γ0 + ρmax ≥ r

−
ln
(

r+γ∞−ρmax
−(γ0−γ∞)

)

t∗
if − γ0 + ρmax < r, t∗ > 0,

(23)

which ensures that −γ(t∗) + ρmax ≥ r. Under (12), this

consequently leads to ρψ
(

x(t)
)

> r for all t ≥ t∗ since γ is

non-increasing.

Theorem 2: Consider the system (1) and a formula φ as

in (5b). If Assumptions 1-4 hold, r ∈ [0, ρmax), the control

law in (12) is used, and φ is feasible w.r.t. r, x0, and t∗, then

choosing γ0, γ∞, and l as in (21), (22), and (23), respectively,

ensures that 0 ≤ r < ρφ(x, 0) < ρmax, i.e., (x, 0) |= φ.



Proof: Choosing γ0 as in (21) ensures ξ(x0, 0) ∈ Ωξ,
while additionally choosing γ∞ and l as in (22) and (23)

ensures ρφ(x, 0) > r if (12) is applied. This follows since

by the above choice, we impose −γ(t∗) + ρmax = r for

case 2) while case 1) already has ρψ(x0) > r. Note for

case 2) that solving the equation −γ(t∗) + ρmax =: r for

l results in l = −
ln
(

r+γ∞−ρmax
−(γ0−γ∞)

)

t∗
. Hence, the control law

(12) enforces ρψ(x(t∗)) > r, which consequently leads to

ρφ(x, 0) > r due to the choice of t∗. It hence holds that

r < ρφ(x, 0) < ρmax.

Remark 3: The assumption of feasibility w.r.t. r, x0, and

t∗ is a necessary assumption. However, if a formula is not

feasible w.r.t r, x0, and t∗, the formula can be relaxed as

discussed in [20].

Remark 4: In combination, Theorem 1 and 2 provide a

control strategy such that (x, 0) |= φ. However, a steep

performance function γ might result in a high control effort.

Therefore, it may in practice be useful to choose t∗ as big

and l as small as possible.

V. CONTROL STRATEGY FOR SEQUENTIAL FORMULAS

In this section, we develop a hybrid control strategy for

sequential formulas θ as in (5e), which either correspond

to θs1 or θs2 as in (5c) or (5d), respectively. Note that

both of these consist of N atomic temporal formulas: θs1

entails N atomic temporal formulas φi with [ai, bi] for all

i ∈ {1, . . . , N}. Similarly, θs2 boils down to N − 1 atomic

temporal formulas φi = F[ai,bi]ψi with i ∈ {1, . . . , N − 1},

ai :=
∑i

k=1 ck, bi :=
∑i

k=1 dk, and φN . For instance,

F[c1,d1]

(

ψ1∧F[c2,d2](ψ2∧F[c3,d3]ψ3)
)

is satisfied if and only

if F[c1,d1]ψ1∧F[c1+c2,d1+d2]ψ2∧F[c1+c2+c3,d1+d2+d3]ψ3 :=
F[a1,b1]ψ1 ∧F[a2,b2]ψ2 ∧F[a3,b3]ψ3 is satisfied. To conclude,

θ consists of N atomic temporal formulas φi with i ∈
{1, . . . , N}. Each φi entails a robustness function denoted by

ρψi(x) and corresponding design parameters ti,∗, ri, ρi,max,

and γi(t) = (γi,0 − γi,∞) exp(−lit) + γi,∞ in accordance

with t∗, r, ρmax, and γ in Section IV. Each φi will be

processed one at a time. If φi has been satisfied, the next

atomic temporal formula φi+1 becomes active and a switch

takes place. Denote the time sequence of these switching

times by {∆1 := 0,∆2, . . . ,∆N} where ∆i ≤ ∆i+1. Note

that ti,∗, ri, ρi,max, γi,0, γi,∞, and li need to be calculated

during runtime at each switching time ∆i. Furthermore, set

p :=

{

1 if θ = θs1

0 if θ = θs2
and mi :=

{

1 if φi = G[ai,bi]ψi

0 if φi = F[ai,bi]ψi.
A hybrid control strategy in the framework introduced in

Definition 6 will be used to process each φi sequentially.

Definition 6: [16] A hybrid system is a tuple H :=
(C,F,D,G), where C, D, F , and G are the flow and

jump set and the possibly set-valued flow and jump map,

respectively. The discrete and continuous dynamics are
{

ż ∈ F (z) if z ∈ C

z
+ ∈ G(z) if z ∈ D.

Define pf :=
[

t∗ r ρmax γ0 γ∞ l
]T

, gathering
all parameters defining the funnel in (6), and the hybrid

state z :=
[

q x
T t ∆ p

T
f

]T
∈ {1, . . . , N + 1} ×

R
n × R

8
≥0 =: Z . Note that ∆ is the value of the latest

switching time. In adherence to the terminology in [16],
we interchangeably call switches jumps. The discrete state
q indicates which formula φq is currently active, while
q = N+1 indicates the final discrete state when θ has already
been satisfied. In the proof of Theorem 1, it was shown that
x(t) ∈ Ω′

x
for all t ∈ R≥0, where Ω′

x
is a compact set.

Let Ω′
q,x denote Ω′

x
corresponding to the formula φq . Next,

define the sets Xq := {x ∈ R
n|rq < ρψq (x) < ρq,max} and

Yq := [0, bq
p +

(
∑q
i=1 di

)1−p
− 1] × tq,∗ × rq × ρq,max ×

γq,0×γq,∞× lq. Note that p determines if [aq, bq] or [cq, dq]
is used. For all q ∈ {1, . . . , N}, set

tq,∗ ∈



















aq if p = 1, mq = 1

[aq, bq ] if p = 1, mq = 0

cq if p = 0, mq = 1

[cq , dq] if p = 0, mq = 0.

(24)

Next, define the set Dq that indicates satisfaction of φq and
leads to a jump to process φq+1. For q ∈ {1, . . . , N}, define

Dq :=

{

q × Xq × (bq
p + dq

1−p − 1− p∆)×Yq if mq = 1

q × Xq × ([aq
p + cq

1−p − 1, tq,∗]− p∆)× Yq if mq = 0,

which indicates that ρφq (x, tq) > rq if z ∈ Dq . This follows

since x ∈ Xq at t = bq
p + dq

1−p − 1 − p∆ for mq = 1
or x ∈ Xq at t ∈ ([aq

p + cq
1−p − 1, tq,∗] − p∆) for mq =

0 under the control law (12) indicates that φq is satisfied.
Note that ∆ only takes effect if p = 1 (θ = θs1 ) to ensure
that φq is satisfied within [aq, bq], while for p = 0 (θ =
θs2 ) the formula φq+1 is directly processed next when φq is
satisfied. Further define DN+1 := (N+1)×Ω′

N,x×T ×YN
for T := bN

p + (
∑N

i=1 di)
1−p − 1, which is needed for a

technical reason in the proof of Theorem 3. Similarly, define
the continuous domain Cq for q ∈ {1, . . . , N} as

Cq :=

{

q ×Ω′
q,x × [0, bq

p + dq
1−p − 1− p∆]× Yq if mq = 1

q × cl(Ω′
q,x \ X )× [0, tq,∗ − p∆]×Yq if mq = 0,

where cl(·) denotes the closure. Also define CN+1 := (N +
1)×Ω′

N,x× [0, T ]×YN . Finally, the jump and flow sets are

given by

D := ∪N+1
i=1 Di

C := ∪N+1
i=1 Ci.

The flow map is given by

F :=
[

0
(

f(x) + g(x)uq +w
)T

1 07
T

]T

with the control law in (12) as uq = −ǫqgT (x)
∂ρψq (x)
∂x

for

all q ∈ {1, . . . , N} and uN+1 = −ǫNgT (x)
∂ρψN (x)

∂x
,

where ǫq corresponds to ǫ based on φq . By
abbreviating q′ := q + 1, define ps(q) :=
[

q′ x
T 0 ∆q′ tq′,∗ rq′ ρq′,max γq′,0 γq′,∞ lq′

]T
.

Then, the jump map is given by

G :=

{

ps(q) if q /∈ {N,N + 1},z ∈ D
[

N + 1 x
T

0
T
2 pf

T
]T

if q ∈ {N,N + 1}, z ∈ D,

where we set ∆q′ := ∆ + t, accumulating the
elapsed time after jumps. Select tq′,∗ as in (24),



ρq′,max ∈
(

max(0, ρψq′ (x)), ρ
ψq′

opt

)

, and rq′ ∈ [0, ρq′,max)
as in the assumptions of Theorem 1 and 2,
respectively. The parameters γi,0, γi,∞, and li need
to be chosen as in (21), (22), and (23): γq′,0 ∈
{

(ρq′,max − ρψq′ (x),∞) if tq′,∗ − p∆q′ > 0

(ρq′,max − ρψq′ (x), ρq′,max − rq′ ] if tq′,∗ − p∆q′ = 0
,

γq′,∞ ∈
(

0,min
(

γq′,0, ρq′,max − rq′
)

]

, and

lq′ ∈



















R≥0 if − γq′,0 + ρq′,max ≥ rq′

−
ln
( r
q′

+γ
q′,∞

−ρ
q′ ,max

−(γ
q′ ,0

−γ
q′,∞

)

)

tq′,∗−p∆q′
if: • −γq′,0 + ρq′,max < rq′ ,

• tq′,∗ − p∆q′ > 0.

Note that G is hence a set-valued

map. The initial state is set to z0 :=
[

1 x0
T 0 0 t1,∗ r1 ρ1,max γ1,0 γ1,∞ l1

]T
.

Now, we are ready to state the main result of this section.

Theorem 3: Consider the system (1) and a formula θ
as in (5e). The hybrid system H = (C,F,D,G) re-

sults in r := min(r1, . . . , rN ) < ρθ(x, 0) < ρmax :=
min(ρ1,max, . . . , ρN,max), i.e., (x, 0) |= θ, if each φq in

θ is feasible w.r.t. rq , x(∆q), and tq,∗ + |p− 1|∆q.

Proof: First, note that the third case in the proof

of Theorem 2 is again excluded by the assumption of

feasibility w.r.t. rq , x(∆q), and tq,∗ + |p − 1|∆q . To show

that θ is satisfied, we need to show that eventually φN is

satisfied. Therefore, we show that the compact set A =

(N+1)×
N
⋃

i=1

Ω′
i,x×[0, T ]3×[0,maxi ri]×[0,maxi ρi,max]×

[0,maxi γi,0]× [0,maxi γi,∞]× [0,maxi li] is asymptotically

stable. A hybrid Lyapunov-function candidate is V (z) :=
(

q − (N + 1)
)2

, which is positive on (C ∪D) \ A. During

flows it is easy to see that V̇ = 0, while during jumps

V (z+)− V (z) =
(

q + 1− (N + 1)
)2

−
(

q − (N + 1)
)2

=
(

q−N
)2
−
(

q−(N+1)
)2
< 0 for q ∈ {1, . . . , N}. According

to the invariance principle in [17, Theorem 23], we now need

to show that no complete solution can stay in V (z) = µ > 0.

This is true due to the following fact: for each state q =

{1, . . . , N}, the control law uq(t) = −ǫqgT (x)
∂ρψq (x)
∂x

of

Theorem 1 is applied to the system. Furthermore, rq and

ρq,max are chosen as in Theorem 1 and 2, while γq,0, γq,∞,

and lq are chosen accordingly. This guarantees that each φq
is satisfied with ρφq (x,∆q) > rq . Hence, φq will eventually

be satisfied and lead to a jump due to the structure of the

jump set D, which decreases V (z). Note that ∆q ensures

that each formula φq in θs1 is satisfied within [aq, bq], while

each φq in θs2 is processed without the use of ∆q . Hence,

note that each solution is complete and it can be concluded

that A is asymptotically stable, which leads to the conclusion

that θ is satisfied with r := min(r1, . . . , rN ) < ρθ(x, t) <
ρmax := min(ρ1,max, . . . , ρN,max).

VI. SIMULATIONS

We consider a multi-agent system with single integrator

dynamics in R
2 and deploy the well known consensus

protocol [21] with additional free inputs. The consensus

protocol can be seen as the desire of the group to stay

close to each other. In other words, assume M agents where

each agent j ∈ {1, . . . ,M} is subject to the dynamics

ẋj = vj with xj ∈ R
2. The consensus protocol is then

used as vj = −
∑

k∈Nj

(xj − xk) + uj where Nj denotes the

neighborhood of the agent j. Using the graph Laplacian L
[21], we can express the dynamics as

ẋ(t) = −(L⊗ I2)x(t) + u(t). (25)

Comparing (25) with (1) reveals that f(x) = −(L⊗I2)x and

g(x) = IM ⊗ I2 = I2M , where IM is the M ×M identity

matrix. Note that Assumption 1 is trivially satisfied. More

specifically, assume three agents α1, α2, and α3 connected

by means of a fixed and complete graph with a graph

Laplacian L =





1 −1 0
−1 2 −1
0 −1 1



. Denote the robot position

with xj :=
[

xj,1 xj,2
]T

for j ∈ {1, 2, 3}. The initial

positions are x1(0) :=
[

1.1 3.1
]T

, x2(0) :=
[

2 0.5
]T

,

and x3(0) :=
[

7 1.5
]T

. We also have five goal positions A,

B, C, D, and E, which are located at pA :=
[

6 4
]T

, pB :=
[

1.2 9
]T

, pC :=
[

1.2 7
]T

, pD :=
[

1.2 5
]T

, and pE :=
[

8 7
]T

. We use
(

‖xj − pA‖∞ < c
)

=
(

|xj,1 − pA,1| <
c
)

∧
(

|xj,2−pA,2| < c
)

=
(

xj,1−pA,1 < c
)

∧
(

−xj,1+pA,1 <
c
)

∧
(

xj,2 − pA,2 < c
)

∧
(

− xj,2 + pA,2 < c
)

to ensure that

‖xj − pA‖∞ = max(|xj,1 − pA,1|, |xj,2 − pA,2|) < c.

The robots are subject to the following sequential tasks:

1) Robot α1 moves to A within 7 − 10 seconds. 2) Within

the next 10 − 20 seconds, α1, α2, and α3 move to B,

C, and D, respectively. 3) α1 moves to E within 5 − 15
seconds. Additionally α2 and α3 form a triangular formation.

4) α2 and α3 always keep at least a distance of 1 from α1

and disperse. More specifically, we have: θ := F[7,10](ψ1 ∧
F[10,20](ψ2 ∧F[5,15](ψ3 ∧φ4))) with ψ1 :=

(

‖x1−pA‖∞ <
0.1

)

∧ψAss.3, ψ2 :=
(

‖x1−pB‖∞ < 0.1
)

∧
(

‖x2−pC‖∞ <
0.1

)

∧
(

‖x3−pD‖∞ < 0.1
)

∧ψAss.3, ψ3 :=
(

‖x1−pE‖∞ <
0.1

)

∧
(

1 < x1,1 − x2,1 < 1.2
)

∧
(

1 < x1,1 − x3,1 <
1.2

)

∧
(

1 < x2,2 − x1,2 < 1.2
)

∧
(

1 < x1,2 − x3,2 <
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Fig. 2: Continuous trajectory for φ1, φ2, φ3, φ4
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(d) Trajectory for φ4

Fig. 3: Trajectories of the three robots.
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Fig. 4: Time evolution of error and inputs

1.2
)

∧ ψAss.3, and φ4 := G[0,12]

(

(1 < x1,1 − x2,1) ∧ (1 <
x2,2−x1,2)∧ (1 < x1,1−x3,1)∧ (1 < x1,2−x3,2)∧ψAss.3

)

with ψAss.3 := (‖x‖∞ < 100) to enforce Assumption 3.

The simulation result for all four tasks is displayed in

Fig. 2. In more detail, the trajectories for φ1 and φ2 can be

found in Fig. 3a and 3b, respectively. For φ1, the consensus



dynamics bring the agents together, while at the same time

the performance function γ1(t) forces α1 to approach and

reach A, followed by agents α2 and α3. For the second task

in Fig. 3b, each agent individually reaches its goals B, C,

and D. The third task is shown in Fig. 3c, where we see that

initially the robots gather and eventually form a triangular

formation while α1 approaches E. In Fig. 3d, dispersion

of the multi-agent system can be seen. To see that time

bounds have been respected, Fig. 4a displays the different

funnels. Fig. 4b shows that the control inputs are bounded

and piecewise-continuous. To conclude, θ is satisfied with

ρθ(x, t) > 0.05. Note that due to the precision that we chose,

e.g., 0.1 in φ1 = F[7,10]

(

‖x1 − pA‖∞ < 0.1
)

, r can not

exceed 0.1. We remark that the control law is centralized and

that simulations have been performed in real-time, which is

possible due to the easy-to-implement feedback control law.

VII. CONCLUSION

We considered nonlinear systems subject to a subset of

signal temporal logic specifications. The imposed transient

and steady-state behavior of the prescribed performance

control approach was leveraged to satisfy atomic temporal

formulas. A hybrid control strategy was then used to ensure

that a finite set of atomic temporal formulas is satisfied. A

salient feature is that the feedback control law is piecewise-

continuous and robust with respect to disturbances and the

specification, i.e., the specification is satisfied with a user-

defined robustness.

Future work will include the extension of the derived

methods to decentralized multi-agent systems with couplings

in various forms. Local and global specifications will be

subject of our work in this respect, as well as the feasibility

of these coupled specifications. Furthermore, an extension of

the expressivity, i.e., the signal temporal logic subset under

consideration, will be investigated.
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