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Abstract

Acquiring models of the environment belongs to the fundamental tasks of mobile robots.
In  the  last  few  years  several  researchers  have  focused  on  the  problem  of  3D
simultaneous localization and mapping (SLAM). The most important SLAM subtask is
the scan registration procedure, which deals with the deduction of the movement of the
robot  between consecutive  scans,  based on the shape of overlapping portions  of the
scans. An accurate pose estimate also enhances the autonomy of the robot by allowing it
to navigate to the desired goal position in the map. Different approaches for SLAM of
unknown environments have been proposed. However, most of them utilize point-based
scan  registration  using  also  odometry  information  as  initial  guess,  which  can  be
inefficient  in  terms  of  time  and  memory  and  inaccurate,  since  the  odometry
measurements  deviate  extensively,  even  over  short  distances,  especially  in  rough
environments. In this thesis, we will focus on the accurate and efficient extraction of
planar  segments  from  3D  point  clouds  and  on  pose  estimation  based  on  plane
registration techniques, since the smaller number of planes leads to greater efficiency. In
order to avoid the error of odometry information, none is used. Instead, we establish
correspondences of planes between consecutive scans. Certain uncertainty assumptions
about  the  pose  of  the  robot  are  made,  which  produce  an  uncertainty  in  the  planar
attributes that is modeled as a Gaussian distribution.  The registration problem is then
posed as an optimization, which iteratively refines the planar correspondences at each
optimization step.

Abstract

Μία από τις βασικότερες εργασίες των κινουμένων ρομπότ είναι η απόκτηση μοντέλων
του περιβάλλοντος. Τα τελευταία χρόνια η έρευνα έχει επικεντρωθεί στο πρόβλημα του
3D SLAM.  Η  σημαντικότερη  υποεργασία  του  SLAM είναι  η  διαδικασία  του
ταυτοποίησης σαρώσεων του χώρου που λαμβάνεi το ρομπότ (scans – scan registration),
που  ασχολείται  με  τον  προσδιορισμό της  κίνησης  του  ρομπότ  μεταξύ  διαδοχικών
σαρώσεων,  βασιζόμενη στο σχήμα επικαλυπτόμενων τμημάτων των σαρώσεων.  Μία
ακριβής εκτίμηση της στάσης (θέσης και προσανατολισμού) του ρομπότ ενισχύει επίσης
την αυτονομία  του  επιτρέποντάς  του  να  πλοηγηθεί  στην  επιθυμητή  θέση-στόχο  στο
χάρτη. Έχουν προταθεί διάφορες προσεγγίσεις για το SLAM άγνωστων περιβάλλοντων.
Ωστόσο,  οι  περισσότερες  από  αυτές  χρησιμοποιούν  ταυτοποίηση  σαρώσεων που
βασίζεται σε 3D σημεία και οδομετρικές μετρήσεις ως αρχική υπόθεση καθιστώντας τες
μη  αποδοτικές  σε  θέματα  υπολογιστικού  χρόνου  και  κατανάλωσης  μνήμης  και  μη
ακριβείς,  αφού οι  οδομετρικές  μετρήσεις  αποκλίνουν  εκτενώς,  ακόμη και  σε μικρές
αποστάσεις, ειδικά σε ένα τραχύ περιβάλλον. Σε αυτή την εργασία, θα επικεντρωθούμε
στην ακριβή και αποδοτική εξαγωγή επιπέδων τμημάτων από 3D pointclouds και στην
εκτίμηση της  στάσης του ρομπότ με βάση τεχνικές  ταυτοποίησης επιπέδων, αφού ο
μικρότερος αριθμός επιπέδων οδηγεί σε μεγαλύτερη αποδοτικότητα. Προς αποφυγή του
οδομετρικού  σφάλματος,  δεν  θα  χρησιμοποιηθούν  πληροφορίες  οδομετρικών
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μετρήσεων.  Αντί  αυτού,  δημιουργούμε  αντιστοιχήσεις μεταξύ  επιπέδων  διαδοχικών
σαρώσεων. Γίνονται συγκεκριμένες υποθέσεις αβεβαιότητας για τη στάση του ρομπότ,
που  παράγουν  μία  αβεβαιότητα  στα  χαρακτηριστικά  των  επιπέδων,  η  οποία
μοντελοποιείται ως μία κατανομή Gauss. Στη συνέχεια, το πρόβλημα της ταυτοποίησης
διαμορφώνεται ως μία επαναληπτική βελτιστοποίηση στις αντιστοιχήσεις των επιπέδων
σε κάθε βήμα.
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1 Introduction

The advance of technology the recent years, especially in computer science and in the
field of robotics, has increased the capabilities of robot navigation and mapping and the
motivation for it. Several approaches to the 2D SLAM problem have been proposed the
last decade and even more researchers extend their work to 3D SLAM. Navigation in
unknown  3D  environments  demands  accurate  estimation  of  the  robot’s  pose  and
mapping of  the surrounding area,  things that  cannot  be achieved by the sole  use of
odometry.  Most  algorithms  that  have  been  suggested  so  far  consider  the  use  of  3D
points. The most common among them are the Iterative closest point (ICP) and the 3D
Normal distribution transform (NDT) algorithms, introduced in [1] and [2], respectively.
However,  due  to  the  fact  that  these  algorithms  adopt  pointwise  techniques,  the
computation time and memory complexity can be very high, as the number of points
received  from the  recently  developed  sensors  is  usually  significantly  large.  For  this
reason, an extension to 3D Plane SLAM is necessary. The number of planar segments
that are extracted from point clouds is comparatively smaller than the amount of points,
since they are formulated by groups of the latter, and that makes the use of plane-based
algorithms  much  more  efficient  in  terms  of  time  and  memory.  In  addition,  planar
segments  provide  a  more  intuitive  representation  of  the  environment.  Moreover,  the
exploitation  of  odometry  measurements  for  the  3D  SLAM  problem  is  presented  in
several algorithms, in order to register pairwise scans; that is, align consecutive scans
over time, either of points or of planar segments. In [3] and [4] a lightweight orthogonal
3D  SLAM  algorithm  is  presented.  However,  their  work  does  not  apply  for  many
environments,  focusing  mostly  on  indoor  ones.  In  [5] a  plane-based  solution  is
suggested, using also unknown correspondences, i.e. similar attributes between planes of
consecutive scans. In it, the plane parameters uncertainty is also taken into account. A
very comprehensive discussion on finding correspondences between two sets of planar
or  quadratic  patches  using  attribute-graphs  is  found  in  [6].  In  [7] an  approach  is
considered utilizing correspondences without the use of odometry as an initial guess.

The accurate plane extraction can be considered as the core of the 3D Plane SLAM idea,
since  it  has  a  great  impact  on  the  result.  This  procedure  has  an  increased  level  of
difficulty  both in indoor and outdoor environments.  Especially  in the latter  case,  the
plane  parameters  estimation,  such  as  the  normal  vector  and  the  offset,  is  very
challenging, as the point clouds received by several types of sensors are noisy and the
structure of the environment can be of high complexity (e.g. complex objects such as
trees are contained). Several approaches for plane fitting algorithms have been proposed
in [8], [9] and [10]. 

The  main  goal  of  this  topic  is  the  extension  of  the  3D  NDT  algorithm  utilizing
correspondences of planar segments without the use of odometry as an initial guess to
perform scan registration. The pipeline of Fig. 1.1 summarizes the above procedure. 
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Although the plane extraction step is not the main goal of the thesis, it is crucial for the
accuracy  of  the  scan  registration  procedure.  For  that  reason,  a  new  algorithm  is
introduced. The rest of the topic is organized as follows:

Chapter 2 mainly focuses on a brief presentation of several plane extraction algorithms.
Furthermore, the basic idea of a new algorithm is featured and experimentally evaluated
in real world data sets.

Chapter  3  presents  the  most  common  point-based  3D  registration  algorithms  and
attempts  a  comparison of  them.  In  addition,  the  concept  of  3D plane  registration  is
analysed and the extension of the 3D NDT algorithm considering the use of planes and
correspondences without any odometry information is presented. 

Figure 1.1: Registration Pipeline 



2 Segmentation

Many 3D robotic applications commonly utilize the basic primitive of 3D points mostly
for the representation of the surrounding environment but for other tasks as well. Until
now points have been used in most 3D scan registration algorithms and autonomous
exploration tasks of unknown environments. However, one could say that this kind of
environmental representation is far from human intuition. Furthermore, due to the fact
that the amount of points received is usually significantly large, the computational cost
in several procedures becomes prohibitive for on-line applications. Therefore, the use of
plane polygons and rectangles is considered as a better alternative. The transition from
points  to  plane  polygons  is  of  high  significance  for  all  the  robotic  applications,
especially for 3D plane SLAM, which is the main goal of this topic. Planes offer a more
intuitive representation of the environment, clearly contain much more information than
points  do,  such  as  the  normal  vector  of  the  plane,  through  which  the  orientation
knowledge of it is obtained, contributing to the localization problem. Moreover, planes
require much less memory space than points do, since they are formed by groups of
points, a fact that makes their use more efficient. 

A variety of algorithms have been proposed the recent years  for efficient extraction of
planes from 3D point cloud received from various types of sensors, such as laser range
finders. Due to the fact that planes play a very important role in 3D scan registration, it
is  critical  that  the  results  must  strictly  correspond  and  fit  to  the  planes  of  the
environment  in  the  real  world.  The  noise  caused  by  the  sensors  makes  the  plane
extraction procedure significantly difficult, since the estimation of the plane parameters
such  as  the  normal  vector  and  the  offset  is  not  accurate.  Moreover,  an  outdoor
environment  has  more  complicated  structure  and  the  plane  fitting  process  is  more
challenging than it would be in an indoor environment. For these reasons, several types
of errors must be considered, such as the mean square error of the points that form each
plane. The prior knowledge of the sensor employed allows the modelling of the noise in
the plane extraction procedure using calibration techniques. This Chapter is organized as
follows. Section 2.1 provides some mathematical background and overview of related
work. In Section 2.2 we propose a segmentation algorithm whose main idea is based on
the octree data structure. 
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2.1 Mathematical background and related work 

2.1.1 Mathematical background

The  basic  context  behind  the  plane  fitting  procedure  is  the  estimation  of  the  plane
parameters; that is, the normal vector and the offset. The normal vector is represented by
the eigenvector that corresponds to the minimum eigenvalue of the covariance matrix C
of the  n points that form the plane.  The covariance matrix  C is  computed using the
equation: 

           (2.1)

where , a, b is the notation for {x, y, z}and  is the 3D

centroid of n points:

, n ≥ 3,  = (xi, yi , zi), i = 1,…,n     (2.2)

The minimum number of points must be 3 so that a plane can be formed uniquely in the
3D space. The offset of the plane is computed according to the formula:

      (2.3)

where  nx, ny,  nz  are  the  coordinates  of  the  normal  vector  assuming  that  the  centroid
computed satisfies the plane equation:

More detailed information about planes can be found in [8]. [11] gives information about
eigenvalues and eigenvectors and [12] about the covariance matrix computation.

2.1.2 Related work

1. PCL Region growing segmentation 

This algorithm is described in [8] and this is how it works. First of all it sorts the points
by their curvature value. This needs to be done because the region begins its growth
from the point that has the minimum curvature value. The reason for this is that the point
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with the minimum curvature is located in the flat area (growth from the flattest  area
allows to reduce the total number of segments).
So we have the sorted cloud. Until there are unlabeled points in the cloud, the algorithm
picks up the point with minimum curvature value and starts the growth of the region.
This process occurs as follows:

- The selected point is added to the set called seeds
- For every seed point the algorithm finds neighbor points

  Every  neighbor  is  tested  for  the  angle  between its  normal  and the
normal of the current seed point. If the angle is less than a threshold value
then the current point is added to the current region. 
  After  that  every  neighbor  is  tested  for  the  curvature  value.  If  the
curvature is less than a threshold value then this point is added to the
seeds. 
  Current seed is removed from the seeds

If the seed set becomes empty this means that the algorithm has grown the region and
the process is repeated from the beginning. .

2. Fast plane detection in noisy 3D range images 

The second plane  extraction  algorithm is  described in  [9] and its  implementation  is
slightly  different  than  the  one  presented  above.  Firstly  the  input  pointcloud  is
transformed to a range image to achieve the notion of vicinity. A random point p1 and its
nearest neighbor p2 from point cloud data PC are taken through the range image. This is
the initial  set  of points – region Π. Then an extension of this region by considering
points in increasing distance from set Π is done. Now suppose point p’ is such that the
distance between it and the region is less than the distance δ. Then if the mean square
error (MSE) to the optimal plane Ω of the region Π∪ p’ is less than ϵ and if the
distance between the new point and the optimal plane Ω is less than
γ, then p’ is added to the current region Π. This region is expanded until no points can
be added. Afterwards if the region size is more than θ it is added to the set of regions R,
else these points are treated as unidentified and are added to the set R’. This is repeated
until each point from PC is either in R or in R’.
The key part of this region growing algorithm is that the computation of the mean square
error is being done in an incremental way. In particular, if  C is the covariance matrix
described above and  Cij are its elements,  then each time a new point is added to the
region, the update formula for the new Cij (n + 1) is:

    (2.5)

Where  is the sum of n points in the i-th coordinate and the i-th coordinate of the

centroid of n points.
The general formula for the mean square error computation is:
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        (2.6)

where k is the number of points, pi is the 3D point, n is the plane normal vector and d is
the plane offset. Expanding this equation gives a form which is suitable for incremental
calculation:

        (2.7)

where a, b is the notation for {x, y, z}.
The mean square error and the distance between the point and the optimal plane are two
factors that enhance the performance of the algorithm, making it suitable even for noisy
pointclouds. Another advantage one could notice from the above description is that the
incremental way of calculating essential attributes makes the algorithm efficient in terms
of computational time, despite the point-based region growing procedure. 

3. Fast plane detection for SLAM from noisy range images in both structured
and unstructured environments 

Two segmentation algorithms are suggested in the particular paper, which are described
thoroughly in [10]. The first one is a slight variant of the algorithm introduced by [9] and
briefly described above. The basic differences lie in the initialization of each region and
in the computation of the mean square error each time a new point is added to a region.
Regarding the initialization part, a characterization is assigned to each point, depending
on the eigenvalue of the covariance matrix that is calculated by it and its neighbors. As
initial points to each region, those characterized as planar are chosen and expanded using
the  same  procedure  that  is  described  in  the  previous  algorithm.   The  mean  value
computation is done in a much faster way resulting in high efficiency in terms of time
and memory. In particular, a plane can be described by the equation:

          (2.8)

where n  is the normal vector of the plane, p is an arbitrary point on the plane and d is
the plane offset. Assuming that the centroid m of the points that form the plane is part of
the plane, it derives that:

         (2.9)

Hence, using (2.9), (2.6) can be rewritten as:

             (2.10)

which is
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            (2.11)

The normal  n is  the eigenvector of  C that corresponds to the minimal eigenvalue, as
mentioned above. Therefore, the MSE can be derived:

           (2.12)

where λ stands for the minimum eigenvalue of C.

The second algorithm considers a grid based growing segmentation. Initially, the same
procedure as in the above algorithm is followed. The growing procedure now is done
using planar grids instead of points. The normal vectors of these small grids that resulted
from the initialization are compared in order to check the difference in their orientation.
Moreover, the perpendicular distance of the centroid of each grid to the current plane is
checked in order to decide whether this grid should be added to the plane or not. Finally,
if two planar grids are merged, a further check on the mean square error of the resulted
plane is conducted. 

2.2 Plane extraction using the octree data structure

This algorithm was implemented for the purposes of this topic. Its main idea consists of
two parts, an initialization part and a merging one. The initialization part exploits the
advantages of the octree data structure, for which information can be gained in [13] and
[14].  This  is  done by fitting  initial  planes  in  small  neighborhoods of  points  already
stored in the octree. In the octree data structure the sense of space is conceived therefore
the notion of vicinity has direct correspondence to the physical environment. Each leaf
node of the octree corresponds to a certain volume defined by the resolution of the tree.
For example, the leaves of an octree with resolution 0.05 correspond to a cube with edge
of 0.05m. Every node other than the leaves divides the space into eight octants and its
volume equals to the sum of the volumes of its children. Utilizing these two properties, it
is  possible  to  extract  planes  locally  from  points  that  are  contained  in  small
neighborhoods. These neighborhoods are described by a certain volume which is defined
by the initialization level chosen in the tree (certain height of the tree). Moreover, the
octree data structure can perform a down sampling of points due to its resolution (e.g.,
two different points whose distance is less than the resolution will both be assigned to
the same node), resulting in higher efficiency.  In addition,  the noise that the sensors
cause can be reduced by checking the density of each volume that is used for the plane
fitting technique. Areas with small point density (determined by a threshold value) and
with large mean square error are ignored.
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The second part of the algorithm consists of merging the initial planes into bigger ones
in order for their number to be decreased and to gain a clearer and a more compact
representation of the environment. The initial planes are inserted in a 3D array structure
using their centroids to determine the position they will be assigned to. This provides an
efficient neighbor search, as nearby planes will be assigned to nearby cells of the array. 
For the neighbor planes, a test is conducted between the angle of their normal vectors,
and their  perpendicular  distance.  If  two or more planes  have similar  orientation  and
small  perpendicular  distance,  they are candidates  for merging.  After that,  three more
checks are conducted. Firstly, the mean square error of the merged plane must be under a
certain  threshold  value.  Secondly,  the  total  number  of  points  that  the  merged  plane
contains must be over a threshold value so that small planes or planes with small point
density are rejected. Finally, the maximum eigenvalue of the plane covariance matrix is
checked. This value describes the radius which forms a hypothetic  circle  around the
centroid  of  the  planar  segment  that  contains  all  of  its  points.  Hence,  it  gives  an
estimation of its size. This is described analytically in  [15]. So in order to reject small
planes, this value must overcome a certain threshold. In Fig. 2.1 a pseudocode of the
above algorithm is presented.

Figure 2.1(a): Pseudocode of the plane extraction algorithm using octree
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Figure 2.1(b): Pseudocode of the merging function 

2.2.1 Experimental Evaluation

This Section focuses on the evaluation of the suggested algorithm in real world data sets.
Specifically, three data set were tested, the Bremen city center data set1, the Freiburg
campus data set2 and an indoor environment data set3. For the first data set a noise model
was also employed to estimate the uncertainty of the points imposed by the sensor. The
octree  implementation  from [34]  was  employed.  The experiments  mentioned  in  this
section were carried out on an Intel® Core i5-2500K, 3.30 GHz processor with 16GB
memory.
Concerning the Bremen city center data set, it consists of 14 files containing pointcloud
data, with an average number of 295000 points per file. The Freiburg Campus data set
consists of 78 files containing pointcloud data, with an average number of 159000 points
per file. Finally, the indoor environment data set consists of 60 files, with an average
number of 112498 points. 
The algorithm was tested in  the first  file  of  the Bremen city  center  data  set,  which
contains 233399 points. Fig. 2.2 shows the number of initial planes, the initialization
time and the merging time for different values of the height  h of the tree at which the

1 Courtesy of Dorit Borrmann and Jan Elseberg available at the Osnabrueck robotic 3D scan repository,
http://kos.informatik.uniosnabrueck. de/3Dscans/
2 Courtesy  of  B.  Steder  and  R  Kuemmerle,  available  at  http://ais.informatik.uni-
freiburg.de/projects/datasets/octomap/
3 Courtesy  of  Martin  Magnusson,  available  at  the  Osnabrueck  robotic  3D  scan  repository,
http://kos.informatik.uni-osnabrueck.de/3Dscans/
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initial planes are constructed. It must be pointed out that  h must be a number that is
power of two. The values used for the extraction of these results are h  = 64, 128 and 256
with octree resolution r = 2cm. That is, for h = 64, we extract initial planes in cubic cells
of  size  2*64  =  128x128x128  cm3.  For  the  other  cases,  this  size  can  be  calculated
respectively. The other parameters of the algorithm (e.g., mean square error threshold
value) are chosen using the sensor features and calibration techniques. 
In Fig. 2.2 (a) and (c) we see that the number of planes and the merging time increase as
h decreases. That is an expected outcome, because the lower the value of h, the smaller
the cells in which initial planes are constructed. Hence we expect the initial planes to be
more as the same space is described by a larger number of them when the value of h is
smaller. Also, the larger the number of the initial planes, the higher the time taken to
merge them. Fig. 2.2 (b) shows that the time needed to construct the initial planes does
not change with respect to  h. This can be explained by the fact that the same octree
resolution was utilized for all three values of h so the total number of the octree nodes
that has to be traversed is almost the same.

(a) Number of Planes            (b) Initialization time (c) Merging time

Figure 2.2: (a) Number of initial planes, (b) Time to construct initial planes and (c) Time
to merge the initial planes, with respect to the height of the octree that the initialization is

conducted

Fig. 2.3 shows the segmentation procedure for the 1st scan of the Bremen city center data
set. In Fig. 2.3 (a) we see two views of the input pointcloud. Fig. 2.3 (b) and (c) show
the same views using the initial and final planes, respectively. The algorithm parameters
and runtimes are depicted in Table 2.1(a) and (b) respectively.
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Octree Resolution (m) 0.05
Initialization height h 32

Local MSE threshold(m) 8x105

Local points threshold 10
MSE threshold(m) 6x106

Angle threshold(o) 15
Perpendicular distance threshold(m) 0.1

Points threshold 80
Max eigenvalue threshold 0.25

Table 2.1 (a): Parameters of the segmentation algorithm for the 1st file of the Bremen city
center data set

Input Pointcloud points 233399
Time to insert in octree (s) 0.08

Initialization time (s) 0.11
Number of initial planes 5807

Merging time (s) 1.53
Number of resulted planes 216

Total time (s) 1.72

Table 2.1 (b): Times and number of planes for the 1st file of the Bremen city center data
set

(a): Initial pointcloud of the 1st scan of the Bremen city center data set
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(b): Planes after initialization 

(c): Final planes 

Figure 2.3: Segmentation procedure for the 1st scan of the Bremen city center data set.
(a) initial pointcloud, (b) planes after initialization, (c) final planes

Fig. 2.4 shows the segmentation procedure for the first file of the Freiburg campus data
set, which consists of approximately 176251 points. The algorithm parameters utilized
are depicted in Table 2.2(a). The runtimes and number of planes are depicted in Table
2.2(b). 

Octree Resolution (m) 0.02
Initialization height h 32

Local MSE threshold(m) 10-2

Local points threshold 5
MSE threshold(m) 7x10-2

Angle threshold(o) 15
Perpendicular distance threshold(m) 0.1

Points threshold 100
Max eigenvalue threshold 0.35

Table 2.2 (a): Parameters of the segmentation algorithm for the 1st file of the Freiburg
campus data set
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Input pointcloud points 176251
Time to insert in octree (s) 0.06

Initialization time (s) 0.09
Number of initial planes 2417

Merging time (s) 0.3
Number of resulted planes 66

Total time (s) 0.45

Table 2.2 (b): Runtimes and number of planes for the 1st file of the Freiburg campus data
set

       (a) Initial pointcloud         (b) Initial planes       (c) Merged planes

Figure 2.4: Segmentation procedure for the 1st scan of the Freiburg campus data set. (a)
initial pointcloud, (b) planes after initialization, (c) final planes

In order to get a more compact view of the Freiburg campus, the algorithm was also
tested in the first 7 files of the specific data set. Fig. 2.5 shows the results. The runtimes
and number of planes are depicted in Table 2.3. The algorithm parameters are the same
as in Table 2.2(a). 

Input pointcloud points 1141086
Time to insert in octree (s) 0.84

Initialization time (s) 0.82
Number of initial planes 9701

Merging time (s) 4.95
Number of resulted planes 319

Total time (s) 6.61

Table 2.3: Runtimes and number of planes for the first 7 files of the Freiburg campus
data set
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 (a): Initial pointcloud of the first 7 scans of the Freiburg campus data set

 (b): Planes after initialization 

 (c): Final planes 

Figure 2.5: Segmentation procedure for the first 7 scans of the Freiburg campus data set.
(a) initial pointcloud, (b) planes after initialization, (c) final planes
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Finally, the algorithm was also evaluated for the first 4 scans of the indoor dataset. Table
2.4(a) and (b) show the algorithm parameters and results respectively. Fig. 2.6 depicts
the  initial  pointcloud  (a)  and  the  final  planar  segments  (b).  We  can  see  from  the
visualization that the results are clearer and more compact. This can be explained by the
fact  that  indoor  environments  are  more  structured  and  consist  mainly  of  big  planar
segments.

Octree Resolution (m) 0.02
Initialization height h 16

Local MSE threshold(m) 8x10-3

Local points threshold 5
MSE threshold(m) 10-2

Angle threshold(o) 10
Perpendicular distance threshold(m) 0.05

Points threshold 100
Max eigenvalue threshold 0.35

Table 2.4 (a): Parameters of the segmentation algorithm for the first 4 files of the indoor
data set

Input pointcloud points 449992
Time to insert in octree (s) 0.05

Initialization time (s) 0.08
Number of initial planes 3908

Merging time (s) 0.6
Number of resulted planes 47

Total time (s) 0.73

Table 2.4: Runtimes and number of planes for the first 4 files of the indoor data set

(a) Initial pointcloud (b) Final planes

Figure 2.6: Segmentation results for the first 4 scans of the indoor data set. (a) Initial
pointcoud and (b) Final planes 
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One  could  notice  from  the  above  results  that  the  algorithm  is  suitable  for  online
applications, such as 3D SLAM and navigation procedures, as the runtimes are fairly
low. This can be attributed mainly to the octree structure, which allows for fast plane
initialization.



3 3D Scan registration

The 3D simultaneous localization and mapping, widely known as SLAM problem, has
been one of the most popular research issues in the field of robotics and particularly of
mobile robots the last  few years. The main part of the SLAM procedure is the scan
registration. That is, the procedure of aligning two consecutive scans received from a
sensor  in  order  to  achieve  the  proper  calculation  of  the  transformation  of  the  robot
between the two scans. Many approaches to the problem have been proposed so far not
only utilizing a 3D point-based representation of the environment but also a plane-based
representation. In  [16] and  [17] ICP based algorithms are presented and the 3D NDT
approach is featured in [2]. Plane-based techniques are suggested in [5] and in [18]. 

In the following subsections, the two approaches to the scan registration problem using
points and planar segments are considered. In 3.1 the most commonly used point-based
algorithms are presented and compared, the ICP and 3D NDT. Subsequently, 3.2 deals
with the advantages of 3D scan registration using planes and the concept of applying the
use  of  planes  in  the  3D  NDT  algorithm.  Moreover,  a  way  of  establishing
correspondences is suggested, as no odometry information is used. Finally, in Section
3.3 the algorithm is evaluated for the indoor and the dwelling scenario4 data sets.  

3.1 3D scan registration using points

Most 3D SLAM algorithms that have been implemented so far are based on the ability
of registering two range scans or a range to a map, using 3D points. The goal of two
range scans registration is to find the relative pose between the two positions, at which
the scans were taken. The basis of most successful algorithms is the establishment of
correspondences between the primitives of the two scans (e.g. points). Out of this, an
error can be derived and minimized. The most general approach, using points, is the ICP
algorithm introduced in  [1] and a variant  of it  introduced in  [19].  These approaches
require  an  establishment  of  explicit  correspondences  between  points  (points  that
correspond to the same physical point in the real world). Another approach is the Normal
Distribution Transform (NDT) algorithm, which was introduced for 2D SLAM in  [20]
and  an  extension  of  it  for  3D SLAM that  can  be  found in  [2] and  in  [21].  In  the
following subsection, the ICP and 3D-NDT are briefly presented, as they are considered
to be two of the most  significant  scan registration algorithms using the primitive of
points in the 3D space and a comparison is made.

4 Courtesy  of  Jacobs  University  Robotics  department,  available  at:  http://robotics.jacobs-
university.de/node/293
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3.1.1 ICP algorithm
The Iterative Closest Point (ICP) algorithm was developed by P.Besl and N.McKay [1]
and is usually used to register two consecutive clouds of points in a common coordinate
system.  The  ICP algorithm has  commonly  been  used  for  many  robotic  applications
including SLAM, as described in [22]. The basic idea here is to minimize the difference
between the points of the two sets. The procedure is done iteratively. That is, in each
step, the algorithm selects the correspondence points according to the minimum distance
and calculates the transformation (R,t) using an initial guess (odometry estimation) for
minimizing a certain heuristic mean square error function, usually 

        (3.1)

where Nm and Nd represent the number of points in the two sets and wi,j are the weights
for a point match, which are either equal to 1 when the points i and j are the closest ones
between  the  two  scans  and  0  otherwise.  According  to  the  above  equation,  the
transformation can be calculated using a variety of algorithms, as suggested in [23], [24]
and  [25].

Figure 3.1: Example of the ICP algorithm

3.1.2 3D-NDT algorithm

The  Normal  Distributions  Transform  can  be  described  as  a  method  for  compactly
representing a surface. As mentioned above, its 2D variant was introduced by Biber and
Strasser in [20] and an extension for 3D applications can be found in [21]. The transform
maps  a  point  cloud  to  a  smooth  surface  representation,  described  as  a  set  of  local
probability density functions (PDFs), each of which describes the shape of a section of
the surface. The algorithm firstly divides the occupied 3D space into a grid of cells (i.e.
cubes) and a PDF is assigned to each cell, based on the point distribution within it. An
appropriate PDF could be a normal distribution such as the following 
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        (3.2)

where D is the dimension notation and  and  denote the mean vector and covariance

matrix of the reference scan surface points within the cell where  lies, or a mixture of a

normal and a uniform distribution.

By using NDT for scan registration, the goal is to find the pose of the current scan that
maximizes the likelihood that the points of the current scan lie on the reference scan
surface. This likelihood is expressed by the function

           (3.3)

where   are the  k points from the current scan,   is a pose and   is a spatial

transformation function that moves the point by the pose . The best pose  should be

the one that maximizes the above function. Given the above parameters, the NDT score
function is 

          (3.4)

which corresponds to the likelihood that the points  lie on the surface of the reference

scan, when transformed by  

Newton’s  algorithm  can  be  employed  to  find  the  parameters   that  optimize  .

Newton’s method iteratively solves the equation   where  H and   are the

Hessian matrix and gradient vector of  . The increment   is added to the current

pose estimate in each iteration, so that  . As initial transformation for the

algorithm, the one estimated with the use of odometry is commonly used. More detailed
information about Newton’s algorithm can be found in [26] and about the maximization
of the above likelihood function in [21].

3.1.3 Comparison

The basic difference  between the NDT and ICP algorithm is  that  using the first,  no
explicit correspondences have to be found between points or features. Moreover, NDT is
done in a probabilistic manner and that makes it more efficient in “difficult” scans; that
is, scans with few prominent  geometric  features,  little  overlap,  and high noise level.
However, one could say that the complexity of the PDF and the Newton’s algorithm
computation may result in an increase in time and memory complexity. On the other
hand, most ICP algorithms employ tree data structures (usually k-d trees as in [27]) for
storing the points facilitating the establishment of the correspondences using a nearest
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neighbor search. An explicit comparison between the two algorithms was conducted in
[28].

3.2 3D plane registration

Point-based algorithms used for 3D scan registration, such as the ICP algorithm and its
variants, apart from being computationally expensive and slow for large point clouds,
also suffer from premature convergence to local minima, especially when the overlap
between scene-samples decreases.  By using more abstract primitives,  such as planes,
instead of points, complexity problems can be overcome and more efficient solutions to
the scan registration problem can be achieved. Planar segments are less in number than
points,  providing  an  advantage  in  terms  of  computational  cost  and  memory
consumption.  Furthermore,  the  plane  parameters,  such as  the  normal  vector  and the
offset provide useful information about the environment the robot moves. 

The problem of estimating the robot’s pose using planar segments can be formulated as
follows:

If the robot moves from the frame F1 to the frame F2 and observes the coordinates of the
same  physical  point  as  p1 and  p2 respectively,  these  coordinates  are  related  by  the
equation

       (3.5)

Where   and   are  the  rotation  matrix  and  translation  vector  from  F1  to  F2,

respectively. More information can be found in [29].

Now  we  wish  to  extend  this  equation  for  planes.  Let’s  assume  that  sets  of  planar
segments P1  and P2 are extracted from F1 and F2 and the planes P1,i  and P2,i correspond to
the same physical plane. Then using equation (2.8) that describes a plane, equation (3.5)
becomes

      (3.6)

         (3.7)

The problem consists of estimating  and .

The main goal of this topic is to modify the 3D NDT algorithm so that it can support the
use of planar segments in order to estimate the above rotation and translation parameters.
The  uncertainty  of  the  robot’s  pose  estimation  will  produce  an  uncertainty  in  the
attributes of the planes extracted from the reference scan. This error in the estimation of
the  robot  translation  and  rotation  is  introduced  by  either  the  error  of  odometry
measurements,  if  used,  or  by  certain  assumptions  that  can  be  made  for  the  robot
movement (e.g., distance between two consecutive scans should not be greater than 5
meters).



Conclusion and future work                                                                                                  27

(a) Plane detection in scan i       (b) Plane detection in scan i + 1

Fig. 3.2: Simplified 2D scan registration using plane uncertainty. (a) Initial pose of the
robot in frame i with two planes detected and (b) Pose of the robot in the next frame. The

ellipsoid around the robot models the uncertainty of the pose. This uncertainty implies
the uncertainty of the plane features which is modeled as a normal distribution.

The main idea of the NDT algorithm is adopted here, by assigning normal distributions
to approximate the uncertainties of the plane parameters. In particular, a 4-dimensional
multivariate  Gaussian  can  be  employed  to  describe  the  uncertainty  in  the  three
coordinates of the normal vector and the offset of the plane, which is produced from the
robot  rotation  and  translation  error,  respectively,  as  depicted  in  Fig.  3.2.  [30] gives
detailed information about multivariate normal distributions. The procedure followed for
the estimation of  R and  t is similar to the one followed in the point based 3D NDT.
Initially the planar segments P2 of the current scan are transformed back to the reference
scan using odometry information (the notation here suggests that the current scan is the
second one and the reference scan the first  one).  Then checks are held between the
transformed segments  P2

* and the reference scan segments  P1.  Particularly,  the plane
parameters of each transformed segment P2,i

* are compared to all the segments P1 of the
reference scan. The probability that two examined planes are similar (i.e. have similar
normal vectors and offset values) can be calculated utilizing the gaussian distributions
assigned to  each plane  P1.  More  explicitly,  in  an 1-dimensional  simplified  case,  the
below calculation would be conducted:

         (3.8)
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where  a can be one of the three coordinates  x, y, z  of the normal vector or the offset
value  d of  the examined  plane  P2,i

* of  the  current  scan,  μ is  the mean value  of  the
corresponding  attribute  in  the  reference  scan  and  σ the  deviation  expressing  the
uncertainty  of  the specific  plane  attribute.  The similarity  between the two examined
planes is more likely when the maximum of these probabilities is observed. The sum of

all maximum value  forms the score function

        (3.9)

which has to be maximized. This maximization can be achieved employing Newton’s
method as described for the point based 3D NDT in section 3.1, using the Hessian matrix
and the gradient vector of the score function. 

The  pseudocode  describing  the  above  idea  is  presented  in  Fig.  3.3,  presenting  the
notation first. Odometry measurements are used as an initial guess.

Pi and Pj,  j =  i  +1, denote the planes extracted from the consecutive frames  Fi and Fj,
respectively.  With  Pj

* we denote the planes extracted  at  Fj  that  are transformed with
respect to Fi.  Also, let Σp be the planar attributes uncertainty derived from the odometry
uncertainty,  p the maximum probability discussed above and  Ti   j  the transformation
matrix from Fi to Fj (that is, rotation Ri  j and translation ti  j). Finally, g and H are the
gradient and the Hessian required for Newton’s algorithm.

Figure 3.3(a): pseudocode of plane based 3D-NDT using odometry
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Figure 3.3(b): Optimization procedure of the 3D-NDT

The gradient and Hessian entries are derived as follows:

(3.10)

(3.11)

where Ji is the ith entry of the Jacobian matrix [34].

3.2.1 Correspondences

The  key  difference  between  the  algorithm  presented  above  and  the  algorithm  that
consists the main goal of this topic is the initial transformation of the planes from the
current scan to the reference one. Unlike the approach presented, there will not be used
any odometry information, since the deviation of its measurements from the real robot
movement can be significantly large. Instead, an attempt to establish correspondences
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between planes of two consecutive scans will be made. The idea is to find characteristics
of the planes of each scan that identify each one of them (or groups of them) uniquely.
Using these features, we will try to determine approximately the plane (or the planes) of
the reference scan that corresponds to each plane of the current scan; that is, refer to the
same physical plane in the real world. 

Given an average of N planes per view, there are (N + 1)! possible correspondences, if
we include the case when a plane in one view is not present in the other. Non-parallel
planes’ correspondences have rotation information and parallel planes’ correspondences
have only translation information. Due to the high number of possible correspondences
that can be determined, the need to reduce the search space arises. Several properties of
the planar segments could be exploited for that reason, such as the number of points of
each plane or the angle between the normal vectors of the planes (that can be examined
using the dot product). Such attributes and more can be found in [5] where the authors
use the MUMC (minimally uncertain maximal consensus) algorithm to extract planar
segments and find correspondences that reduce the uncertainty volume of pose estimate.

In  this  Section  we  introduce  an  approach  for  the  problem  of  establishing
correspondences between planes of consecutive scans. More specifically,  we create a
fully connected graph ( [31] and [32]) for each scan where each node corresponds to a
single  planar  segment.  Such  a  graph  can  be  seen  in  Fig.  3.4.  Each  node  contains
information about certain attributes of the plane it  represents, such as the number of
points it consists of, its normal vector and its centroid, the eigenvalues of the covariance
matrix and its mean square error. If the graph contains N nodes, then it will contain N(N-
1)/2 edges connecting them. Each edge contains information about the relations between
the  planes  of  the  nodes  that  it  connects.   These  relations  are  chosen  to  be  the
perpendicular distance between the two planes, the angle between their normal vectors
and the  distance  of  their  centroids.  Fig.  3.5 shows the  information  contained  in  the
graph. Using the above idea, the problem of establishing correspondences is diminished
to the problem of matching similar subgraphs between the graphs of two consecutive
scans. This procedure is carried out as follows. After the graphs for two consecutive
scans have been built, they are cross checked to determine which plane of the first graph
should correspond to which of the second graph. This is done in a probabilistic manner.
That is, all possible pairs of the planes between the two graphs are formed and they are
given the probability of corresponding to the same physical plane. A pair of two planes i
and  j  that correspond to the same physical plane should have the highest probability.
This probability is computed according to the similarity of the nodes of the two planes
and of their edges.
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Figure 3.4: A fully connected graph of planes

Figure 3.5: Information stored in each node and each edge of the graph

Since no odometry information is used, the initial guess Xinit used in the pseudocode of
Fig.  3.3  is  set  to  zero  and  no  initial  transformation  T is  calculated.  Furthermore,  a
procedure that establishes the necessary plane correspondences must be added, so that
the optimization function uses only the correspondent planes (and not the whole amount)
to calculate the optimal translation and rotation. The new pseudocode is shown in Fig.
3.6.  More  specifically,  Fig.  3.6(a)  shows the  main  body,  Fig.  3.6(b)  shows the  new
updated optimization function and Fig. 3.6(c) shows the pseudocode for the function that
establishes  plane correspondences.  The optimization  function  that  employs Newton’s
algorithm tries to align the correspondent planes through the score function. In that way,
parallel correspondent planes between consecutive scans will determine the translation
of the robot through their offset, whereas non-parallel ones will determine the rotation
through their normal vector. Pi denotes the set of planes detected from the frame (scan)
Fi. The notation {Pm,  Pl} denotes the set of pairs of the plane correspondences, which is
the output of the corresponding procedure. In Fig. 3.6(c) Gi and Gj denote the graphs of
the two frames  Fi and Fj,  respectively. Moreover,  ni,  nj denote the nodes of the graphs
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and  en,i is  the  set  of  edges  of  the  ni node.  Finally,  we  use  the  notation  pi,j for  the
probability of two nodes i and j to be correspondent.

Figure 3.6 (a): pseudocode of plane based 3D-NDT without any odometry information

Figure 3.6 (b): Optimization procedure of the 3D-NDT without any odometry
information
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Figure 3.6 (c): Pseudocode of function that finds correspondences between planes of
consecutive scans

3.2.2 Experimental evaluation

This section mainly focuses on testing the approach in real world data sets in order to
evaluate its efficiency. More specifically, the algorithm will be applied in the indoor data
set and the dwelling scenario. In each scan planar segments are extracted using the plane
extraction  algorithm  presented  in  Chapter  2  and  the  approach  tries  to  establish
correspondences between consecutive scans and align them by calculating the optimal
rotation and translation of the robot. Moreover, an attempt to build a 3D map of the
environment will be made. In the first case, where the indoor data set is used, odometry
information is available and is utilized as a correction in cases where the registration
fails, in order to be able to build a consistent 3D map. A comparison will also be made
with  the  algorithm  that  utilizes  odometry  as  an  initial  guess  in  terms  of  time  and
accuracy.  In  the  latter  case,  where  the  dwelling  scenario  is  used,  no  odometry
information is available. Hence, examples of successful alignments and small consistent
parts  of  the  whole  map  will  be  shown.   Here  it  should  be  pointed  out   that  the
performance of the approach is highly dependent on the segmentation aglorithm that
extracts planar segments. The experiments mentioned in this section were carried out on
an Intel® Core i5-2500K, 3.30 GHz processor with 16GB memory.
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A) Indoor data set

For this evaluation, the indoor data set that was used in Section 2.2 is also used here. For
this specific scenario, we imposed an assumption in translation and rotation such that the
plane overlap between two consecutive scans is at least 50%. These values were taken
into account in the 4-dimensional normal distribution modelling the plane uncertainty, as
discussed in Section 3.2.1. The choise of these thresholds is highly dependent on the
current data set used, the range of the sensor and the density of the received pointcloud.
Moreover, this choise has to do with the overlap of planes that correspond to the same
physical  planar  segment  between  consecutive  scans,  which  is  indispensable  for  the
accuracy of the registration algorithm. 

The algorithm was evaluated for the first 30scans of  the data set, which are depicted in
Fig. 3.7(a)-(c) using the points of the planes of each scan for more clarity. Planes with
same colours were found as correspondent between consecutive scans. In cases that the
algorithm failed to align two frames, the odometry information was used as a correction.
As failures for  the translation of the robot are considered values of x-, y- and z- that
diverge more than 20cm from the actual values. For the rotation, we consider as a failure
a deviation more than 5o from the actual rotation values (roll, pitch, yaw). 

(a) Top view        (b) Side view
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(b) Side view

Figure 3.7: (a)-(c) Map of the first 30 scans of the indoor data set. 

Table 3.1 depicts the percentage of successful scan registrations seperately for the
translation  and  rotation  of  the  robot  both  for  the  case  that  correspondences
establishment  is  used  without  any  odometry  information  and  for  the  case  that
odometry measurements are used as an initial guess and no correspondences need to
be found. Regarding the first case, we can see that for the rotation values (roll, pitch,
yaw) the percentage of successful alignments is high. The failures can be attributed
to the fact that the robot rotates more than the uncertainty value imposed in some
cases, so the uncertainty assumptions are not satisfied. However, as one can notice in
Fig.  3.7,  the  movement  of  the  robot  is  mainly  translational  (it  moves  along  a
corridor),  so  these  results  for  the  rotational  values  are  expected.  In  general,  the
failure percentages can be explained mainly by the symmetric space of the indoor
environment. In such cases, the relations and the attributes of the planar segments are
similar, so the algorithm fails to detect the correct correspondences. Fig. 3.8 depicts a
simplified example of a symmetric space. For example, the plane extracted from the
ceiling in frame Fi may have the same features as the plane extracted from the floor
in frame Fi+1, infering misleading results. Moreover, to this outcome contribute the
same relations between the planes in a symmetric space. In the previous example, the
edges of the node that corresponds to the ceiling plane from the  i-th scan are very
similar to the edges of the node that corresponds to the floor plane from the i+1-th
scan. The deviation in x- and z- coordinates can be attributed to the above reason.
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 Furthermore, the deviation of the y-  value can be explained by the fact that in many
cases no planes were detected perpendicular to the y-axis (it can be seen from Fig.
3.7(c) that we have a big corridor along the y-axis). For that reason, the translation in
the  y-axis  could  not  be  computed  properly.   In  comparison  to  the  case  where
odometry information is used as an initial guess, Table 3.1 shows that the algorithm
with  odometry  has  a  better  performance.  This  outcome  is  expected,  since  the
odometry measurements used do not deviate much between two consecutive scans,
leading to smaller uncertainty in the planar attributes. 

 

No odometry used
(correspondences

establishment)

Odometry information
as initial guess 

Success in x 90% 100%

Success in y 73.3% 96.7%

Success in z 73.3% 96.7%

Success in roll 96.7% 93.3%

Success in pitch 100% 100%

Success in yaw 86.7% 93.3%

Total success 63.3% 80%

Table 3.1: Percentage of successful alignments for the cases with and without
odometry information

Figure 3.8: Example of symmetric space
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Finally, Table 3.2 shows the pipeline times for the cases with and without odometry
information. The segmentation time refers to the average time taken for extracting
planar segments from each scan.  The registration time refers to the average time
taken for aligning two consecutive scans. The average number of planes per scan is
15.  Although the registration times are similar for the two algorithms, we can state
that  the  approach  that  utilizes  correspondences  is  faster,  since  the  optimization
algorithm  in  that  case  applies  only  for  the  correspondent  pairs  which  is  a  less
complex procedure than doing it for all the possible pairs of planar segments. 

No odometry used
(correspondences

establishment)

Odometry information
as initial guess

Segmentation Time 0.0436458 0.0436458

Registration Time 0.0170526 0.03

Total Time  0.061 0.074

Table 3.2: Runtimes for the whole registration pipeline both for the case where no
odometry information is used and for the case where odometry is utilized as initial

guess.

B) Dwelling scenario

For this case, the algorithm was evaluated for the dwelling scenario. In this scenario, a
laser sensor produces pointcloud data for 96 scans. The uncertainty values here for the
normal vector and the offset of the planar segments are derived from the assumptions we
make  that  impose  the  minimum  plane  overlap  to  be  at  least  60%  between  two
consecutive scans. The uncertainty value here is stricter than in the indoor data set, as the
dwelling environment is more unstructured and the need of plane overlaps is bigger. 

As no odometry information is available for this specific data set,  a whole map of the
environment  could  not  be  built,  because  the  error  from  failed  alignments  would
accumulate in the next scans. A successful alignment between two consecutive scans is
determined from the consistency of the map constructed using the transformation that
the algorithm calculated. Like in the indoor environment evaluation, as failures for  the
translation of the robot are considered values of x-, y- and z- that diverge more than
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20cm from the actual values and for the rotation, we consider as a failure a deviation
more than 5o from the actual rotation values (roll, pitch, yaw). 

The  whole  amount  of  the  96  scans  was  tested  and  the  percentage  of  successful
alignments was approximately 60%. In the majority of the cases that the algorithm failed
to perform the registration between two consecutive scans, the robot rotation is greater
than uncertainty value imposed, so the uncertainty thresholds imposed are not satisfied.
Unlike the evaluation for the indoor data set, a percentage for the translation and rotation
values could not be given separately due to the lack of odometry information. Table 3.3
depicts the average segmentation time for each scan, the average registration time for
each scan pair and the average number of planes per scan.

Segmentation time 0.126042

Registration time 0.0541053

Number of planes 21

Table 3.3: Average segmentation and registration times, average number of planes per
scan

In  the  following,  we  present  small  consistent  maps  of  successful  alignments.  The
visualization is done both using the aligned pointclouds and the points of the aligned
planar segments for clarity. Also, the images of the corresponding scans that are captured
from the front camera of the robot are given. Fig. 3.9(a)-(g) shows the images for scans
60-66. One could notice that the overall movement in these scans consists of translations
and rotations that satisfy the uncertainty restrictions. Figure 3.10(a) shows the aligned
scans using the initial pointcloud and figure 3.10 (b) shows the aligned scans using the
points of the aligned planar segments. Fig. 3.11(a)-(d) and 3.12(a)-(d) visualize the same
results  for scans 86-89. It  can be concluded from the raw images that  mainly small
translations consist the movement of the robot. Two more examples for scans 70-72 and
20-23 are depicted in Fig. 13-14and 15-16 respectively.

(a) Scan 60 (b) Scan 61 (c) Scan 62
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(d) Scan 63 (e) Scan 64 (f) Scan 65

(g) Scan 66

Figure 3.9 :(a)-(g) Scans 60-66 of the dwelling scenario environments as raw images

(a) Visualization of the aligned (b) Visualization of the aligned scans

  scans(60-66) using points         (60-66) using planar segments

Figure 3.10: Resulted alignment of scans 60-66. Visualization using points (a)
and using points of the planar segments (b)
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   (a) Scan 86   (b) Scan 87    (c) Scan 88

  

  (d) Scan 89

 Figure 3.11 :(a)-(d) Scans 86-89 of the dwelling scenario environments as raw image

(a) Visualization of the aligned            (b)Visualization of the aligned
scans(86-89) using points                               scans(86-89) using planar

         segments
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(c) Visualization of the aligned            (d)Visualization of the aligned
scans(86-89) using points                               scans(86-89) using planar

         segments

Figure 3.12: Resulted alignment of scans 86-89. Visualization using points (a)
and (c) and using points of the planar segments (b) and (d)

             (a) Scan 70   (b) Scan 71    (c) Scan 72

                    Figure 3.13 :(a)-(c) Scans 70-72 of the dwelling scenario environments as
raw images
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(a) Visualization of the aligned            (b)Visualization of the aligned
scans(70-72) using points                               scans(70-72) using planar

         segments

Figure 3.14: Resulted alignment of scans 70-72. Visualization using
points (a) and using points of the planar segments (b) 

             (a) Scan 20   (b) Scan 21    (c) Scan 22

         (d) Scan 23

                    Figure 3.15 :(a)-(d) Scans 20-23 of the dwelling scenario environments as
raw images
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(a) Visualization of the aligned (b) Visualization of the aligned scans

  scans(20-23) using points         (20-23) using planar segments

Figure 3.16: Resulted alignment of scans 20-23. Visualization using
points (a) and using points of the planar segments (b) 

Fig. 3.17 and 3.18 below show the alignment of two consecutive scans for two cases.
Fig. 3.17 refers to scans 4-5, where the transformation was calculated to be:

{x, y, z} = {0.287011, -0.500638, 0.0662119}m

{roll, pitch, yaw} = {-0.0243527, 0.019131, -0.663267}rad

and Fig. 3.18 refers to scans 47-48, where the transformation was calculated to be:

{x, y, z} = {0.887781, 0.0935841, -0.248495}m

{roll, pitch, yaw} = {-0.00166798, 0.173416, 0.0452187}rad

 

(a) Scan 4 -  image      (b) Scan 5 -  image
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(c) Scan 4 -  planar segments (d) Scan 5 -  planar segments

(e) Aligned scans 4-5 - Visualization    (f) Aligned scans 4-5-Visualization
      using points                  using planar segments

Figure 3.17: (a),(b) images of scans 4 and 5, (c),(d) planar segments of scans 4 and 5.
Visualization of the alignment using points (e) and planar segments (f) 

(a) Scan 47 -  image      (b) Scan 48 -  image
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(c) Scan 47 -  planar segments (d) Scan 48 -  planar segments

(e)
Aligned scans 47-48 - Visualization (f) Aligned scans 47-48-Visualization   using points

using planar segments

Figure 3.18: (a),(b) images of scans 47 and 48, (c),(d) planar segments of scans 47 and
48. Visualization of the alignment using points (e) and planar segments (f) 

The failed alignments can be attributed mainly to the big rotation of the robot in some
cases and does not satisfy the corrseponding uncertainty value we impose. However, in
some cases even if  the assumptions are satisfied,  the algorithm fails  to  compute the
correct transformation. In these cases the segmentation algorithm does not detect planes
that  can  bound the  movement  along one  axis,  so  the  translation  cannot  be  properly
calculated.  This  can  be  mainly  explained  by  the  small  pointcloud  density  in  some
regions or the complexity of the environment. Finally, there is also a small percentage of
cases where the algorithm could not estabilsh the appropriate correspondences between
planes of consecutive scans due to symmetric space (as discussed for the indoor data set)
and due to the fact that no sufficient plane overlaps exist.  

Fig. 3.19 shows an example of failed alignment due to big rotation of the robot (scans 6-
7). The images in Fig. 3.19(a)-(b) show that the rotation is almost 90o. Fig. 3.19(c)-(d)
show  the  planar  segments  from  these  scans  and  Fig.  3.19(e)-(f)  depicts  the  failed
alignment.
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Fig.  3.20 shows an  example  of  failed  alignment  due to  the  segmentation  algorithm.
Insufficient number of planes perpendicular to the axis along which the robots moves (x-
axis)  was  detected,  so  the  optimization  algorithm  could  not  calculate  the  optimal
translation along this axis.

(a) Scan 6 -  image      (b) Scan 7 -  image

(c) Scan 6 -  planar segments (d) Scan 7 -  planar segments

(e) Failed alignment of scans 6-7 – Visualization (f) Failed alignment of scans
using points                       6-7 – Visualization using

     planar segments

Figure 3.19: (a),(b) images of scans 6 and 7, (c),(d) planar segments of scans 6
and 7. Visualization of the failed alignment using points (e) and planar segments

(f) 
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(a) Scan 19 -  image         (b) Scan 20 -  image

(c) Scan 19 -  planar segments         (d) Scan 20 -  planar segments

(e) Failed alignment of scans 19-20 - (f) Failed alignment of scans 19-20-
Visualization using points              Visualization  using  planar

      segments
    

Figure 3.20: (a),(b) images of scans 19 and 20, (c),(d) planar segments of scans
19 and 20. Visualization of the failed alignment using points (e) and planar

segments (f) 

Summarizing, in several cases of the above evaluation, the proposed algorithm did not
perform successfully and failed to calculate the correct transformation of the robot. As



48                                                                                                  Conclusion and future work  

already discussed, this can be attributed mainly to the following drawbacks of the overall
approach:

 Segmentation algorithm accuracy

 Symmetry of the environment that causes misleading plane correspondences

 Assumptions about the movement of the robot are not satisfied 

 Corridor effect: lack of planar segments to bound the movement of the robot



4 Conclusion and future work

In this thesis the aspect of 3D plane registration is examined. We present an approach
that considers the use of planar segments instead of points for scan alignment without
any use of odometry information in order to calculate the transformation of the robot
between two consecutive scans and build a consistent 3D map. The uncertainty in the
pose  of  the  robot  that  is  derived  by  certain  assumptions  is  transformed  to  planar
attributes uncertainty which is the main idea behind this framework. This uncertainty is
modeled employing an extension to plane-based of 3D-NDT algorithm which utilizes
Gaussian distribution functions. The approach was evaluated both in an indoor and an
outdoor  environment  to  evaluate  its  accuracy.  Despite  of  the  disadvantages  of  the
algorithm, in both scenarios the success rate was over 50% and low computational times
were achieved making it suitable for online applications. In addition, a plane extraction
algorithm is introduced which exploits the advantages of the octree data structure (e.g.
multi-resolutional representation of the environment) and is highly adaptive to different
scenarios of 3D pointclouds. The experimental evaluation that was conducted showed
that the use of this specific tree structure allows for low computational times, especially
in the initialization procedure, making the algorithm computationally efficient.

As  future  work,  the  further  development  of  the  algorithm  that  establishes
correspondences could be considered. More explicitly,  the topological properties of a
fully connected graph could be exploited at a higher level, so that the algorithm would
be more accurate and robust to the noise imposed by laser sensors and the deficiencies of
the segmentation algorithm. Moreover, the achievement of more robustness could result
in greater values in the initial assumptions, both in translation and rotation, making the
algorithm suitable for more demanding scenarios. Finally, instead of a fully connected
graph,  other  less complicated  types  could be utilized  that  would conceive  better  the
structure and the relations between the planar segments.
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