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Abstract

Multi-agent planning and control is an active and increasingly studied topic of
research, with many practical applications, such as rescue missions, security, surveil-
lance, and transportation. More specifically, cases that involve complex manipulator-
endowed systems deserve extra attention due to potential complex cooperative
manipulation tasks and their interaction with the environment. This thesis addresses
the problem of cooperative motion- and task-planning of multi-agent and multi-agent-
object systems under complex specifications expressed as temporal logic formulas.
We consider manipulator-endowed robotic agents that can coordinate in order to
perform, among other tasks, cooperative object manipulation/transportation. Our
approach is based on the integration of tools from the following areas: multi-agent
systems, cooperative object manipulation, discrete abstraction design of multi-agent-
object systems, and formal verification. More specifically, we divide the main problem
into three different parts. The first part is devoted to the control design for the for-
mation control of a team of rigid-bodies, motivated by its application to cooperative
manipulation schemes. We propose decentralized control protocols such that desired
position and orientation-based formation between neighboring agents is achieved.
Moreover, inter-agent collisions and connectivity breaks are guaranteed to be avoided.
In the second part, we design continuous control laws explicitly for the cooperative
manipulation/transportation of an object by a team of robotic agents. Firstly, we
propose robust decentralized controllers for the trajectory tracking of the object’s
center of mass. Secondly, we design model predictive control-based controllers for
the transportation of the object with collision and singularity constraints. In the
third part, we design discrete representations of multi-agent continuous systems
and synthesize hybrid controllers for the satisfaction of complex tasks expressed as
temporal logic formulas. We achieve this by combining the results of the previous
parts and by proposing appropriate trajectory tracking- and potential field-based
continuous control laws for the transitions of the agents among the discrete states.
We consider teams of unmanned aerial vehicles and mobile manipulators as well as
multi-agent-object systems where the specifications of the objects are also taken into
account. Numerical simulations and experimental results verify the claimed results.





Sammanfattning

Planering och reglering av multiagent-system är ett aktivt och växande forskn-
ingsfält med en rad praktiska tillämpningar s̊asom räddningsuppdrag, transport,
övervakning och säkerhet. De fall där komplexa manipulatorbaserade system ing̊ar
förtjänar extra uppmärksamhet eftersom de utför potentiellt komplexa och samarbet-
skrävande manipulationsuppgifter och kräver interaktion med omgivningen. Denna
avhandling behandlar problem med rörelse- och uppgifts-planering av samarbetande
multiagenter och multiagent-objekt-system under komplexa specifikationer uttryckta
med temporallogiska formler. Vi betraktar manipulatorbaserade robotagenter som
kan koordineras för att utföra bland annat samarbetande manipulation/transport
av objekt. V̊ar ansats är baserad p̊a integration av verktyg fr̊an följande omr̊aden:
multiagent-system, samarbetsbaserad objektsmanipulation, diskret abstraktions-
design av multiagent-objekt-system samt formell verifikation. Mer specifikt delar
vi in huvudproblemet i tre olika delar. Den första delen tillägnas reglerdesign för
formationsreglering av en grupp stelkroppsagenter, vilket kan motiveras av dess
tillämpning till samarbetskrävande manipulationsuppgifter. Vi föresl̊ar decentralis-
erade reglerprotokoll s̊a att önskade positions- och orienterings-formationer uppn̊as
mellan närliggande agenter. Dessutom garanteras att kollisioner och förlorad anslut-
ning mellan agenter undviks. I den andra delen designar vi kontinuerliga styrlagar
explicit för manipulation/transport av ett objekt utfört av en grupp robotagen-
ter. Först föresl̊ar vi robusta decentraliserade regulatorer för trajektoria-sp̊arning
av ett objekts masscentrum. Sedan utvecklar vi modell-prediktiva regulatorer för
transport av objektet med bivillkor för kollisioner och singulariteter. I den tredje
delen designar vi diskreta representationer av kontinuerliga multiagentsystem, och
syntetiserar hybrida regulatorer som uppfyller komplexa uppgifter uttryckta med
temporallogik. Vi uppn̊ar detta genom att kombinera resultat fr̊an tidigare delar
och genom att föresl̊a passande kontinuerliga reglerprotokoll, baserade p̊a position-
ssp̊arning och potentialfält, för agenternas överg̊angar mellan de diskreta tillst̊anden.
Vi betraktar grupper av obemannade flygfordon och mobila manipulatorer, samt
multiagent-objekt-system där även objektens specifikationer tas i beaktning. Nu-
meriska simuleringar och experimentella resultat verifierar de hävdade resultaten.
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Chapter 1

Introduction

1.1 Motivation

The technological developments have been increasing exponentially during the
last century, with an evident peak in the last few decades. The recent need for
development of smart cities (including autonomy in industrial buildings, houses,
highways, as well as automated rescue missions) calls for wider deployment of
robots that must coordinate with each other to achieve a specific task. Additionally,
noteworthy is the increasing evolution of wireless communication technology that
results in the low-cost massive development of (internal and external) sensor devices.
Along with the incapability of the corresponding computing units to process very
large amounts of data in small amounts of time, this has given rise to a special case
of systems that consist of multiple robots, namely multi-agent systems. Multi-agent
systems consist of agents/robots that rely solely on local sensor information with
respect to their neighboring robots to determine their actions, which is often called
decentralized control.

During the last decade, decentralized control of multi-agent systems has gained a
significant amount of attention due to the great variety of its applications, including
multi-robot systems, transportation, multi-point surveillance and biological systems.
The main focus of multi-agent systems is the design of distributed control protocols
in order to achieve global tasks, such as consensus [1–5], in which all the agents are
required to converge to a specific point and formation [6, 7], in which all the agents
aim to form a predefined geometric shape. At the same time, the agents might need
to fulfill certain transient properties, such as network connectivity [8–10] and/or
collision avoidance [11].

A special case of multi-agent systems is cooperative robotic manipulators. In
particular, when it comes to object manipulation/transportation, large/heavy pay-
loads as well as complex maneuvers necessitate the deployment of more than one
robot. The most common tasks consist of pick-and-place tasks and cooperative
object transportation, while satisfying certain properties, such as collision- and
singularity-avoidance.

1
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Figure 1.1: A humanoid robot moving to an environment consisting of 6 rooms and
3 corridor regions. In room R6 there exists a ball that the robot can grab.

Another topic that has troubled researchers the last decades is the control of
multiple systems such that each agent/robot fulfills desired tasks given by high-level
specifications expressed as temporal logic formulas. Temporal-logic based motion
planning has gained a significant amount of attention over the last decade, since
it provides a fully automated correct-by-design controller synthesis approach for
autonomous robots. Temporal logics, such as linear temporal logic (LTL), provide
formal high-level languages that can describe planning objectives more complex
than the well-studied navigation algorithms, and have been used extensively both
in single- as well as in multi-agent setups. The objectives are given as a temporal
logic formula with respect to a discretized abstraction of the system (usually a finite
transition system), and then, a high-level discrete path is found by off-the-shelf
model-checking algorithms, given the abstracted system and the task specification.
Consider, for instance, the robot in Figure 1.1 operating in a workspace which is
partitioned into 6 rooms and a corridor consisting of three regions. A high-level task
for the robot might have the following form: “Periodically visit rooms R1, R4, R6,
in this order, while avoiding rooms R2, R3 and R5”, or “Grab the ball that lies in
room R6 and deliver it in room R3 between 10 and 20 seconds”. The aforementioned
specifications include complex tasks where time might play an important role.

One of the main problems that arise when dealing with high-level tasks based on
temporal-logic formulas is the construction of a discrete abstracted representation
of the continuous system. More specifically, given a temporal-logic formula over a
continuous workspace/state space, how does one partition this space into discrete
states? Moreover, given a predefined partition, what are the control inputs of the
agents that guarantee well-defined transitions among the discrete states? When multi-
agent systems are concerned, the aforementioned specifications must also incorporate
collision-avoidance as well as connectivity-maintenance properties among the robots,
which brings the problem of abstraction to a new level of complexity.

Furthermore, consider a case where some unactuated objects must undergo
a series of processes in a workspace with autonomous agents (e.g., car factories),
expressed as temporal-logic high-level specifications. In such cases, the agents, except
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for satisfying their own motion specifications, are also responsible for coordinating
with each other in order to transport the objects around the workspace. When the
unactuated objects’ specifications are expressed using temporal logics, then the
motion- and task- planning of the agents’ behavior becomes much more complex,
since the discrete system abstraction has to also take into account the objects’ goals.

Motivated by the above discussion, this thesis aims at solving the problem
of decentralized motion- and task-planning of multi-agent and multi-agent-object
systems under complex task specifications by integrating tools from the computer
science and automatic control fields. The main contributions lie in the abstraction of
the continuous coupled object-agents dynamics into a discrete representation of the
system (transition systems) and the application of formal verification methodologies
towards the satisfaction of temporal logic formulas. More specifically, we break down
the problem into three main subproblems. Motivated by the need of transition design
for unactuated objects, we consider the problem of cooperative object manipulation in
the first two parts. In the first part, we address the problem of multi-agent formation
control, since one of its many applications is cooperative object manipulation [12].
In the second part, we model explicitly the coupled system that consists of an object
grasped by multiple robotic agents, and we tackle the problem of constrained pose
and time trajectory tracking of the object’s center of mass. The third part addresses
the discrete abstractions of multi-agent systems and the control synthesis for the
satisfaction of high level specifications. We consider the multi-agent navigation
problem as a means for designing multi-agent transition systems and synthesizing
control plans that satisfy the agents’ specifications. Finally, we combine the results
from the previous parts to build multi-agent-object coupled transition systems and
synthesize controllers that incorporate the task specifications of the unactuated
objects. In the following, we list the problems we address, by further subdividing
the third part:

1. Consider a multi-agent system modeled by 2nd order Lagrangian dynamics.
The goal is to design decentralized controllers that use only local information
with respect to the neighboring agents such that a predefined geometric
formation is achieved, while guaranteeing inter-agent collision avoidance and
connectivity maintenance. Among the numerous applications of the formation
control problem, an important one is the cooperative manipulation case [12].
For instance, the center of mass of the object can be considered as a virtual
leader that desires to track a predefined desired trajectory and the robots’
end-effectors need to keep fixed distances with each other while complying
with grasping constraints.

2. Consider an object rigidly grasped by a team of robotic agents (robotic ma-
nipulators). Given a prespecified pose/time trajectory, the goal is to design
communication-free decentralized control laws for the agents to achieve track-
ing/regulation for the object’s center of mass, robust to modeling uncertainties
and external disturbances. The solution of the aforementioned problem can
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be applied as the building block for transitions in a potential workspace/state
space partition, in order to define discrete abstractions of the system (e.g.,
transition systems).

3. Consider a team of robotic agents operating in a bounded 3D workspace
that contains predefined points of interest. The goal is to design well defined
decentralized abstractions for the agents over the points of interest in order to
synthesize controllers for the satisfaction of high-level temporal logic tasks. The
problem in hand is equivalent to a) designing decentralized control laws that
guarantee the navigation of the multi-agent team among the predefined points
of interest, while guaranteeing inter-agent collision avoidance and connectivity
maintenance, and b) applying formal-verification techniques to synthesize
hybrid control protocols that guarantee satisfaction of the high-level tasks.

4. Consider a system comprised of multiple robotic agents and one or more objects.
Similarly to problem 3, given a predefined partition of the 3D workspace, the
goal is to design abstractions for the overall system that incorporate the
motion/tasks of the agents as well as of the objects. This allows the synthesis
of controllers that take into account the agents’ as well as the objects’ task
specifications, which are modeled through high-level temporal-logic formulas.

Taking the aforementioned problems into consideration, this thesis is divided into
three main parts. The first two parts deal with methodologies and control algorithms
for solving Problems 1 and 2, whereas the third part considers Problems 3 and 4.
The work developed in this thesis was supported by the research projects “H2020
Research and Innovation Programme” under the Grant Agreements No. 644128
(AEROWORKS) and No. 731869 (Co4Robots), the the H2020 ERC Starting Grant
BUCOPHSYS, the Knut and Alice Wallenberg Foundation, the Swedish Research
Council (VR), and the Swedish Foundation for Strategic Research. The next section
presents the outline of this thesis.

1.2 Thesis Outline and Contributions

In this Section, we provide the outline of the thesis and indicate the contributions
of each chapter. Chapter 2 is devoted to notation that will be adopted in this thesis
and preliminary background knowledge. The thesis is divided into four main parts
which aim to solve the Problems that were previously mentioned. In particular,

• The first part consists of Chapter 3. In this part, we propose a novel decentral-
ized control protocol for formation control of a multi-agent system in
SE(3). The proposed control scheme guarantees position and orientation based
formation, inter-agent collision avoidance, as well as connectivity maintenance
among the agents of the initially connected graph.
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• The second part consists of Chapters 4 and 5. In the second part we address
the cooperative manipulation/transportation of an object by a team
of robotic agents. Motivated by the need of designing transition relations
to define discrete transition systems for unactuated objects, we propose novel
continuous-time control methodologies that guarantee trajectory tracking as
well as pose stabilization of an object rigidly grasped by a team of robotic
agents.

• The third part consists of Chapters 6 and 7. This part addresses the problem
of defining abstractions for multi-agent robotic systems. In Chapter
6 we propose continuous-time control laws for the navigation of multi-agent
teams among predefined regions of interest, thus establishing well-defined
transition systems for the agents. In Chapter 7, we proceed similarly and we
incorporate unactuated objects in the designed transition systems, allowing
the incorporation of high-level goals for the objects.

Chapter 3

This chapter presents a novel control protocol for the formation control of tree
graphs in SE(3). The control laws are decentralized (in the sense that each agent
uses only local relative information from its neighbors to calculate its control
signal) as well as robust to modeling uncertainties (parametric and structural) and
external disturbances. The proposed methodology guarantees collision avoidance and
connectivity maintenance among the initially connected agents. Moreover, certain
predefined functions characterize the transient and steady state performance of the
closed loop system. Finally, simulation results verify the validity and efficiency of
the proposed approach. The covered material is based on the following contributions
[13]:

• A. Nikou, C. K. Verginis and D. V. Dimarogonas, “Robust distance-based
formation control of multiple rigid bodies with orientation alignment”, IFAC
Proceedings Volumes, Toulouse, France, 2017.

• C. K. Verginis, A. Nikou and D. V. Dimarogonas, “Robust Formation Con-
trol of Tree Graphs in SE(3) with Prescribed Transient and Steady State
Performance”, under preparation.

Chapter 4

This chapter addresses the problem of cooperative manipulation of a single object
by multiple robotic agents. More specifically, we present two novel control method-
ologies for the trajectory tracking of the object’s center of mass. Firstly, we design
an adaptive control protocol which employs quaternion feedback for the object
orientation to avoid potential representation singularities. Secondly, we propose a
control protocol that guarantees predefined transient and steady-state performance
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for the object trajectory. Both methodologies are decentralized, since the agents
calculate their own signals without communicating with each other, as well as robust
to external disturbances and model uncertainties. Moreover, we consider that the
grasping points are rigid, and avoid the need for force/torque measurements. Load
sharing coefficients are also introduced to account for potential differences in the
agents’ power capabilities. Finally, simulation and experimental results with two
robotic arms verify the theoretical findings. The covered material is based on the
following contribution [14, 15]:

• C. K. Verginis, M. Mastellaro and D. V. Dimarogonas, “Robust quaternion-
based cooperative manipulation without force/torque information”, IFAC
Proceedings Volumes, Toulouse, France, 2017.

• C. K. Verginis, M. Mastellaro and D. V. Dimarogonas, “Cooperative manipu-
lation without force/torque measurements: Control design and experiments”,
submitted to the IEEE Transactions on Control Systems Technology, 2018.

Chapter 5

This chapter addresses the problem of cooperative transportation of an object
rigidly grasped by N robotic agents. In particular, we propose two Nonlinear Model
Predictive Control (NMPC) schemes that guarantee the navigation of the object
to a desired pose in a bounded workspace with obstacles, while complying with
certain input saturations of the agents. The first control scheme is centralized, in
the sense that a central unit calculates the control inputs for each of the robotic
agents, whereas the second control scheme is based on inter-agent communication
and is decentralized, since each agent calculates its own control signal. Moreover,
the proposed methodologies ensure that the agents do not collide with each other
or with the workspace obstacles as well as that they do not pass through singular
configurations. The feasibility and convergence analysis of the NMPC are explicitly
provided. Finally, simulation results illustrate the validity and efficiency of the
proposed methods. The results presented in this chapter are based on [16, 17]:

• A. Nikou, C. K. Verginis and D. V. Dimarogonas, “A nonlinear model predictive
control scheme for cooperative manipulation with singularity and collision
avoidance”, Proceedings of the IEEE Mediterranean Conference on Control
and Automation (MED), Valletta, Malta, 2017.

• C. K. Verginis, A. Nikou and D. V. Dimarogonas, “Communication-based
decentralized cooperative object transportation using nonlinear model predic-
tive control”, submitted to the IEEE European Control Conference (ECC),
Limassol, Cyprus, 2018.
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Chapter 6

This chapter addresses the motion planning problem for a team of manipulator-
endowed systems under high level goals. We propose a hybrid control strategy that
guarantees the accomplishment of each agent’s local goal specification, which is
given as a temporal logic formula, while guaranteeing inter-agent collision avoidance
and connectivity maintenance. The overall approach is based on an abstraction
of the continuous systems into discrete transition systems, which we accomplish
by designing suitable decentralized continuous controllers based on previous work
on navigation functions. Next, given specific high-level tasks encoded by temporal
logic formulas, we employ standard formal verification techniques and we derive
high-level control algorithms that satisfy the agents’ specifications. Simulation and
experimental results verify the validity of the proposed methods. These results are
based on [18, 19]:

• C. K. Verginis, Z. Xu and D. V. Dimarogonas, “Decentralized motion planning
with collision avoidance for a team of UAVs under high level goals”, Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA),
Singapore, 2017.

• C. K. Verginis and D. V. Dimarogonas, “Robust decentralized abstractions
for multiple mobile manipulators”, Proceedings of the IEEE Conference on
Decision and Control (CDC), Melbourne, Australia, 2017.

Chapter 7

This chapter addresses the problem of deriving well-defined abstractions for motion
planning of a team of robotic agents and objects. In particular, we propose two
methodologies for the discrete abstraction of such systems. Firstly, we propose a
distributed model-free control protocol for the trajectory tracking of a cooperatively
manipulated object without necessitating feedback of the contact forces/torques
or inter-agent communication. By employing the prescribed performance control
methodology, we pre-determine the transient and steady state of the coupled object-
agents system. Along with a region partition of the workspace that depends on
the physical volume of the object and the agents, this allows us to define timed
transitions for the coupled system among the derived workspace regions. Therefore,
we abstract its motion as a finite transition system and, by employing standard
automata-based methodologies, we define high level complex tasks for the object
that can be encoded by timed temporal logics. Secondly, we present a hybrid control
framework for the motion planning of a multi-agent system including N robotic
agents and M objects, under high level goals expressed as Linear Temporal Logic
(LTL) formulas. We design control protocols that allow the transition of the agents as
well as the cooperative transportation of the objects by the agents, among predefined
regions of interest in the workspace. This allows to abstract the coupled behavior of
the agents and the objects as a finite transition system and to design a high-level



8 Introduction

multi-agent plan that satisfies the agents’ and the objects’ specifications, given
as temporal logic formulas. Simulation results verify the validity of the proposed
frameworks. These results are based on [20–23]:

• C. K. Verginis and D. V. Dimarogonas, “Distributed cooperative manipulation
under timed temporal specifications”, Proceedings of the American Control
Conference (ACC), Seattle, USA, 2017.

• C. K. Verginis and D. V. Dimarogonas, “Timed abstractions for distributed
cooperative manipulation”, Autonomous Robots, 2017.

• C. K. Verginis and D. V. Dimarogonas, “Multi-agent motion planning and
object transportation under high level goals”, IFAC Proceedings Volumes,
Toulouse, France, 2017.

• C. K. Verginis, and D. V. Dimarogonas, “Motion and cooperative trans-
portation planning for multi-agent systems under temporal logic formulas”,
submitted to the IEEE Transactions on Automation Science and Engineering,
2017.

Finally, in Chapter 8, conclusions of this thesis as well as future research directions
are discussed.

Contributions not included in this thesis

The following publications are not covered in this thesis, but are related to the work
presented here [24, 25]:

• C. K. Verginis, A. Nikou and D. V. Dimarogonas, “Position and orientation
based formation control of multiple rigid bodies with collision and avoid-
ance and connectivity maintenance”, Proceedings of the IEEE International
Conference on Decision and Control (CDC), 2017, Melbourne, Australia.

• L. Lindemann, C. K. Verginis and D. V. Dimarogonas, ”Prescribed performance
control for signal temporal logic specifications”, Proceedings of the IEEE
Conference on Decision and Control (CDC), Melbourne, Australia, 2017.

• A. Nikou, C. K. Verginis, S. Heshmati-alamdari and D. V. Dimarogonas,
”Decentralized abstractions and timed constrained planning of a general class
of coupled multi-agent systems”, Proceedings of the IEEE Conference on
Decision and Control (CDC), Melbourne, Australia, 2017.



Chapter 2

Notation and Preliminaries

In this chapter, the notation that will be used hereafter as well as the necessary
background, are provided.

The set of positive integers is denoted by N and the real n-coordinate space,
with n ∈ N, by Rn; Rn≥0 and Rn>0 are the sets of real n-vectors with all elements
nonnegative and positive, respectively. The complex n-coordinate space is denoted
as Cn. The n× n identity matrix is denoted by In, the n-dimensional zero vector
by 0n and the n×m matrix with zero entries by 0n×m. The n-dimensional vector
of ones is denoted by 1n. Given a matrix A ∈ Rn×m, we use ‖A‖ :=

√
λmax(A>A),

where λmax(·) here denotes the maximum eigenvalue of a matrix; rank(A) is its rank;
‖A‖F := tr(A>A) is the Frobenius norm of A, and tr(·) is its trace; det(A) denotes
its determinant. Given a ∈ R3, S(a) is the skew-symmetric matrix defined according
to S(a)b = a× b. Given a nonempty and bounded set of natural numbers X and a
set of vectors (matrices) xi, i ∈ N, we denote by [x>i ]>i∈X the stack column-vector
form with the vectors (matrices) whose indices belong to X . Unless otherwise stated,
pCB/A ∈ R3 denotes the vector that connects the origins of coordinate frames {A}
and {B} expressed in frame {C} coordinates in 3D space. Moreover, for notational
brevity, when a coordinate frame corresponds to an inertial frame of reference {I},
we will omit its explicit notation (e.g., pB = pIB/I , ωB = ωIB/I), unless otherwise
stated. Moreover, unless otherwise stated, ηA/B = [φA/B, θA/B, ψA/B]T ∈ T ⊂ R3 are
the Euler angles representing the orientation of frame {A} with respect to frame {B},
with φA/B, θA/B ∈ (−π, π) and θA/B ∈ (−π2 ,

π
2 ), and T = (−π, π)×(−π2 ,

π
2 )×(−π, π);

We also denote M = R3 × T. All vector and matrix differentiations will be with
respect to an inertial frame {I}, unless otherwise stated. The angular velocity of
frame {B} with respect to {A} is denoted as ωB/A ∈ R3 and it holds that [26]
ṘB/A = S(ωB/A)RB/A, where RB/A ∈ SO(3) is the corresponding rotation matrix,
and SO(3) is the 3-D rotation group. The values of a Boolean variable are > (True)
and ⊥ (False). Given a set S, denote by |S| its cardinality, by Sn = S × · · · × S
its n-fold Cartesian product, and by 2S the set of all its subsets; ∂S stands for
the boundary of the set S and S̊ for its interior. Given a finite sequence s1, . . . , sn
of elements in S, with n ∈ N, we denote by (s1, . . . , sn)ω the infinite sequence

9
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s1, . . . , sns1, . . . , sn . . . created by repeating s1, . . . , sn. The notation ‖x‖ is used for
the Euclidean norm of a vector x ∈ Rn; A⊗B denotes the Kronecker product of the
matrices A,B ∈ Rm×n (see [27]). The set-valued function B : R3×R>0 ⇒ R3, given
as B(c, r) = {x ∈ R3 : ‖x−c‖ ≤ r}, represents the 3D sphere with center c ∈ R3 and
radius r ∈ R>0. Given a scalar function y : Rn → R and a vector x ∈ Rn, denote
by ∇xy(x) =

[
∂y(x)
∂x1

, . . . , ∂y(x)
∂xn

]>
∈ Rn the gradient of y. Similarly, given a vector-

valued function y : Rn → Rm, denote by ∇xy(x) = [∇xy1(x), . . . ,∇xym(x)]> ∈
Rm×n. The special Euclidean group is denoted by SE(3) := {(c,R) ∈ R3 × SO(3)}.
We define the induced norm in SO(3)N as ‖R‖T :=

∑
i∈{1,...,N} ‖Ri‖F for any

R = (R1, . . . , RN ) ∈ SO(3)N . Moreover, the tangent space to SO(3) at R is denoted
by TRSO(3) and we also use TR := R3 × TRSO(3).

Definition 2.1. Given the sets S1, S2, their Minkowski addition is defined by:

S1 ⊕ S2 = {s1 + s2 : s1 ∈ S1, s2 ∈ S2}.

Definition 2.2. Consider two sets S1, S2 ⊆ Rn. Then, the Pontryagin difference is
defined by:

S1 ∼ S2 = {x ∈ Rn : s1 + s2 ∈ S1,∀ s2 ∈ S2}.

Lemma 2.1. (Grönwall-Bellman Inequality) ([28, Appendix A]) Let ȳ : [a, b]→ R
be continuous and ỹ : [a, b] → R be continuous and nonnegative. If a continuous
function y : [a, b]→ R satisfies

y(t) ≤ ȳ(t) +
∫ t

a

ỹ(s)y(s)ds,

for t ∈ [a, b], then on the same interval it holds that:

y(t) ≤ ȳ(t) +
∫ t

a

ȳ(s)ỹ(s) exp
[∫ t

s

ỹ(τ)dτ
]
ds.

2.1 Prescribed Performance

Prescribed performance control, recently proposed in [29], describes the behavior
where a tracking error e : R≥0 → R evolves strictly within a predefined region that
is bounded by certain functions of time, achieving prescribed transient and steady
state performance. The mathematical expression of prescribed performance is given
by the following inequalities:

− ρL(t) < e(t) < ρU (t), ∀t ∈ R≥0,

where ρL(t), ρU (t) are smooth and bounded decaying functions of time satisfying
lim
t→∞

ρL(t) > 0 and lim
t→∞

ρU (t) > 0, called performance functions. Specifically, for
the exponential performance functions ρi(t) := (ρi,0 − ρi,∞) exp(−lit) + ρi,∞, with
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ρi,0, ρi,∞, li ∈ R>0, i ∈ {U,L}, appropriately chosen constants, the terms ρL,0 :=
ρL(0), ρU,0 := ρU (0) are selected such that ρU,0 > e(0) > ρL,0 and the terms
ρL,∞ := lim

t→∞
ρL(t), ρU,∞ := lim

t→∞
ρU (t) represent the maximum allowable size of

the tracking error e(t) at steady state, which may be set arbitrarily small to a
value reflecting the resolution of the measurement device, thus achieving practical
convergence of e(t) to zero. Moreover, the decreasing rate of ρL(t), ρU (t), which is
affected by the constants lL, lU in this case, introduces a lower bound on the required
speed of convergence of e(t). Therefore, the appropriate selection of the performance
functions ρL(t), ρU (t) imposes performance characteristics on the tracking error e(t).

2.2 Dynamical Systems

Definition 2.3. ([28]) A continuous function α : [0, a)→ R≥0 is said to belong to
class K, if it is strictly increasing and α(0) = 0. It is said to belong to class K∞ if
a =∞ and α(r)→∞, as r →∞.

Definition 2.4. ([28]) A continuous function β : [0, a) × R≥0 → R≥0 is said to
belong to class KL, if:

• For each fixed s, β(r, s) ∈ K with respect to r.

• For each fixed r, β(r, s) is decreasing with respect to s and β(r, s) → 0, at
s→∞.

Lemma 2.2. ([30]) Let γ be a continuous, positive definite function and x be an
absolutely continuous function on R. If the following holds:

• ‖x(·)‖ <∞, ‖ẋ(·)‖ <∞,

• lim
t→∞

∫ t

0
γ(x(s))ds <∞.

Then, limt→∞ ‖x(t)‖ = 0.

Definition 2.5. ([31]) A nonlinear system ẋ = f(x, u) with initial condition x(t0)
is said to be Input to State Stable (ISS) if there exist functions β ∈ KL and σ ∈ K∞
such that:

‖x(t)‖ ≤ β(‖x(t0)‖, t) + σ(‖u‖).

Definition 2.6. ([31]) A Lyapunov function V (x, u) for the nonlinear system
ẋ = f(x, u) with initial condition x(t0) is said to be ISS-Lyapunov function if there
exist functions α, σ ∈ K∞ such that:

V̇ (x, u) ≤ −α(‖x‖) + σ(‖u‖),∀x, u. (2.1)

Theorem 2.1. ([32]) A nonlinear system ẋ = f(x, u) with initial condition x(t0)
is said to be ISS if and only if it admits a ISS-Lyapunov function.
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Theorem 2.2. ([28, Appendix C]) Consider the system ẋ = f(x) where f : D → Rn
is piecewise continuous and locally Lipschitz on D ⊆ Rn; D is a domain that
contains the origin. Let V : D → R be a continuously differentiable function such
that α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) and V̇ ≤ −w(x), ∀‖x‖ ≥ µ > 0 for every t ≥ 0 and
x ∈ D, where α1, α2 are class K functions and w3 is a continuous positive definite
function. Take r > 0 such that B(0, r) ⊆ D and suppose that µ < α−1

2 (α1(r)).
Then, there exist a class K∞ function α3 and for every initial state x(t0) satisfying
‖x(t0)‖ ≤ α−1

2 (α1(r)), there exists T ≥ 0 such that

‖x(t)‖ ≤ α3(‖x(t0)‖),∀ t0 ≤ t ≤ T,
‖x(t)‖ ≤ α−1

1 (α2(µ)),∀t > T.

Consider the initial value problem:

ẋ = h(x, t), x(0) ∈ Ω, (2.2)

with h : Ω× R≥0 → Rn where Ω ⊂ Rn is a non-empty open set.

Definition 2.7. [33] A solution x(t) of the initial value problem (2.2) is maximal
if it has no proper right extension that is also a solution of (2.2).

Theorem 2.3. [33] Consider problem (2.2). Assume that h(x, t) is: a) locally
Lipschitz on x for almost all t ∈ R≥0, b) piecewise continuous on t for each fixed
x ∈ Ω and c) locally integrable on t for each fixed x ∈ Ω. Then, there exists a maximal
solution x(t) of (2.2) on [0, tmax) with tmax > 0 such that x(t) ∈ Ω,∀t ∈ [0, tmax).

Proposition 2.1. [33] Assume that the hypotheses of Theorem 2.3 hold. For a
maximal solution x(t) on the time interval [0, tmax) with tmax < ∞ and for any
compact set Ω′ ⊂ Ω there exists a time instant t′ ∈ [0, tmax) such that x(t′) /∈ Ω′.

Theorem 2.4. [34] Let Ω̄ be an open set in Rn × R≥0. Consider a function g :
Ω̄→ Rn that satisfies the following conditions:

1. For every x ∈ Rn, the function t→ h(x, t) defined on Ωx := {t : (x, t) ∈ Ω̄} is
measurable. For every t ∈ R≥0, the function x→ h(x, t) defined on Ωt := {x :
(x, t) ∈ Ω̄} is continuous.

2. For every compact K ⊂ Ω̄, there exist constants CK , LK such that

‖h(x, t)‖ ≤ CK , ‖h(x, t)− h(y, t)‖ ≤ LK‖x− y‖,

∀(x, t), (y, t) ∈ K.

Then the initial value problem (2.2) with h : Ω̄ → Rn and some (x0, t0) ∈ Ω̄, has
a unique and maximal solution x : [t0, tmax) → Rn, with tmax > t0 and (x(t), t) ∈
Ω̄,∀t ∈ [t0, tmax).
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Theorem 2.5. [34] Let the conditions of Theorem 2.4 hold in Ω̄ and let x(t), t ∈
[t0, tmax) be a maximal solution of the initial value problem (2.2). Then, either
tmax =∞ or

lim
t→t−max

(
‖x(t)‖+ 1

dS((x(t), t), ∂Ω̄)

)
=∞,

where dS : Rn × 2Rn is the distance of a point x ∈ Rn to a set A, defined as
dS(x,A) := inf

y∈A
{‖x− y‖}.

2.3 Navigation Functions

Navigation functions, initially proposed in [35] for single-point-sized robot navigation,
are real-valued maps realized through cost functions, whose negated gradient field
is attractive towards the goal configuration (referred to as the good or desirable set)
and repulsive with respect to the obstacles set (referred to as the bad set which
we want to avoid). We provide here a brief overview of the multi-agent version
introduced in [36] and [37], respectively.

2.3.1 Multirobot Navigation Functions (MRNFs)
Consider N ∈ N spherical robots, with center qi ∈ Rn, n ∈ N, and radius ri ∈ R>0,
i.e., Bn(qi, ri), i ∈ N , operating in an open spherical workspace W := B̊n(0, r0)
of radius r0 ∈ R>0. Each robot has a destination point qdi ∈ Rn, i ∈ N , and
qd := [q>d1

, . . . , q>dN ]>. Let F ⊂ Rn be a compact connected analytic manifold with
boundary. A map ϕ : F → [0, 1] is a MRNF if

1. It is analytic on F ,

2. It has only one minimum at qd ∈
◦
F ,

3. Its Hessian at all critical points is full rank,

4. lim
q→∂F

= 1 > ϕ(q′), ∀q′ ∈
◦
F ,

where q := [q>1 , . . . , q>N ]> ∈ RNn. The class of MRNFs has the form

ϕ(q) = γ(q)(
[γ(q)]κ +G(q)

) 1
κ

,

where γ(q) := ‖q − qd‖2 is the goal function, G(q) is the obstacle function, and κ
is a tunable gain; γ−1(0) denotes the desirable set and G−1(0) the set we want to
avoid. Next we provide the procedure for the construction of the function G. A
robot proximity function, a measure for the distance between two robots i, l ∈ N , is
defined as βi,l(qi, ql) := ‖qi − ql‖2 − (ri + rl)2, ∀i, l ∈ N , i 6= l. The term relation is
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used to describe the possible collision schemes that can be defined in a multirobot
team, possibly including obstacles. The set of relations between the members of
the team can be defined as the set of all possible collision schemes between the
members of the team. A binary relation is a relation between two robots. Any
relation can be expressed as a set of binary relations. A relation tree is the set of
robot/obstacles that form a linked team. Each relation may consist of more than
one relation tree. The number of binary relations in a relation is called relation
level. Illustrative examples can be found in [36]. A relation proximity function (RPF)
provides a measure of the distance between the robots involved in a relation. Each
relation has its own RPF. A RPF is the sum of the robot proximity functions of
a relation. It assumes the value of zero whenever the related robots collide (since
the involved robot proximity functions will be zero) and increases with respect to
the distance of the related robots. The RPF of relation j at level k is given by
(bRj )k :=

∑
(i,m)∈(Rj)k

βi,m, where we omit the arguments qi, qk for notational brevity.

A relation verification function (RVF) is defined as

gRj := (bRj )k + λ
(bRj )k

(bRj )k + (B(RC
j

)k )
1
h

,

where λ, h > 0, and RCj is the complementary to Rj set of relations in the same level k,
j is an index number defining the relation in level k, and BRC

j
:=

∏
m∈RC

j

bm. The RVF

serves as an analytic switch, which goes to zero only when the relation it represents
is realized. By further introducing the workspace boundary obstacle functions as
G0 :=

∏
i∈N

{
(r0− ri)2−‖qi‖2

}
, we can define G := G0

∏nL
L=1

∏nR,L
j=1 (gRj )L, where

nL is the number of levels and nR,L the number of relations in level L. It has been
proved that, by choosing the parameter κ large enough, the negated gradient field
−∇qϕ(q) leads to the destination configuration qd, from almost all initial conditions
[36].

2.3.2 Decentralized Navigation Functions (DNFs)
Consider now the class of decentralized navigation functions, which has the form
ϕi : R3N → [0, 1], with ϕi(q) = γi(qi) + fi(Gi)

(γi(qi)λi +Gi(q))1/κi
. The key difference in this case

is the term Gi : R3N → R that is associated with the collision avoidance property
of agent i with the rest of the team and is based on the inter-agent decentralized
distance function [37]: βij : R3 × R3 → R with

βij(pi, pj) =
{
‖pi − pj‖2 − (ri + rj)2, if j ∈ Ni
d2
si − (ri + rj)2, if j /∈ Ni,

that represents the distance between agents i and j ∈ Ni. The term fi : R→ R is
used in order to avoid inter-agent collisions in case one or more agents that take
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part in a collision scheme are very close to their goals. Note that in that case, the
classical form of ϕi would yield values very close to 0, since agent i is very close
to its goal, without actively taking part in avoiding potential collisions. The term
fi, therefore, forces agent i to avoid potential collisions. Analytic expressions for
Gi and fi can be found in [37]. With the aforementioned tools, the control law for

agent i is ui = −ki
∂ϕi(p)
∂pi

, which, as shown in [37], drives all agents to their goal
positions and guarantees inter-agent collision-avoidance.

2.4 Task Specification in LTL

Definition 2.8. A transition system (T S) is a tuple T := (Π,Π0,→,Ψ,L), where
Π is a discrete finite set of states, Π0 is a discrete finite set of initial states,→⊆ Π×Π
is a transition relation, Ψ is a discrete set of atomic propositions1, and L : Π→ 2Ψ

is a labeling function that assigns to each state the atomic propositions that are
true in that state.

Definition 2.9. A run of a T S is an infinite sequence

rT S := π0, π1, π2, . . . , (2.3)

with π0 ∈ Π0, πi ∈ Π, ∀i ∈ N.

Definition 2.10. A word wT S of a run rT S is the infinite sequence

wT S(rT S) = w0, w1, w2, . . . , (2.4)

where wi ∈ 2Ψ, wi = L(πi),∀i ∈ N ∪ {0}.

We focus on the task specification φ given as a Linear Temporal Logic (LTL)
formula. The basic ingredients of a LTL formula are a set of atomic propositions Ψ
and several boolean and temporal operators. LTL formulas are formed according
to the following grammar [38]: φ ::= true | a | φ1 ∧ φ2 | ¬φ | © φ | φ1 ∪ φ2, where
a ∈ Ψ, φ1 and φ2 are LTL formulas and ©, ∪ are the next and until operators,
respectively. Definitions of other useful operators like � (always), ♦ (eventually)
and ⇒ (implication) are omitted and can be found at [38]. The semantics of LTL
are defined over infinite words over 2Ψ. Intuitively, an atomic proposition ψ ∈ Ψ
is satisfied on a word w = w1w2 . . . if it holds at its first position w1, i.e. ψ ∈ w1.
Formula ©φ holds true if φ is satisfied on the word suffix that begins in the next
position w2, whereas φ1 ∪ φ2 states that φ1 has to be true until φ2 becomes true.
Finally, ♦φ and �φ holds on w eventually and always, respectively. For a full
definition of the LTL semantics, the reader is referred to [38].

A LTL formula φ over a set of atomic propositions Ψ can be translated to a
Büchi Automaton Aφ [38]. Then, by calculating the product of the transition system

1boolean variables that are either true or false in a given state
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T S = (Π,Π0,→,Ψ,L) with Aφ as T̃ S := T S ⊗ Aφ, we can find the runs of T S
that satisfy the formula φ. These runs can then be projected back to T S, providing
paths over Π that satisfy φ. More details regarding the technique can be found in
[38].

2.5 Task Specification in MITL

Definition 2.11. A Weighted Transition System (WTS) is a tuple

T S := (Π,Π0,→,Ψ,L, γ), (2.5)

where Π is a discrete finite set of states, S0 ⊆ S is a discrete finite set of initial
states, →⊆ Π×Π is a transition relation, Ψ is a finite set of atomic propositions,
L : Π → 2Ψ is a labeling function and γ : (→) → R≥0 is a map that assigns a
positive weight to each transition.

Definition 2.12. [39] The time sequence t0t1t2 . . . is an infinite sequence of time
values tj ∈ R≥0,∀j ∈ N ∪ {0}, satisfying the following constraints:

• Monotonicity: tj < tj+1,∀j ∈ N.

• Progress: ∀t′ ∈ R≥0,∃j ≥ 1 such that tj ≥ t′.

Definition 2.13. Let Ψ be a finite set of atomic propositions. A timed word w over
Ψ is an infinite sequence w = (w0, t0)(w1, t1)(w2, t2), . . . , where w0w1w2 . . . is an
infinite word over 2Ψ and t0t1t2 . . . is a time sequence according to Definition 2.12.

Definition 2.14. A timed run of a WTS is an infinite sequence rt = (r0, t0)(r1, t1) . . .
such that r0 ∈ Π0, and rj ∈ Π, (rj , rj+1) ∈ →,∀j ∈ N. The time stamps tj are
inductively defined as

1. t1 = 0,

2. tj+1 = tj + γ(rj , rj+1),∀j ∈ N.

The timed run rt generates a timed word

w(rt) = w0(r0), w1(r1) · · · = (L(r0), t0)(L(r1), t1) . . .

over the set 2Ψ, where L(rj) is the subset of atomic propositions that are true at
state rj at time tj , ∀j ∈ N ∪ {0}.

The syntax of Metric Interval Temporal Logic (MITL) over a set of atomic
propositions Ψ is defined by the grammar

φ := p | ¬φ | φ1 ∧ φ2| ©I φ | ♦Iφ |�Iφ | φ1UIφ2, (2.6)

where p ∈ Ψ, and ©,♦,� and U are the next, future, always and until opera-
tors, respectively; I is a nonempty time interval in one of the following forms:
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[i1, i2], [i1, i2), (i1, i2], (i1, i2), [i1,∞), (i1,∞) with i1, i2 ∈ R≥0, i2 > i1. MITL can
be interpreted either in continuous or point-wise semantics. We utilize the latter
and interpret MITL formulas over timed runs such as the ones produced by a WTS.

Definition 2.15. [40, 41] Given a run rt = (r0, t0)(r1, t1) . . . of a WTS and a MITL
formula φ, we define (rt, j) |= φ, j ∈ N (rt satisfies φ at j) as follows:

(rt, j) |=p⇔ p ∈ L(rj),
(rt, j) |=¬φ⇔ (rt, j) 6|= φ

(rt, j) |=φ1 ∧ φ2 ⇔ (rt, j) |= φ1 and (rt, j) |= φ2

(rt, j) |=©I φ⇔ (rt, j + 1) |= φ and tj+1 − tj ∈ I
(rt, j) |=φ1UIφ2 ⇔ ∃k, j, with j ≤ k, s.t. (rt, k) |= φ2, tk − tj ∈ I and (rt,m) |= φ1,

∀m ∈ {j, . . . , k}

Also, ♦Iφ = >UIφ and �Iφ = ¬♦I¬φ. The sequence rt satisfies φ, denoted as
rt |= φ, if and only if (rt, 1) |= φ.





Chapter 3

Formation Control

The chapter presents a novel control protocol for the formation control of tree
graphs in SE(3). The control laws are decentralized, in the sense that each agent
uses only local relative information from its neighbors to calculate its control
signal as well as robust to modeling (parametric and structural) uncertainties and
external disturbances. The proposed methodology guarantees collision avoidance and
connectivity maintenance among the initially connected agents. Moreover, certain
predefined functions characterize the transient and steady state performance of the
closed loop system. Finally, simulation results verify the validity and efficiency of
the proposed approach.

3.1 Introduction

During the last decades, decentralized control of networked multi-agent systems has
gained a significant amount of attention due to the great variety of its applications,
including multi-robot systems, transportation, multi-point surveillance and biological
systems. The main focus of multi-agent systems is the design of distributed control
protocols in order to achieve global tasks, such as consensus [2–4, 42], and at the
same time fulfill certain properties, e.g., network connectivity [6, 10].

A particular multi-agent problem that has been considered in the literature
is the formation control problem, where the agents represent robots that aim to
form a prescribed geometrical shape, specified by a certain set of desired relative
configurations between the agents. The main categories of formation control that have
been studied in the related literature are ([7]) position-based control, displacement-
based control, distance-based control and orientation-based control. One of the
several applications of formation control is the cooperative manipulation of an object
[12], where the formation occurs either for the inter-agent distances and angles or
the forces that arise at the grasping points. Motivated by this, we address in this
chapter the distance- and orientation-based multi-agent formation control problem.

In distance-based formation control, inter-agent distances are actively controlled
to achieve a desired formation, dictated by desired inter-agent distances. Each

19
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agent is assumed to be able to sense the relative positions of its neighboring agents,
without the need of orientation alignment of the local coordinate systems. When
orientation alignment is considered as a control design goal, the problem is known
as orientation-based (or bearing-based) formation control. The desired formation
is then defined by relative inter-agent orientations. The orientation-based control
steers the agents to configurations that achieve desired relative orientation angles. In
this work, we aim to design a decentralized control protocol such that both distance-
and orientation-based formation is achieved.

The literature in distance-based formation control is rich, and is traditionally
categorized in single or double integrator agent dynamics and directed or undirected
communication topologies (see e.g. [43–58]). Orientation-based formation control
has been addressed in [59–62], whereas the authors in [61, 63, 64] have considered
the combination of distance- and orientation-based formation.

In most of the aforementioned works in formation control, the two-dimensional
case with simple dynamics and point-mass agents has been dominantly considered.
In real applications, however, the engineering systems have nonlinear second order
dynamics and are usually subject to exogenous disturbances and modeling errors.
Another important issue concerns the connectivity maintenance, the collision avoid-
ance between the neighboring agents and the transient and steady state response
of the closed loop system, which have not been taken into account in the majority
of related woks. Thus, taking all the above into consideration, the design of robust
distributed control schemes for the multi-agent formation control problem becomes
a challenging task.

In this chapter, we aim at addressing the distance-based formation control
problem with orientation alignment for a team of tree-graph communication-based
rigid bodies operating in SE(3), with unknown second-order nonlinear dynamics
and external disturbances. We propose a purely decentralized control protocol that
guarantees distance formation, orientation alignment as well as collision avoidance
and connectivity maintenance between initially neighboring agents and in parallel
ensures prescribed transient and steady state performance. The prescribed perfor-
mance control framework has been incorporated in multi-agent systems in [65, 66],
where first order dynamics have been considered. Furthermore, the first one only
addresses the consensus problem, whereas the latter solves the position based forma-
tion control problem, instead of the distance- and orientation-based problem treated
here. More specifically, the proposed methodology exhibits the following attributes:

1. It is decentralized, in the sense that each agent computes its own control signal
based on its local sensing capabilities, without needing to communicate with
the rest of the agents or know the pose of a global coordinate frame.

2. It is robust to bounded external disturbances and uncertainties of the dynamic
model, since these are not employed in the control design.

3. It guarantees collision avoidance and connectivity maintenance among the
initially connected agents.
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4. It guarantees convergence to a feasible formation configuration with predefined
transient and steady-state performance from almost all initial conditions.
Moreover, in contrast to standard continuous control methodologies on SO(3),
it guarantees convergence to the desired formation configuration arbitrarily fast,
regardless of the distance of the initial system configuration to the undesired
unstable equilibrium.

3.2 Preliminaries

3.2.1 Graph Theory
An undirected graph G is a pair (N , E), where N is a finite set of N ∈ N nodes,
representing a team of agents, and E ⊆ {{i, j} : i, j ∈ N , i 6= j}, with K = |E|, is the
set of edges that model the communication capabilities between neighboring agents.
For each agent, its neighboring set Ni is defined as Ni := {j ∈ V s.t. {i, j} ∈ E}.

If there is an edge {i, j} ∈ E , then i, j are called adjacent. A path of length r
from vertex i to vertex j is a sequence of r + 1 distinct vertices, starting with i and
ending with j, such that consecutive vertices are adjacent. For i = j, the path is
called a cycle. If there is a path between any two vertices of the graph G, then G is
called connected. A connected graph is called a tree if it contains no cycles.

Consider an arbitrary orientation of G, which assigns to each edge {i, j} ∈ E
precisely one of the ordered pairs (i, j) or (j, i). When selecting the pair (i, j), we
say that i is the tail and j is the head of the edge {i, j}. By considering a numbering
k ∈ K := {1, . . . ,K} of the graph’s edge set, we define the N ×M incidence matrix
D(G) as it was given in [67].

Lemma 3.1. [48, Section III] Assume that the graph G is a connected tree. Then,
D(G)>∆D(G) is positive definite for any positive definite matrix ∆ ∈ RN×N .

Proposition 3.1. Let f : R≥0 → R, with f(x) := exp(x)(exp(x)− 1)− x2. Then
it holds that f(x) ≥ 0, ∀x ∈ R≥0.

Proof. It holds that ∂f(x)
∂x = 2 exp(2x)− exp(x)− 2x > 0,∀x ∈ R≥0. Hence, f(x) ≥

f(0) = 0, ∀x ∈ R≥0.

Proposition 3.2. [68] Let R1, R2 ∈ SO(3), and eR := S−1(R>1 R2 −R>2 R1). Then
‖eR‖2 := ‖R1 −R2‖2F

(
1− 1

8‖R1 −R2‖2F
)

.

Proposition 3.3. Let R1, R2 ∈ SO(3). Then, for the rotation matrix R>2 R1 ∈
SO(3) it holds that −1 ≤ tr[R>2 R1] ≤ 3; tr[R>2 R1] = 3 if and only if R>2 R1 = I3 ⇔
R1 = R2; tr[R>2 R1] = −1 when R1 = R2 exp(πŝ), for every ŝ in the unit sphere.

Useful properties of skew symmetric matrices [69]:

• x>S(y)x = 0;
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• S(Rx) = RS(x)R>;

• − 1
2 tr [S(x)S(y)] = x>y;

• tr [AS(x)] = 1
2 tr
[
S(x)(A−A>)

]
= −x>S−1(A−A>),

for every x, y ∈ R3, A ∈ R3×3 and R ∈ SO(3).

3.3 Problem Formulation

3.3.1 System Model
Consider a set of N rigid bodies, with N = {1, 2, . . . , N}, N ≥ 2, operating in a
workspace W ⊆ R3. We consider that each agent occupies a ball B(pi, ri), where
pi ∈ R3 is the position of the agent’s center of mass with respect to an inertial frame
Fo and ri ∈ R>0 is the agent’s radius (see Fig. 3.1). We also denote as Ri ∈ SO(3)
the rotation matrix associated with the orientation of the ith rigid body. Moreover,
we denote by vi,L ∈ R3 and ωi ∈ R3 the linear and angular velocity of agent i with
respect to frame Fo. The vectors pi are expressed in Fo coordinates, whereas vi,L
and ωi are expressed with respect to a local frame Fi centered at each agent’s center
of mass. The position, though, of Fo, is not required to be known by the agents, as
will be shown later. By defining xi := (pi, Ri) ∈ SE(3) and vi := [v>i,L, ω>i ]> ∈ R6,
we model each agent’s motion with the 2nd order Newton-Euler dynamics:

ẋi = (Rivi,L, RiS(ωi)) ∈ TRi , (3.1a)
ui = Miv̇i + Ci(vi)vi + gi(xi) + wi(xi, vi, t), (3.1b)

where the matrix Mi ∈ R6×6 is the constant positive definite inertia matrix, Ci :
R6 → R6×6 is the Coriolis matrix, gi : SE(3) → R6 is the body-frame gravity
vector, wi : R6 × R≥0 → R6 is a bounded vector representing model uncertainties
and external disturbances, and TRi = R3 × TRSO(3), as defined in the previous
chapter. Finally, ui ∈ R6 is the control input vector representing the 6D body-
frame generalized force acting on agent i. The following properties hold for the
aforementioned terms:

• The terms Mi, Ci(·), gi(·) are unknown, Ci(·), gi(·) are continuous and it holds
that

0 < mi < m̄i <∞ (3.2a)
‖gi(xi)‖ ≤ ḡi,∀xi ∈ SE(3), (3.2b)

∀i ∈ N , where ḡi is a finite unknown positive constant and mi := λmin(Mi),
and m̄i := λmax(Mi), which are also uknown, ∀i ∈ N .

• The functions wi(xi, vi, t) are assumed to be continuous in vi ∈ R6 and
for each fixed vi ∈ R6, the functions (xi, t)→ wi(xi, vi, t) are assumed to be
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Figure 3.1: Illustration of two agents i, j ∈ N in the workspace; Fo is the inertial
frame, Fi, Fj are the frames attached to the agents’ center of mass, pi, pj ∈ R3 are
the positions of the center of mass with respect to Fo; ri, rj are the radii of the agents
and si > sj are their sensing ranges.

bounded by unknown positive finite constants w̄i, i.e., ‖wi(xi, vi, t)‖ ≤ w̄i <∞,
∀xi ∈ SE(3), t ∈ R≥0, i ∈ N .

The dynamics (3.1b) can be written in a vector form representation as:

ẋ = hx(x, v), (3.3a)
u = Mv̇ + C(v)v + g(x) + w(x, v, t), (3.3b)

where x := (x1, . . . , xN ) ∈ SE(3)N , v := [v>1 , . . . , v>N ]> ∈ R6N , u := [u>1 , . . . , u>N ]> ∈
R6N , and

hx(x, v) := (hx1(x1, v1), . . . , hxN (xN , vN ))
:= ((R1v1,L, R1S(ω1)), . . . , (RNvN,L, RNS(ωN )))
∈ TR1 × · · · × TRN ,

M := diag{[Mi]i∈V} ∈ R6N×6N ,

C(v) := diag{[Ci(vi)]i∈V} ∈ R6N×6N ,

g(x) := [g1(x1)>, . . . , gN (xN )>]> ∈ R6N ,

w(x, v, t) := [w1(x1, v1, t)>, . . . , w(xN , vN , t)>]> ∈ R6N .

It is also further assumed that each agent has a limited sensing range of si >
maxi,j∈N {ri + rj}. Therefore, by defining the set-valued neighboring function Ni :
R3N ⇒ N, with Ni(p) := {j ∈ N : pj ∈ B(pi, si)}, and p := [p>1 , . . . , p>N ]> ∈ R3N ,
agent i can measure the relative offset R>i (pi−pj) (i.e., expressed in i’s local frame),
the distance ‖pi − pj‖, as well as the relative orientation R>j Ri with respect to its
neighbors j ∈ Ni(p). In addition, we consider that each agent can measure its own
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velocity subject to time- and state-varying bounded noise, i.e., agent i has continuous
feedback of ṽi := [ṽ>i,L, ω̃i

>]> := vi + ni(xi, t), ∀i ∈ N . The vector fields ni :
SE(3)×R≥0 → R6 are assumed to be bounded by unknown positive finite constants
n̄i, i.e., ‖ni(xi, t)‖ ≤ n̄i, ∀xi ∈ SE(3), t ∈ R≥0, i ∈ N . Moreover, the vector fields
ni,d : SE(3)×TRi×R≥0 → R6 with ni,d(xi, ẋi, t) := ṅi(xi, ẋi) = ∂ni(xi,t)

∂xi
ẋi+∂ni(xi,t)

∂t
are assumed to be continuous in ẋi ∈ TRi and for each fixed ẋi ∈ TRi , the functions
(xi, t) → ni,d(xi, ẋi, t) are assumed to be bounded by unknown positive finite
constants n̄i,d, i.e., ‖ni,d(xi, ẋi, t)‖ ≤ n̄i,d, ∀xi ∈ SE(3), t ∈ R≥0, i ∈ N .

Remark 3.1. (Local relative feedback) Note that the agents do not need to
have information of any common global inertial frame. The feedback they obtain is
relative with respect to their neighboring agents (expressed in their local frames)
and they are not required to perform transformations in order to obtain absolute
positions/orientations. In the same vein, note also that the velocities vi are vectors
expressed in the agents’ local frames.

The topology of the multi-agent network is modeled through the undirected
graph G := (N , E), with E = {(i, j) ∈ N 2 : j ∈ Ni(p(0)) and i ∈ Nj(p(0))} (i.e., the
initially connected agents), which is assumed to be nonempty and connected. We
further denote K := {1, . . . ,K} where K := |E|. Given the k-th edge, we use the
simplified notation (k1, k2) for the function that assigns to edge k the respective
agents, with k1, k2 ∈ N , ∀k ∈ K. Since the agents are heterogeneous with respect to
their sensing capabilities (different sensing radii si), the fact that the initial graph
is nonempty, connected and undirected implies that

‖pk2(0)− pk1(0)‖ < dk,con, (3.4)

with dk,con := min{sk1 , sk2},∀k ∈ K. We also consider that G is static in the sense
that no edges are added to the graph. We do not exclude, however, edge removal
through connectivity losses between initially neighboring agents, which we guarantee
to avoid. That is, the proposed methodology guarantees that ‖pk2(t) − pk1(t)‖ <
dk,con, ∀k ∈ K, ∀t ∈ R≥0. It is also assumed that at t = 0 the neighboring agents
are at a collision-free configuration, i.e., dk,col < ‖pk2(0) − pk1(0)‖,∀k ∈ K, with
dk,col := rk1 + rk2 . Hence, we conclude that

dk,col < ‖pk2(0)− pk1(0)‖ < dk,con,∀k ∈ K. (3.5)

The desired formation is specified by the constants dk,des ∈ R≥0, Rk,des ∈
SO(3),∀k ∈ K, for which, the formation configuration is called feasible if the set
Φ := {x ∈ SE(3)N : ‖pk2 − pk1‖ = dk,des, R

>
k2
Rk1 = Rk,des,∀k ∈ K} is nonempty.

3.3.2 Problem Statement
Due to the fact that the agents are not dimensionless and their communication
capabilities are limited, the control protocol, except from achieving a desired inter-
agent formation and maintaining connectivity, should also guarantee for all t ∈ R≥0
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that the initially neighboring agents avoid collision with each other. Therefore, all
pairs (k1, k2) ∈ N 2 of agents that initially form an edge must remain within distance
greater than dk,col and less than dk,con. We also make the following assumptions
that on the graph topology:

Assumption 3.1. The communication graph G is a tree.

Formally, the robust formation control problem under the aforementioned con-
straints is formulated as follows:

Problem 3.1. Given N agents governed by the dynamics (3.1), under Assump-
tion 3.1 and given the desired inter-agent configuration constants dk,des∈ R≥0,
Rk,des∈ SO(3), with dk,col < dk,des < dk,con, ∀k ∈ K, design decentralized control
laws ui ∈ R6, i ∈ N such that, ∀ k ∈ K, the following hold:

1. lim
t→∞

‖pk2(t)− pk1(t)‖ = dk,des;

2. lim
t→∞

[Rk2(t)]>Rk1(t) = Rk,des;

3. dk,col < ‖pk2(t)− pk1(t)‖ < dk,con,∀ t ∈ R≥0.

The term “robust” here refers to robustness of the proposed methodology with
respect to the unknown dynamics and external disturbances in (3.1) as well as the
unknown noise ni(·) in the velocity feedback.

3.4 Main Results

3.4.1 Error Derivation
Let us first introduce the distance and orientation errors:

ek := ‖pk2 − pk1‖
2 − d2

k,des ∈ R, (3.6a)

ψk := 1
2tr
[
I3 −R>k,desR

>
k2
Rk1

]
∈ [0, 2], (3.6b)

∀k ∈ K, where we have used Proposition 3.3. Regarding ek, our goal is to guarantee
limt→∞ ek(t) → 0 from all initial conditions satisfying (3.5), while avoiding inter-
agent collisions and connectivity losses among the initially connected agents specified
by E . Regarding ψk, we aim to guarantee the following:

1. limt→∞ ψk(t)→ 0, which, according to Proposition 3.3 implies that

lim
t→∞

Rk2(t)>Rk1(t) = Rk,des

2. ψk(t) < 2, ∀t ∈ R≥0, since the configuration ψk = 2 is an undesired equilibrium,
as will be clarified later1.

1It has been proved that topological obstructions do not allow global stabilization on SO(3)
with a continuous feedback control law (see [68–70])
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By using properties of skew-symmetric matrices, we derive the following dynamics
of the errors (3.6):

ėk = 2(pk2 − pk1)>(Rk2vk2,L −Rk1vk1,L) = 2(R>k1
p̃k2,k1)>(R>k1

Rk2vk2,L − vk1,L),
(3.7a)

ψ̇k = 1
2e
>
Rk

(R>k1
Rk2ωk2 − ωk1), (3.7b)

where p̃k2,k1 := pk2 − pk1 and eRk := S−1(R>k1
Rk2Rk,des −R>k,desR

>
k2
Rk1), ∀k ∈ K.

By employing Proposition 3.2, we obtain ‖eRk‖2 = ‖R>k2
Rk1 − Rk,des‖2F(1 −

1
8‖R

>
k2
Rk1 −Rk,des‖2F) as well as

‖R>k2
Rk1 −Rk,des‖2F = tr

[
(R>k2

Rk1 −Rk,des)>(R>k2
Rk1 −Rk,des)

]
= tr

[
2I3 − 2R>k,desR

>
k2
Rk1

]
= 4ψk.

Hence, it holds that:
‖eRk‖2 = 2ψk(2− ψk), (3.8)

which implies that: ‖eRk‖ = 0⇒ ψk = 0 or ψk = 2, ∀k ∈M. The two configurations
ψk = 0 and ψk = 2 correspond to the desired and undesired equilibrium, respectively.

3.4.2 Performance Functions
The concepts and techniques of prescribed performance control (see Section 2.1)
are adapted in this work in order to: a) achieve predefined transient and steady
state response for the distance and orientation errors ek, ψk, ∀k ∈ K, as well as ii)
avoid the violation of the collision and connectivity constraints between initially
neighboring agents, as presented in Section 3.3. The mathematical expressions of
prescribed performance are given by the inequality objectives:

−Ck,colρek(t) < ek(t) < Ck,conρek(t), (3.9a)
0 ≤ ψk(t) < ρψk(t) < 2, (3.9b)

∀k ∈ K, where ρek : R≥0 →
[

ρek,∞
max{Ck,con,Ck,col} , 1

]
, ρψk : R≥0 → [ρψk,∞, ρψk,0], with

ρek(t) :=
[
1−

ρek,∞

max{Ck,con, Ck,col}

]
e−lek t +

ρek,∞

max{Ck,con, Ck,col}
,

ρψk(t) := (ρψk,0 − ρψk,∞)e−lψk t + ρψk,∞,

are designer-specified, smooth, bounded, and decreasing functions of time; the
constants lek , lψk ∈ R≥0, and ρek,∞ ∈ (0,max{Ck,con, Ck,col}), ρψk,∞ ∈ (0, ρψk,0),
∀k ∈ K, incorporate the desired transient and steady state performance specifications
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respectively, as presented in Section 2.1, and Ck,col, Ck,con ∈ R>0,∀k ∈ K, are
associated with the collision and connectivity constraints. In particular, we select

Ck,col := d2
k,des − d2

k,col, (3.10a)
Ck,con := d2

k,con − d2
k,des, (3.10b)

∀k ∈ K, which, since the desired formation is compatible with the collision and
connectivity constraints (i.e., dk,col < dk,des < dk,con,∀k ∈ K), ensures that
Ck,col, Ck,con ∈ R>0,∀k ∈ K, and consequently, in view of (3.5), that:

−Ck,colρek(0) < ek(0) < ρek(0)Ck,con, (3.11a)

∀k ∈ K. Moreover, assuming that ψk(0) < 2, ∀k ∈ K, by choosing

ρψk,0 := ρψk(0) ∈
(
ψk(0), 2

)
, (3.11b)

it is also guaranteed that:

0 ≤ ψk(0) < ρψk(0) < 2, (3.11c)

∀k ∈ K. Hence, if we guarantee prescribed performance via (3.9), by setting the
steady state constants ρek,∞, ρψk,∞ arbitrarily close to zero and by employing the
decreasing property of ρek(t), ρψk(t),∀k ∈ K, we guarantee practical convergence of
the errors ek(t), ψk(t) to zero and we further obtain:

−Ck,col < ek(t) < Ck,con, (3.12a)
0≤ ψk(t) < ρψk(t), (3.12b)

∀t ∈ R≥0, which, owing to (3.10), implies:

dk,col < ‖pk2(t)− pk1(t)‖ < dk,con,

∀k ∈ K, t ∈ R≥0, providing, therefore, a solution to problem 3.1. Moreover, note
that the choice of ρψk,0 along with (3.12) guarantee that ψk(t) < 2, ∀t ∈ R≥0 and
the avoidance of the unstable singularity equilibrium.

In the sequel, we propose a decentralized control protocol that does not incor-
porate any information on the agents’ dynamic model and guarantees (3.9) for all
t ∈ R≥0.

3.4.3 Control Design
Given the errors ek, ψk defined in Section 3.4.1, we perform the following steps:

Step I-a: Select the corresponding functions ρek(·), ρψk(·) and positive parame-
ters Ck,con, Ck,col, k ∈ K, following (3.9), (3.11b), and (3.10), respectively, in order
to incorporate the desired transient and steady state performance specifications as
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well as the collision and connectivity constraints, and define the normalized errors,
∀k ∈ K,

ξek := ek
ρek(t) , ξψk

:= ψk
ρψk(t) . (3.13)

Step I-b: Define the transformations Tek : (−Ck,col, Ck,con) → R, k ∈ K, and
Tψ : [0, 1)→ [0,∞) by

Tek(x) := ln
(

1 + x
Ck,col

1− x
Ck,con

)
, Tψ(x) := ln

( 1
1− x

)
,

∀k ∈ K, and the transformed error states, ∀k ∈ K,

εek := Tek(ξek), (3.14a)
εψk := Tψ(ξψk). (3.14b)

Next, we design the decentralized reference velocity vector for each agent vi,des :=
[v>i,Ldes, ω

>
i,des]> as

vi,des =
[
vi,Ldes

ωi,des

]

= −δi

2
∑
k∈M

α(i, k, Rk1 , Rk2) rek (ξek )
ρek (t) εekR

>
k1
p̃k2,k1∑

k∈K
α(i, k, Rk1 , Rk2) rψ(ξψk )

ρψk (t) eRk

 , (3.15)

where δi ∈ R>0 are positive gains, ∀i ∈ N , rek : (−Ck,col, Ck,con) → [1,∞), rψ :
[0, 1)→ [1,∞), with rek(x) := ∂Tek (x)

∂x , rψ(x) := ∂Tψ(x)
∂x , and the function α is defined

as α(i, k, Rk1 , Rk2) = −I3, if i is the tail of the kth edge (i = k1), α(i, k, Rk1 , Rk2) =
R>k2

Rk1 if i is the head of the kth edge (i = k2), and 0 otherwise. The assignment
of the head and tail in each edge can be done off-line according to the specified
orientation of the graph, as mentioned in Section 3.2.1.

Step II-a: Define for each agent the velocity errors evi := [e>vi,1, . . . , e
>
vi,6]> :=

ṽi−vi,des, ∀i ∈ N , and design the decreasing performance functions as ρvi,` : R≥0 →
[ρv0

i,`
, ρv∞

i,`
], with ρvi,`(t) := (ρv0

i,`
− ρv∞

i,`
) exp(−lvi,`t) + ρv∞

i,`
, where the constants

ρv0
i,`
, ρv∞

i,`
, lvi,` incorporate the desired transient and steady state specifications, with

the design constraints ρv0
i,`
> |evi,`(0)|, ρv∞

i,`
∈ (0, ρv0

i,`
), ∀` ∈ {1, . . . , 6}, i ∈ N . The

term evi,`(0) can be measured be each agent at t = 0 directly after the calculation
of vi,des(0).

Moreover, define the normalized velocity errors

ξvi :=


ξvi,1

...
ξvi,6

 := ρvi(t)−1evi , (3.16)
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where ρvi(·) := diag{[ρvi,`(·)]`∈{1,...,6}}, ∀i ∈ N .
Step II-b: Define the transformation Tv : (−1, 1)→ R as

Tv(x) := ln
(1 + x

1− x

)
,

and the transformed error states

εvi :=


εvi,1

...
εvi,6

 :=


Tv(ξvi,1)

...
Tv(ξvi,6)

 . (3.17)

Finally, design the decentralized control protocol for each agent i ∈ N as

ui := −γi [ρvi(t)]
−1
r̄v(ξvi)εvi , (3.18)

where r̄v(ξvi) := diag{[rv(ξvi,`)]`∈{1,...,6}} with rv : (−1, 1) → [1,∞), rv(x) :=
∂Tv(x)
∂x , and γi ∈ R>0 are positive gains, ∀i ∈ N .

Remark 3.2. (Control protocol intuition) Note that the selection of Ck,col, Ck,con
according to (3.10) and of ρψk(t), ρvi,`(t) such that ρψk,0 = ρψk(0) ∈ (ψk(0), 2), ρv0

i,`
=

ρvi,`(0) > |evi,`(0)| along with (3.5), guarantee that ξek(0) ∈ (Ck,col, Ck,con), ψk(0) ∈
[0, 2), ξvi,`(0) ∈ (−1, 1), ∀k ∈ K, ` ∈ {1, . . . , 6}, i ∈ N . The prescribed performance
control technique enforces these normalized errors ξek(t), ξψk(t) and ξvi,`(t) to
remain strictly within the sets (−Ck,col, Ck,con), [0, 2), and (−1, 1), respectively,
∀k ∈ K, ` ∈ {1, . . . , 6}, i ∈ N , t ≥ 0, guaranteeing thus a solution to Problem 3.1. It
can be verified that this can be achieved by maintaining the boundedness of the
modulated errors εek(t), εψk(t) and εvi(t) in a compact set, ∀t ≥ 0.

Remark 3.3. (Arbitrarily fast convergence to ψk = 0) The configurations
where ‖eRk‖ = 0 ⇔ ψk = 0 or ψk = 2 are equilibrium configurations that result
in ωk1,des = ωk2,des = 0, ∀k ∈ K. If ψk(0) = 2, which is a local minima, the
orientation formation specification for edge k cannot be met, since the system
becomes uncontrollable. This is an inherent property of stabilization in SO(3),
and cannot be resolved with a purely continuous controller [70]. Moreover, initial
configurations ψk(0) starting arbitrarily close to 2 might take infinitely long to be
stabilized at ψk = 0 with common continuous methodologies [71]. Note however,
that the proposed control law guarantees convergence to ψk = 0 arbitrarily fast,
given that ψk(0) < 2. More specifically, given the initial configuration ψk(0) < 2,
we can always choose ρψk,0 such that ψk(0) < ρψk,0 < 2, regardless of how close
ψk(0) is to 2. Then, as proved in the next section, the proposed control algorithm
guarantees (3.9b) and the transient and steady state performance of the evolution
ψk(t) is determined solely by ρψk(t) and more specifically, the rate of convergence is
determined by the term lψk . It can be observed from the desired angular velocities
designed ωi,des in (3.15) that close to the configuration ψk(0) = 2, the term eRk(0),
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which is close to zero (since ψk(0) = 2 ⇒ ‖eRk(0)‖ = 0), is compensated by the
term rψ(ξψk(0)) = 1

1−ξψk (0) , which attains large values (since ξψk(0) = ψk(0)
ρψk,0

is close
to 1). Moreover, potentially large values (but always bounded, as proved in the next
section) for ωi,des and hence ui due to the term rψ(ξψk(0)) can be compensated by
tuning the control gains δi and γi.

Remark 3.4. (Decentralized manner, relative feedback, and robustness)
Notice by (3.15) and (3.18) that the proposed control protocols are distributed in
the sense that each agent uses only local relative information to calculate its own
signal. In that respect, regarding every edge k, the parameters ρek,∞, ρψk,∞, lek , lψk ,
as well as the sensing radii sj ,∀j ∈ Ni(p(0)), which are needed for the calculation of
the performance functions ρek(t), ρψk(t), can be transmitted off-line to the agents
k1, k2 ∈ N . In the same vein, regarding ρvi,`(t), i.e., the constants ρv∞

i,`
, lvi,` can be

transmitted off-line to each agent i, which can also compute ρv0
i,`

, given the initial
velocity errors evi(0). Notice also from (3.15) that each agent i uses only relative
feedback with respect to its neighbors. In particular, for the calculation of vi,Ldes, the
tail of edge k, i.e., agent k1, uses feedback of R>k1

(pk2 − pk1), and the head of edge k,
i.e., agent k2, uses feedback of R>k2

Rk1R
>
k1

(pk2−pk1) = R>k2
(pk2−pk1). Both of these

terms are the relative inter-agent position difference expressed in the agents’ local
frames. For the calculation of ωi,des, agents k1 and k2 require feedback of the relative
orientation R>k2

Rk1 , as well as the signal S−1(R>k1
Rk2Rk,des−R>k,desR

>
k2
Rk1), which

is a function of R>k2
Rk1 . The aforementioned signals encode information related

to the relative pose of each agent with respect to its neighbors, without the need
for knowledge of a common global inertial frame. It should also be noted that the
proposed control protocol (3.18) depends exclusively on the velocity of each agent
and not on the velocity (expressed in a local frame) of its neighbors. Moreover,
the proposed control law does not incorporate any prior knowledge of the model
nonlinearities/disturbances, enhancing thus its robustness. Finally, the proposed
methodology results in a low complexity. Notice that no hard calculations (neither
analytic nor numerical) are required to output the proposed control signal.

Remark 3.5. (Construction of performance functions and gain tuning)
Regarding the construction of the performance functions, we stress that the desired
performance specifications concerning the transient and steady state response as
well as the collision and connectivity constraints are introduced in the proposed
control schemes via ρek(t), ρψk(t) and Ck,col, Ck,con, k ∈ K. In addition, the velocity
performance functions ρvi,`(t), impose prescribed performance on the velocity errors
evi = vi − vi,des, i ∈ N . In this respect, notice that vi,des acts as a reference signal
for the corresponding velocities vi, i ∈ N . However, it should be stressed that
although such performance specifications are not required (only the neighborhood
position and orientation errors need to satisfy predefined transient and steady
state performance specifications), their selection affects both the evolution of the
errors within the corresponding performance envelopes as well as the control input
characteristics (magnitude and rate). More specifically, relaxing the convergence
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rate and the steady state limit of the velocity performance functions leads to
increased oscillatory behavior within the prescribed performance region, which is
improved when considering tighter performance functions, enlarging, however, the
control effort both in magnitude and rate. Nevertheless, the only hard constraint
attached to their definition is related to their initial values. Specifically, ρψk,0 =
ρψk(0) ∈ (ψk(0), 2), ρv0

i,`
= ρvi,`(0) > |evi,`(0)|, ∀k ∈ K, ` ∈ {1, . . . , 6}, i ∈ N . In

the same vein, as will be verified by the proof of Theorem 3.1, the actual transient-
and steady-state performance of the closed loop system is solely determined by
the performance functions ρek(t), ρψk(t), ρvi,l(t), and the constants Ck,col, Ck,con,
k ∈ K, ` ∈ {1, . . . , 6}, i ∈ N , without requiring any tuning of the gains δi, γi,
i ∈ N . It should be noted, however, that their selection affects the control input
characteristics and the state trajectory in the prescribed performance area. In
particular, decreasing the gain values leads to increased oscillatory behavior within
the prescribed performance area, which is improved when adopting higher values,
enlarging, however, the control effort both in magnitude and rate. Fine gain tuning is
also needed in cases where the control input needs to be bounded by a pre-specified
saturation value, since, although the proposed methodology yields bounded control
inputs, it does not guarantee explicit bounds. A detailed analysis regarding the
acquirement of such bounds is found in the next chapter.

3.4.4 Stability Analysis

In this section we provide the main result of this paper, which is summarized in the
following theorem.

Theorem 3.1. Consider the multi-agent system described by the dynamics (3.3),
under a static tree communication graph G, aiming at establishing a formation
described by the desired offsets dk,des ∈ (dk,col, dk,con) and Rk,des, ∀k ∈ K, ∀k ∈ K.
Then, the control protocol (3.13)-(3.18) guarantees the prescribed transient and
steady-state performance

−Ck,colρek(t) < ek(t) < Ck,conρek(t), (3.19a)
0≤ ψk(t) < ρψk(t), (3.19b)

∀k ∈ K, t ∈ R≥0, under all initial conditions satisfying ψk(0) < 2, ∀k ∈ K and
(3.5), providing thus a solution to Problem 3.1.

Proof. We start by defining some vector and matrix forms of the introduced signals
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and functions:

e := [e1, . . . , eK ]>, ψ := [ψ1, . . . , ψK ]>

eR := [e>R1
, . . . , e>RK ]>, ev := [e>v1

, . . . , e>vN ]>

ξa := [ξa1 , . . . , ξaK ]>, ξv := [ξ>v1
, . . . , ξ>vN ]>

εe := [εe1 , . . . , εeK ]>, εψ := [εψ1 , . . . , εψK ]>

εv := [ε>v1
, . . . , ε>vN ]>, p̃ := [p̃>12,11

, . . . , p̃>K2,K1
]>

vL := [v>1,L, . . . , v>N,L]>, vLdes := [v>1,Ldes, . . . , v
>
N,Ldes]>

ω := [ω>1 , . . . , ω>N ]>, ωdes := [ω>1,des, . . . , ω
>
N,des]>

vdes := [v>1,des, . . . , v
>
N,des]>, ρa(t) := diag{[ρak(t)]k∈K}

ρv(t) := diag{[ρvi(t)]i∈N }
re(ξe) := diag{[rek(ξek)]k∈K},Σe(ξe, t) := re(ξe)ρe(t)−1

r̃ψ(ξψ) := diag{[rψ(ξψk)]k∈K},Σψ(ξψ, t) := r̃ψ(ξψ)ρψ(t)−1,

r̃v(ξv) := diag{[r̄v(ξvi)]i∈N },Σv(ξv, t) := r̃v(ξv)ρv(t)−1

where a ∈ {e, ψ}.
With the introduced notation, (3.7) can be written in vector form as:

ė =


ė1
...
ėK

 =


2(R>11

p̃12,11)>(R>11
R12v12,L − v11,L)

...
2(R>K1

p̃K2,K1)>(R>K1
RK2vK2,L − vK1,L)



= 2


p̃>12,11

. . . 01×3
... . . . ...

01×3 . . . p̃>K2,K1

 R̂DR(R,G)>vL

= Fp(p̃)>R̂DR(R,G)>vL, (3.20a)

ψ̇ =


ψ̇1
...
ψ̇K

 = 1
2


e>R1

(R>11
R12ω12 − ω11)

...
e>RK (R>K1

RK2ω12 − ωK1)



= 1
2


e>R1

. . . 01×3
... . . . ...

01×3 . . . e>RK

DR(R,G)>ω

= FR(eR)>DR(R,G)>ω, (3.20b)
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where R̂ := diag{[Rk1 ]k∈K} ∈ R3K×3K ,

Fp(p̃) := 2


p̃12,11 . . . 03×1

... . . . ...
03×1 . . . p̃K2,K1

 ∈ R3K×K ,

FR(eR) := 1
2


eR1 . . . 03×1

... . . . ...
03×1 . . . eRK

 ∈ R3K×K ,

DR ∈ R3N × R3K is the orientation incidence matrix of the graph:

DR(R,G) := R̄> [D(G)⊗ I3] R̂, (3.21)

with R̄ := diag{[Ri]i∈N } ∈ R3N×3N , and D(G) is the incidence matrix of the graph.
The terms R̄ and R̂ in DR(R,G) correspond to the block diagonal matrix with the
agents’ rotation matrices along the main block diagonal, and the block diagonal
matrix with the rotation matrix of each edge’s tail along the main block diagonal,
respectively. These two terms have motivated the incorporation of the terms α(·) in
the desired velocities vi,des designed in (3.15), since, as shown next, the vector form
vdes yields the orientation incidence matrix DR(R,G).

The desired velocities (3.15) and control inputs (3.18) can be written in vector
form as

vLdes = −∆DR(R,G)R̂>Fp(p̃)Σe(ξe, t)εe, (3.22a)
ωdes = −∆DR(R,G) [Σψ(ξψ, t)⊗ I3] eR, (3.22b)
u = −Γ Σv(ξv, t)εv, (3.22c)

where ∆ := diag{[δiI3]i∈N } ∈ R3N×3N and Γ := diag{[γiI6]i∈N } ∈ R6N×6N . Note
from (3.22c) and (3.13), (3.16), (3.14), (3.17) that u can be expressed as a function
of the states u(x, v, t). Hence, the closed loop system can be written as

ẋ = hx(x, v)

v̇ = −M−1
{
C(v)v + g(x) + w(x, v, t)− u(x, v, t)

}
=: hv(x, v, t).

By defining z := (x, v) ∈ SE(3)N × R6N , we can write the closed loop system in
vector form as

ż = h(z, t) := (hx(z), hv(z, t)). (3.23)
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Next, define the set

Ω := {(x, v, t) ∈ SE(3)N × R6N × R≥0 :
ξek(pk1 , pk2 , t) ∈ (−Ck,col, Ck,con),
ξψk(Rk1 , Rk2 , t) < 1,
ξvi(x, vi, t) ∈ (−1, 1)6,∀k ∈ K},

where we have expressed ξek , ξψk , ξvi from (3.13), (3.16) as a function of the states.
It can be verified that the set Ω is open due to the continuity of the operators
ξek(·), ξψk(·), ξvi(·) and nonempty, due to (3.10). Our goal here is to prove firstly
that (3.23) has a unique and maximal solution (z(t), t) in Ω and then that this
solution stays in a compact subset of Ω.

It can be verified that the function h : Ω → TR1 × · · · × TRN × R6N is (a)
continuous in t for each fixed (x, v) ∈ {(x, v) ∈ SE(3)N × R6N : (x, v, t) ∈ Ω}, and
(b) continuous and locally lipschitz in (x, v) for each fixed t ∈ R≥0. Therefore, the
conditions of Theorem 2.4 are satisfied and hence, we conclude the existence of a
unique and maximal solution of (3.23) for a timed interval [0, tmax), with tmax > 0,
such that (z(t), t) ∈ Ω, ∀t ∈ [0, tmax). This implies that

ξek(t) = ek(t)
ρek(t) ∈ (−1, 1), (3.24a)

ξψk(t) = ψk(t)
ρψk(t) < 1, (3.24b)

ξvi(t) = ρvi(t)−1evi(t) ∈ (−1, 1)6, (3.24c)

∀k ∈ K, i ∈ N , t ∈ [0, tmax). Therefore, the signals ek(t), ψk(t), evi(t) are bounded
for all t ∈ [0, tmax). In the following, we aim to show that the solution (z(t), t) is
bounded in a compact subset of Ω and hence, by employing Theorem 2.5, that
tmax =∞.

Consider the positive definite Lyapunov candidate Ve : R→ R≥0, with Ve(εe) :=
1
2‖εe‖

2, which is well defined for t ∈ [0, tmax), due to (3.24a). By differentiating
Ve(εe) and taking into account the dynamics ξ̇e = ρe(t)−1 [ė− ρ̇e(t)ξe], we obtain
V̇e(εe) =

[
∂Ve(εe)
∂ε

]>
ε̇e = ε>e Σe(ξe, t)

{
Fp(p̃)>R̂DR(R,G)>vL − ρ̇e(t)ξe

}
, which, by

substituting vL = ṽL − np(x, t) = evp + vLdes − np(x, t) and (3.20), becomes

V̇e(εe) =− ε>e Σe(ξe, t)Fp(p̃)>D̃(G)Fp(p̃)Σe(ξe, t)εe
+ ε>e Σe(ξe, t)

[
Fp(p̃)>R̂DR(R,G)>(evp − np(x, t))− ρ̇e(t)ξe

]
, (3.25)

where D̃(G) := R̂DR(R,G)>DR(R,G)R̂> = D(G)> ⊗ I3 ∆ D(G) ⊗I3 ∈ R3K×3K

(by employing (3.21)), and evp , np(x, t) are the linear parts of ev and n(x, t) (i.e., the
stack vector of the first three components of every evi , ni(xi, t)), respectively. Note
first that, due to (3.24c), the function evp(t) is bounded for all t ∈ [0, tmax). Moreover,
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note that (3.24a) implies that 0 <dk,col < ‖pk1(t)− pk2(t)‖ < dk,con, ∀t ∈ [0, tmax).
Therefore, it holds that rank(Fp(p̃(t))) = K, ∀t ∈ [0, tmax). In addition, since G
is a connected tree graph and δi ∈ R>0, ∀i ∈ N , D̃(G) is positive definite and
rank(D̃(G)) = 3K. Hence, we conclude that rank

(
[Fp(p̃(t))]>D̃(G)Fp(p̃(t))

)
= K

and the positive definiteness of [Fp(p̃(t))]>D̃(G)Fp(p(t)), ∀t ∈ [0, tmax). In addition,
since ‖pk2(t)− pk1(t)‖ < dk,con, we also conclude that the term Fp(p̃)>R̂DR(R,G)>
is upper bounded, ∀t ∈ [0, tmax). Finally, ρ̇e(t) and np(x, t) are bounded by def-
inition and assumption, respectively, ∀x ∈ SE(3)N , t ∈ R≥0. Note that all the
aforementioned bounds are independent of tmax. We obtain now from (3.25):

V̇e(εe) ≤ −λD̃‖Σe(ξe, t)εe‖
2 + ‖Σe(ξe, t)εe‖B̄e

= −λ
D̃
‖Σe(ξe, t)εe‖

[
‖Σe(ξe, t)εe‖ −

B̄e
λ
D̃

]
,

∀t ∈ [0, tmax) where

λ
D̃

:= inf
p(t),t∈[t0,tmax)

{
λmin

(
Fp(p̃(t))>D̃(G)Fp(p̃(t))

)}
≥ d2

k,colλmin(D̃(G)) > 0,

and B̄e is a positive constant, independent of tmax, satisfying the following inequality:
B̄e ≥ ‖Fp(p̃)>R̂DR(R,G)>(evp(t)− np(x, t))− ρ̇e(t)ξe(t)‖,∀t ∈ [0, tmax). Note that,
in view of the aforementioned discussion, B̄e is finite.

Hence, we conclude that V̇ (εe) < 0⇔ ‖Σe(ξe, t)εe‖ > B̄e
λ
D̃

. By noting that

rek(x) = ∂Tek(x)
∂x

=
1

Ck,col
+ 1

Ck,con(
1 + x

Ck,col

)(
1− x

Ck,con

) > 1
Ck,col

+ 1
Ck,con

,

∀x ∈ (−Ck,col, Ck,con), as well as ρek(t) ≤ 1,∀t ∈ R≥0, k ∈ K, we conclude that

‖Σe(ξe(t), t)εe(t)‖ =
√∑

k∈K
[rek (ξek (t))]2

[ρek (t)]2 [εek(t)]2 ≥ C̄‖εe(t)‖, ∀t ∈ [0, tmax), where

C̄ := max
{

1
Ck,col

+ 1
Ck,con

}
. Hence, we conlude that V̇e(εe) < 0, ∀‖εe‖ ≥ B̄e

λ
D̃
C̄

,
∀t ∈ [0, tmax). Therefore, by invoking Theorem 4.8 in [28] we conclude that

‖εe(t)‖ ≤ ε̄e := max
{
εe(0), B̄e

λ
D̃
C̄

}
, (3.26)

t ∈ [0, tmax), and by taking the inverse logarithm function:

− Ck,col < −ξe ≤ ξek(t) ≤ ξ̄e < Ck,con, (3.27)

∀t ∈ [0, tmax), where ξ̄e := exp(ε̄e)−1
exp(ε̄e)+1Ck,con, and ξ

e
:= exp(−ε̄e)−1

exp(−ε̄e)+1Ck,con. Note that
εe(0) is finite due to the assumption dk,col < ‖pk2(0)− pk1(0)‖ < dk,con. Therefore,
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since λ
D̃

is strictly positive and B̄e is also finite, ε̄e is well defined. Hence, (3.26)
and (3.27) imply the boundedness of εek(t), rek(ξek(t), p̃(t), and p(t) in compact
sets, ∀k ∈ K, and therefore, through (3.15), the boundedness of vi,Ldes(t), ∀i ∈ N ,
t ∈ [0, tmax).

Similarly, consider the positive definite Lyapunov candidate Vψ : R≥0 → R≥0,
with Vψ(εψ) = 2

∑
k∈K εψk . By differentiating Vψ(εψ) and taking into account the

dynamics ξ̇ψk(t) = ρψk(t)−1 [ψ̇k(t)− ρ̇ψk(t)ξψk
]
, we obtain V̇ψ(εψ) :=

[
∂Vψ(εψ)
∂εe

]>
ε̇ψ

= 2
∑
k∈K

rψ(ξψk )
ρψk (t) (ψ̇k − ρ̇ψkξψk), which, after substituting (3.7b), (3.20), becomes

V̇ψ(εψ) = e>R [Σψ(ξψ, t)⊗ I3]DR(R,G)>ω − 2
∑
k∈K

rψ(ξψk)
ρψk(t) ρ̇ψk(t)ξψk

= e>R [Σψ(ξψ, t)⊗ I3]DR(R,G)>
[
ωdes + evR − nR(x, t)

]
− 2

∑
k∈K

rψ(ξψk)
ρψk(t) ρ̇ψk(t)ξψk ,

where evR and nR(x, t) are the angular parts of ev and n(x, t) (i.e., the stack
vector of the last three components of every evi , ni(x, t)), respectively. By substi-
tuting (3.22b) and defining Σ̃ψ(ξψ, t) := Σψ(ξψ, t) ⊗ I3 ∈ R3K×3K , D̃R(R,G) :=
DR(R,G)>∆DR(R,G) ∈ R3K×3K , we obtain:

V̇ψ(εψ) = − e>RΣ̃ψ(ξψ, t)D̃R(R,G)Σ̃ψ(ξψ, t)eR
+ e>RΣ̃ψ(ξψ, t)DR(R,G)> [evR − nR(x, t)]

− 2
∑
k∈K

rψ(ξψk)
ρψk(t) ρ̇ψk(t)ξψk . (3.28)

According to (3.21), DR(R,G) = R̄> [D(G)⊗ I3] R̂. Since R̄ and R̂ are rotation
(and thus unitary) matrices, the singular values of DR(R,G) are identical to the ones
of D(G), and hence λmin(D̃R(R,G)) = λmin(D̃(G)) > 0. Indeed, let D(G) ⊗ I3 =
UΣDV

> be a singular value decomposition of D(G)⊗ I3, where U , V are unitary
matrices, and ΣD is a diagonal matrix containing the singular values of D(G)⊗ I3.
Then DR(R,G) = R̄>UΣDV

>R̂ = ŨΣDṼ
> where Ũ := R̄>U , and Ṽ = R̂>V are

unitary matrices (being products of unitary matrices). Thus, ŨΣDṼ > is the singular
value decomposition ofDR(R,G), and hence its singular values are the diagonal values
of ΣD. By further defining β := [β>1 , . . . , β>K ]> := DR(R,G)>(evR−nR(x, t)) ∈ R3M ,
with βk ∈ R3, ∀k ∈ K, (3.28) becomes
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V̇ψ(εψ) ≤− λmin(D̃(G))‖Σ̃ψ(ξψ, t)eR‖2 +
∑
k∈K

rψ(ξψk)
ρψk(t) (eRk)>βk

− 2
∑
k∈K

rψ(ξψk)
ρψk(t) ρ̇ψk(t)ξψk .

Note that, by construction, ξψk ≥ 0, ∀k ∈ K, and rψ(x) = ∂Tψ(x)
∂x = 1

1−x > 1,∀x < 1.
Hence, in view of (3.24b), we conclude that rψ(ξψk(t)) > 1, ∀t ∈ [0, tmax). By noting
also that ρ̇ψk(t) < 0,∀t ∈ R≥0, V̇ψ(εψ) becomes

V̇ψ(εψ) ≤− λmin(D̃(G))
∑
k∈K

[
rψ(ξψk)
ρψk(t)

]2

‖eRk‖2 + B̄ψ1

∑
k∈K

rψ(ξψk)
ρψk(t) ‖eRk‖

+ 2 max
k∈K
{lψk(ρψk,0 − ρψk,∞)}

∑
k∈K

rψ(ξψk)
ρψk(t) ξψk ,

where B̄ψ1 is a positive constant, independent of tmax, satisfying the inequality
B̄ψ1 ≥ maxk∈K{‖βk(t)‖}, ∀t ∈ [0, tmax). Note that B̄ψ1 is finite, ∀t ∈ [0, tmax), due
to (3.24b) and the boundedness of the noise signals n(x, t). After substituting (3.8),
we obtain

V̇ψ(εψ) ≤ −2λmin(D̃(G))
∑
k∈K

[
rψ(ξψk)
ρψk(t)

]2

ψk(2− ψk)

+ B̄ψ1

∑
k∈K

rψ(ξψk)
ρψk(t)

√
2ψk(2− ψk) + 2 max

k∈K
{lψk(ρψk,0 − ρψk,∞)}

∑
k∈K

rψ(ξψk)
ρψk(t) ξψk .

(3.29)
From (3.24b) we conclude that 0 ≤ ψk(t) < ρψk(t) ≤ ρψk,0 < 2, and hence

2 − ψk(t) ≥ 2 − ρψk,0 =: ρ
k
> 0 ∀t ∈ [0, tmax), k ∈ K. Moreover, by noticing that

2− ψk ≤ 2, ρψk(t) ≤ ρψk,0, and ψk = ξψkρψk(t), ∀k ∈ K, (3.29) becomes

V̇ψ(εψ) ≤ −µ̃
∑
k∈K

[rψ(ξψk)]2 ξψk + 2B̄ψ1

max
k∈K
{√ρψk,0}

∑
k∈K

rψ(ξψk)
√
ξψk

+ 2 max
k∈K

{
lψk(ρψk,0 − ρψk,∞)

ρψk,0

}∑
k∈K

rψ(ξψk)ξψk ,

where µ̃ := 2λmin(D̃(G)) mink∈K{ρ
k
}

maxk∈K{ρψk,0}
.

From (3.24b), (3.13), and the fact that ψk ∈ [0, 2], it holds that ξψk(t) <√
ξψk(t),∀k ∈ K. By also employing the property∑

k∈K

rψk(ξψk)
√
ξψk ≤

√
K

√∑
k∈K

(rψk(ξψk))2ξψk ,
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we obtain

V̇ψ(εψ) ≤ −
√∑
k∈K

[rψ(ξψk)]2 ξψk

{
µ̃

√∑
k∈K

[rψk(ξψk)]2 ξψk − B̄ψ

}
,

where:

B̄ψ := 2
√
K

(
B̄ψ1

max
k∈K
{√ρψk,0}

+ max
k∈K

{
lψk(ρψk,0 − ρψk,∞)

ρψk,0

})
.

We conclude therefore that V̇ψ(εψ) < 0 ⇔√∑
k∈K [rψ(ξψk)]2 ξψk >

B̄ψ

µ̃
. From (3.14b), given y = Tψ(x), we obtain:

[rψ(x)]2 x =
[
∂T (x)
∂x

]2
T−1(y) = 1

(1− x)2T
−1(y)

= 1
[1− T−1(y)]2

T−1(y) = exp(y) [exp(y)− 1] ,

∀x ∈ [0, 1). Therefore, [rψ(ξψk)]2 ξψk = exp(εψk) [exp(εψk)− 1], and according to
Proposition 3.1,√∑

k∈K

[rψ(ξψk)]2 ξψk =
√∑
k∈K

exp(εψk) [exp(εψk)− 1] ≥
√∑
k∈K

ε2
ψk

= ‖εψ‖.

Hence, we conclude that V̇ψ(εψ) < 0,∀‖εψ‖ > B̄ψ

µ̃
. Therefore,

‖εψ(t)‖ ≤ ε̄ψ := max
{
εψ(0), B̄ψ

µ̃

}
, (3.30)

and, by taking the inverse logarithm:

0 ≤ −ξ
ψ
≤ ξψk(t) ≤ ξ̄ψ < 1, (3.31)

where ξ̄ψ := exp(ε̄ψ)−1
exp(ε̄ψ) and ξ

ψ
:= exp(−ε̄ψ)−1

exp(−ε̄ψ) , ∀k ∈ K. Note that B̄ψ as well as
εψ(0) are finite, due to the choice ψk(0) < ρψk(0) < 2, ∀k ∈ K. Hence, since
µ̃ is strictly positive, ε̄ψ is also finite. Therefore, we conclude the boundedness
of εψk , rψk(ξψk(t)), ev(t) in compact sets, ∀k ∈ K, and therefore, through (3.15),
the boundedness of ωi,des(t), ∀i ∈ N , t ∈ [0, tmax). From the proven boundedness
of p(t) and pi,des(t), we also conclude the boundedness of n(x(t), t) and invoking
ṽ = v + n(x, t) = ev(t) − vdes(t) and (3.24c), the boundedness of v(t) and ẋ(t),
∀t ∈ [0, tmax). Moreover, in view of (3.26), (3.27), (3.23), (3.15), we also conclude
the boundedness of v̇des(t).
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Proceeding along similar lines, we consider the positive definite Lyapunov candi-
date Vv : R → R≥0 with Vv(εv) = 1

2ε
>
v Γεv. By computing V̇v(εv) =

[
∂Vv(εv)
∂εv

]>
ε̇v

and using the dynamics ξ̇v = ρv(t)−1(ėv(t) −ρ̇v(t)ξv), we obtain

V̇v(εv) = ε>v ΓΣv(ξv, t) [v̇ + ṅ(x, t)]− ε>v ΓΣv(ξv, t)v̇des − ε>v ΓΣv(ξv, t)ρ̇v(t)ξv
= −ε>v Σv(ξv, t)ΓM(x)−1ΓΣv(ξv, t)εv
− ε>v Σv(ξv, t)

{
ΓM(x)−1

[
C(v)v + g(x) + w(x, v, t)

]
− ṅ(x, t) + v̇des + ρ̇v(t)ξv

}
.

(3.32)

Since we have proved the boundedness of v(t) and ẋ, ∀t ∈ [0, tmax) the terms C(v)v,
ṅ(x, t), and w(x, v, t) are also bounded, t ∈ [0, tmax), due to the continuities of
C(·), w(·), and ṅ(·) in v, ẋ and the boundedness of w(·) and ṅ() in x, t. Moreover,
g(x), ξv(t), and ρ̇v(t) are also bounded due to (3.2b), (3.24c), and by construction,
respectively. By also using (3.2a), we obtain from (3.32):

V̇v(εv) ≤ −λK‖Σv(ξv, t)εv‖2 + ‖Σv(ξv, t)εv‖B̄v,

where B̄v is a positive term, independent of tmax, satisfying B̄v ≥
∥∥∥maxi∈N {γi}

mini∈N {mi}

[
C(v)v+

g(x) +w(x, v, t)
]
− ṅ(x, t) + v̇des(t) + ρ̇v(t)ξv(t)

∥∥∥, and λK := mini∈N {γi}2
maxi∈N {m̄} > 0. Hence,

V̇v(εv) < 0⇔ ‖Σv(ξv, t)εv‖ > B̄v
λ
K

. By noting that

rv(x) = ∂Tv(x)
∂x

= 2
(1 + x)(1− x) > 2 > 1, (3.33)

∀x ∈ (−1, 1), as well as ρvi,`(t) ≤ ρv0
i
,`, ∀` ∈ {1, . . . , 6}, t ∈ R≥0, we conclude that

‖Σv(ξv(t), t)εv(t)‖ =
√∑

i∈N
∑
`∈{1,...,6}

[rv(ξvi,`(t))]2
[ρvi,` (t)]2

[εvi,`(t)]2 ≥ 1
ρ̃
‖εv(t)‖, ∀t ∈

[0, tmax), where ρ̃ := max
i∈N

m∈{1,...,6}

{ρv0
i,m
}. Hence, we conclude that V̇v(εv) < 0,∀‖εv‖ ≥

ρ̃B̄v
λ
K
,∀t ∈ [0, tmax), and consequently that

‖εv(t)‖ ≤ ε̄v := max

εv(0), ρ̃B̄v
λK

max
i∈N
{γi}

min
i∈N
{γi}

 , (3.34)

∀t ∈ [0, tmax) and by taking the inverse logarithm function:

− 1 < −ξ̄v ≤ ξvi,`(t) ≤ ξ̄v < 1, (3.35)

∀` ∈ {1, . . . , 6}, t ∈ [0, tmax) where ξ̄v := exp(εv)−1
exp(εv)+1 = − exp(−εv)−1

exp(−εv)+1 . Note that the
term B̄v is finite, ∀t ∈ [0, tmax). Moreover, the term εv(0) is finite due to the choice
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ρv0
i,`
> |evi,`(0)|,∀` ∈ {1, . . . , 6}, i ∈ N . Hence, since λK is strictly positive, the term

ε̄v is also finite. Thus, the terms ev(t), r̃v(ξv(t)) and hence the control laws (3.18)
are also bounded in compact sets for all t ∈ [0, tmax).

What remains to be shown is that tmax = ∞. Towards that end, suppose
that tmax is finite, i.e., tmax < ∞. Then, according to Theorem 2.5, it holds that

lim
t→t−max

(
‖z(t)‖ + 1

dS((z(t),t),∂Ω)

)
= ∞. We first rewrite the condition in a more

explicit form, in order to account for the matrix tuple R ∈ SO(3)N . We define
zp,v := [p>, v>]> ∈ R3N ×R6N , the projection sets ΩR := {(R, t) ∈ SO(3)N ×R≥0 :
(x, v, t) ∈ Ω} and Ωp,v := {(p, v, t) ∈ R3N ×R6N ×R≥0 : (x, v, t) ∈ Ω} as well as the
distance from a set A ⊂ SO(3)N×R≥0 as dS,SO(3) : SO(3)N×R≥0×2SO(3)N×R≥0 →
R≥0 with dS,SO(3)((R, t), A) := inf

(RA,tA)∈A
{‖R−RA‖T + t− tA}, where ‖ · ‖T is the

induced norm in SO(3)N as defined in the previous chapter. Therefore, the condition
of Theorem 2.5 can now be stated as follows: Since tmax <∞, it holds that

L := lim
t→t−max

(
‖p(t)‖+ ‖v(t)‖+ ‖R(t)‖T+

1
dS((zp,v(t), t), ∂Ωp,v) + dS,SO(3)((R(t), t), ∂ΩR)

)
=∞ (3.36)

which we aim to prove that is a contradiction. Firstly, it holds that ‖R(t)‖T =∑
i∈N ‖Ri(t)‖F ≤ N supt∈[0,tmax){maxi∈N{Ri(t)}}. However, according to Proposi-

tion 3.3, it holds that−1 ≤ tr(R) ≤ 3 for any R ∈ SO(3). Hence, ‖R(t)‖T ≤ 3N, ∀t ∈
[0, tmax]. Moreover, from (3.35) and (3.16) we obtain ‖ev(t)‖ ≤

√
6ξ̄vρ̃, ∀t ∈ [0, tmax).

By invoking (3.26), (3.30), we can also conclude that there exists a finite v̄des such
that ‖vdes(t)‖ ≤ v̄des, ∀t ∈ [0, tmax). Hence, since ‖ni(xi, t)‖ ≤ n̄i, ∀xi ∈ SE(3), t ∈
R≥0, i ∈ N , v = ṽ − n(x, t) = ev + vdes − n(x, t) implies that there exists a fi-
nite v̄ such that ‖v(t)‖ ≤ v̄, ∀t ∈ [0, tmax). Hence, ‖p(t)‖ = ‖

∫ tmax
0 R̄(s)v(s)ds‖ ≤∫ tmax

0 ‖R̄(s)v(s)‖ds =
∫ tmax

0 ‖v(s)‖ds ≤
∫ tmax

0 v̄ds ⇒ ‖p(t)‖ ≤ tmaxv̄, ∀t ∈ [0, tmax),
which proves the boundedness of ‖p(t)‖, since tmax <∞.

Next, note that ∂Ωp,v = {(p, v, t) ∈ R3N×R6N×R≥0 : (∃k ∈ K : ξek(pk1 , pk2 , t) =
−Ck,col or ξek(pk1 , pk2 , t) = Ck,con) or (∃i ∈ N , ` ∈ {1, . . . , 6} : ξvi,`(x, vi, t) =
−1 or ξvi,`(x, vi, t) = 1)} and ∂ΩR = {(R, t) ∈ SO(3)N×R≥0 : ∃k ∈ K : ξψk(Rk1 ,Rk2 ,t)
= 1}. We have proved, however, from (3.27), (3.31), and (3.35) that the maximal
solution satisfies the strict inequalities −Ck,col < −ξe ≤ ξek(pk1(t), pk2(t), t) ≤
ξ̄e < Ck,con, ξψk(Rk1(t), Rk2(t), t) ≤ ξ̄ψ < 1, and |ξvi,`(x(t), vi(t), t)| ≤ ξ̄v < 1,
∀k ∈ K, ` ∈ {1, . . . , 6}, i ∈ N , t ∈ [0, tmax). Therefore, we conclude that there exist
strictly positive constants εp,v, εR ∈ R>0 such that dS((zp,v(t), t), ∂Ωp,v) ≥ εp,v and
dS,SO(3)((R(t), t), ∂ΩR) ≥ εR, ∀t ∈ [0, tmax). Therefore, we have proved that

L ≤ (tmax + 1)v̄ + 3N + 1
εp,v + εR

<∞,

since tmax is finite. This contradicts (3.36) and hence, we conclude that tmax =∞.
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We have proved the containment of the errors ek(t), ψk(t) in the domain defined
by the prescribed performance funnels:

−Ck,colρek(t) < ek(t) < Ck,conρek(t),
0≤ ψk(t) < ρψk(t),

∀k ∈ K, t ∈ R≥0, which also implies that

dk,col <‖pk1(t)− pk2(t)‖ < dk,con,

0 ≤ψk(t) < 2,

∀k ∈ K, t ∈ R≥0, i.e., avoidance of the singularity ψk = 2 and satisfaction of the
collision and connectivity constraints for the initially connected edge set E .

Remark 3.6. [Prescribed performance] We can deduce from the aforementioned
proof that the proposed control scheme achieves its goals without resorting to the
need of rendering ε̄e, ε̄ψ, ε̄v by adopting extreme values of the control gains δi, γi.
Notice that (3.26), (3.30), and (3.34) hold no matter how large the finite bounds
ε̄e, ε̄ψ, ε̄v are. Hence, the actual performance of the system is determined solely by
the performance functions ρe(t), ρψ(t), ρv(t) and the parameters Ck,col, Ck,con, as
mentioned in Remark 3.5.

3.5 Simulation Results

We considered N = 4 spherical agents with N = {1, 2, 3, 4} and dynamics of the form
(3.1), with ri = 1m and si = 4m, i ∈ {1, . . . , 4}. We selected the exogenous distur-
bances and measurement noise as wi = Awi sin(ωw,it)ẋi, and ni = Ani sin(ωn,it)ẋi,
where the parameters Awi , Ani , ωw,i, ωn,i as well as the dynamic parameters (mass
and moment of inertia) of the agents were randomly chosen in [0, 1], ∀i ∈ N .
The initial conditions were taken as: p1(0) = [0, 0, 0]> m, p2(0) = [2, 2, 2]> m,
p3(0) = [2, 4, 4]> m, p4(0) = [2, 3, 3]> m, R1(0) = R3(0) = R4(0) = I3 and

R2(0) =

−0.3624 0.0000 0.9320
0.6591 0.7071 0.2562
−0.6591 0.7071 −0.2562

 ,
v1(0) = v2(0 = v3(0) = v(4) = 06×1, which give the edge set E = {{1, 2}, {2, 3}, {2, 4}}
and the incidence matrix:

D(G) =


−1 0 0
1 −1 −1
0 1 0
0 0 1

 .
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Figure 3.2: The distance error signal of the edge (1, 2).

The desired graph formation was defined by the constants dk,des = 2.5m,

Rk,des =

0.5000 −0.8660 0.0000
0.6124 0.3536 −0.7071
0.6124 0.3536 0.7071

 ,∀k ∈ {1, 2, 3}.
The definitions of dk,col, dk,con yield: dk,col = 2 and dk,con = 4. Invoking (3.10), we
have Ck,col = 2.25 and Ck,con = 9.75. Moreover, the parameters of the performance
functions were chosen as ρek,∞ = ρψk,∞ = 0.1, ρψk,0 = 1.99 > max{ρψ1(0), ρψ2(0), ρψ3(0)}
and lek = lψk = 0.7. In addition, we chose ρv0

i,`
= 2|evi,`(0)|+ 0.5, lvi` = 1.55 and

ρv∞
i,`

= 0.15, for every i ∈ {1, . . . , 4}, ` ∈ {1, . . . , 6}. Finally, the control gains were
set to Γ = 10I24 and ∆ = I24.

The simulation results are shown in Fig.3.2-3.12. In particular, Fig. 3.2-3.4
and Fig. 3.5-3.7 show the distance error signals and the orientation error signals,
respectively. All the errors remain within the predefined bounds and converge to 0.
Fig. 3.8 shows the distance between the agents. The connectivity is maintained for
all times as well as the agents do not collide with each other. Finally, Fig. 3.9-Fig.
3.12 depict the control input signals of the agents which remain bounded for all
times.
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Figure 3.3: The distance error signal of the edge (2, 3).
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Figure 3.4: The distance error signal of the edge (2, 4).
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Figure 3.5: The orientation error signal of the edge (1, 2).
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Figure 3.7: The orientation error signal of the edge (2, 4).
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Chapter 4

Cooperative Manipulation

This chapter addresses the problem of cooperative manipulation of a single object by
multiple robotic agents. More specifically, we present two novel control methodologies
for the trajectory tracking of the object’s center of mass. Firstly, we design an
adaptive control protocol which employs quaternion-based feedback for the object
orientation to avoid potential representation singularities. Secondly, we propose a
control protocol that guarantees predefined transient and steady-state performance
for the object trajectory. Both methodologies are decentralized, since the agents
calculate their own signals without communicating with each other, as well as robust
to external disturbances and model uncertainties. Moreover, we consider that the
grasping points are rigid, and avoid the need for force/torque measurements. Load
sharing coefficients are also introduced to account for potential differences in the
agents’ power capabilities. Finally, simulation and experimental results with two
robotic arms support the theoretical findings.

4.1 Introduction

As highlighted in the previous chapter, multi-agent systems have gained significant
attention the last years due to the numerous advantages they yield with respect
to single-agent setups. In the case of robotic manipulation, heavy payloads and
challenging maneuvers necessitate the employment of multiple robotic agents. Al-
though collaborative manipulation of a single object, both in terms of transportation
(regulation) and trajectory tracking, has been considered in the research community
in the last decades, there still exist several challenges that need to be taken account
by on-going research, both in control design as well as experimental evaluation.
Moreover, along the lines of designing well-defined discretized abstractions for co-
operative manipulation tasks, successful manipulation/transportation of objects
plays a crucial role for the potential transitions between the states of the derived
discrete system representation. In the previous chapter we addressed the problem of
formation control, motivated by its potential application in cooperative manipulation
schemes. In this chapter we model explicitly a system of multiple robotic agents

49
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grasping an object and develop control protocols for the pose and time trajectory
tracking of the center of mass of the object.

Early works develop control architectures where the robotic agents communicate
and share information with each other, and completely decentralized schemes, where
each agent uses only local information or observers, avoiding potential communication
delays (see, indicatively, [72–81]). Impedance and hybrid force/position control is
the most common methodology used in the related literature [79–95], where a
desired impedance behavior is imposed potentially with force regulation. Most of the
aforementioned works employ force/torque sensors to acquire feedback of the object-
robots contact forces/torques, which however may result in a performance decline
due to sensor noise or mounting difficulties. Recent technological advances allow
manipulator grippers to grasp rigidly certain objects (see e.g., [96]), which can render
the use of force/torque sensors unnecessary. Force/Torque sensor-free methodologies
can be found in [77, 79, 87], which have inspired the dynamic modeling in this work.
Moreover, [90] uses an external force estimator, without employing force sensors,
[75] presents a force sensor-free control protocol with gain tuning, and [82] considers
the object regulation problem without force/torque feedback. Finally, force/torque
sensor-free methodologies are developed in [97], where the robot dynamics are not
taken into account, and in [94], where a linearization technique is employed.

Another important characteristic is the representation of the agent and object
orientation. The most commonly used tools for orientation representation consist
of rotation matrices, Euler angles, and the pair angle-axis convention. Rotation
matrices, however, are not commonly used in robotic manipulation tasks due to
the difficulty of extracting an error vector from them. Moreover, the mapping
from Euler angle/axis values to angular velocities exhibits singularities at certain
points, rendering thus these representations incompetent. On the other hand, the
representation using unit quaternions, which is employed in this work, constitutes a
singularity-free orientation representation, without complicating the control design.
In cooperative manipulation tasks, unit quaternions are employed in [82, 83, 98]
as well as in [99], where the interaction dynamics of cooperative manipulation are
analyzed.

In addition, most works in the related literature consider known dynamic param-
eters regarding the object and the robotic agents. However, the accurate knowledge
of such parameters, such as masses or moments of inertia, can be a challenging
issue, especially for complex robotic manipulators; adaptive control protocols are
proposed in [76] with a gain tuning scheme, in [82], where the object regulation
problem is considered, and in [77], [91]. An estimation of parameters is included
in [97], whereas [92] and [93] employ fuzzy mechanisms to compensate for model
uncertainties. In [95] the authors develop a task-oriented adaptive control protocol
using observers. Kinematic uncertainties are handled in [98] and [85].

An internal force and load distribution analysis is performed in [100]; [89] employs
a leader-follower scheme, and [101] develops a decentralized force consensus algorithm.
Furthermore, [102] introduces hybrid modeling of cooperative manipulation schemes
and [103] includes intermittent contact; [104] proposes a kinematic-based multi-robot
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manipulation scheme, and [12] addresses the problem from a formation-control point
of view. Finally, in [105] a navigation function-based approach is used.

The main contribution of this chapter is the introduction of two novel nonlinear
control protocols for the trajectory tracking by the center of mass of an object that
is rigidly grasped by N robotic agents, without using force/torque measurements at
the grasping points.

Firstly, we develop a decentralized control scheme that combines (i) adaptation
laws to compensate for external disturbances and uncertainties of the agents’ and
the object’s dynamic parameters, with (ii) quaternion modeling of the object’s
orientation which avoids undesired representation singularities. A preliminary result
on the specific adaptive scheme was developed in [14], whose control law, however,
was slightly different and was not tested experimentally or in simulation. Secondly,
we propose a decentralized model-free control scheme that guarantees predefined
transient and steady-state performance for the object’s center of mass. We pro-
vide detailed stability analyses for both control schemes. Finally, simulation and
experimental results with two agents verify the validity of the proposed schemes.

The rest of the chapter is organized as follows. Section 4.2 provides the notation
used throughout the paper and necessary background. The modeling of the system
as well as the problem formulation are given in Section 4.3. Section 4.4 presents
the details of the two proposed control schemes with the corresponding stability
analyses, and Section 4.5 illustrates the simulation and experimental results. Finally,
Section 4.6 concludes the paper.

4.2 Preliminaries

4.2.1 Unit Quaternions

Given two frames {A} and {B}, we define a unit quaternion ζB/A := [ϕB/A, ε>B/A]> ∈
S3 describing the orientation of {B} with respect to {A}, with ϕB/A ∈ R, εB/A ∈ R3,
subject to the constraint ϕ2

B/A + ε>B/AεB/A = 1, where Sn denotes the (n + 1)-
dimensional sphere. The relation between ζB/A and the corresponding rotation
matrix RB/A as well as the axis/angle representation can be found in [26]. For a
given quaternion ζB/A = [ϕB/A, ε>B/A]> ∈ S3, its conjugate, that corresponds to
the orientation of {A} with respect to {B}, is [26] ζ+

B/A = [ϕB/A,−ε>B/A]> ∈ S3.
Moreover, given two quaternions ζi := ζBi/Ai = [ϕBi/Ai , ε>Bi/Ai ]

>,∀i ∈ {1, 2}, the
quaternion product is defined as [26]

ζ1 ⊗ ζ2 =
[

ϕ1ϕ2 − ε>1 ε2
ϕ1ε2 + ϕ2ε1 + S(ε1)ε2

]
∈ S3, (4.1)

where ϕi := ϕBi/Ai , εi := εBi/Ai ,∀i ∈ {1, 2}.
For a moving frame {B} (with respect to {A}), the time derivative of the
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Figure 4.1: Two robotic agents rigidly grasping an object.

quaternion ζB/A = [ϕB/A, ε>B/A]> ∈ S3 is given by [26]:

ζ̇B/A = 1
2E(ζB/A)ωAB/A, (4.2a)

where E : S3 → R4×3 is defined as:

E(ζ) =
[

−ε>

ϕI3 − S(ε)

]
,∀ζ = [ϕ, ε>]> ∈ S3.

Finally, it can be shown that [E(ζ)]>E(ζ) = I3,∀ζ ∈ S3 and hence (4.2a) implies

ωAB/A = 2[E(ζB/A)]>ζ̇B/A. (4.2b)

It can be also shown that

ω̇AB/A = 2[E(ζB/A)]>ζ̈B/A. (4.2c)

4.3 Problem Formulation

Consider N fully actuated robotic agents rigidly grasping an object (see Fig. 4.1). We
denote by {Ei}, {O} the end-effector and object’s center of mass frames, respectively;
{I} corresponds to an inertial frame of reference. The rigidity assumption implies
that the agents can exert both forces and torques along all directions to the object.
In the following, we present the modeling of the coupled kinematics and dynamics
of the object and the agents.

4.3.1 Robotic Agents
We denote by qi, q̇i ∈ Rni , with ni ∈ N,∀i ∈ N , the generalized joint-space variables
and their time derivatives of agent i, with qi := [qi1 , . . . , qini ]. The overall joint con-
figuration is then q := [q>1 , . . . , q>N ]>, q̇ := [q̇>1 , . . . , q̇>N ]> ∈ Rn, with n :=

∑
i∈N ni.

In addition, the inertial position and Euler-angle orientation of the ith end-effector,
denoted by pEi and ηEi , respectively, can be derived by the forward kinematics and
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are smooth functions of qi, i.e. pEi : Rni → R3, ηEi : Rni → T. The differential
equation describing the dynamics of each agent is [26]:

Bi(qi)q̈i + Cqi(qi, q̇i)q̇i + gqi(qi) + dqi(qi, q̇i, t) = τi − [Ji(qi)]>fi, (4.3)

where Bi : Rni → Rni×ni is the positive definite inertia matrix, Cqi : R2ni →
Rni×ni is the Coriolis matrix, gqi : Rni → Rni is the joint-space gravity term,
dqi : R2ni × R≥0 → Rni is a bounded vector representing unmodeled friction,
uncertainties and external disturbances, fi ∈ R6 is the vector of generalized forces
that agent i exerts on the grasping point with the object and τi ∈ Rni is the vector
of joint torques, acting as control inputs ∀i ∈ N .

The generalized velocity of each agent’s end-effector vi := [ṗ>Ei , ω
>
Ei

]> ∈ R6, can be
considered as a transformed state through the differential kinematics vi = Ji(qi)q̇i
[26], where Ji : Rni → R6×ni is a smooth function representing the geometric
Jacobian matrix, ∀i ∈ N [26]. The latter leads also to

v̇i = Ji(qi)q̈i + Jdi (qi, q̇i)q̇i, (4.4)

where Jdi : R2ni → R6×ni represents the Jacobian derivative function, with Jdi (qi, q̇i) :=
J̇i(qi). Then, by employing the differential kinematics as well as (4.4), we obtain
from (4.3) the transformed task space dynamics [26]:

Mi(qi)v̇i + Ci(qi, q̇i)vi + gi(qi) + di(qi, q̇i, t) = ui − fi, (4.5)

with the corresponding task space terms Mi : Rni → R6×6, Ci : R2ni → R6×6,
gi : Rni → R6, di : R2ni × R≥0 → R6 and ui ∈ R6 being the task space wrench,
related to τi via τi = J>i (qi)ui + (Ini − J>i (qi)J̃>i (qi))τi0, where J̃i is a generalized
inverse of Ji [26]; τi0 concerns redundant agents (ni > 6) and does not contribute
to end-effector forces.

The agent task-space dynamics (4.5) can be written in vector form as:

M(q)v̇ + C(q, q̇)v + g(q) + d(q, q̇, t) = u− f, (4.6)

where v := [v>1 , . . . , v>N ] ∈ R6N ,M := diag{[Mi]i∈N } ∈ R6N×6N , C := diag{[Ci]i∈N }
∈ R6N×6N , f := [f>1 , . . . , f>N ]>, u := [u>1 , . . . , u>N ]>, g := [g>1 , . . . , g>N ]>, d :=
[d>1 , . . . , d>N ]> ∈ R6N .

4.3.2 Object
Regarding the object, we denote by xO := [p>O , η>O ]> ∈M, vO := [ṗ>O , ω>O ]> ∈ R6 the
pose and generalized velocity of the object’s center of mass, which is considered as
the object’s state. We consider the following second order dynamics, which can be
derived based on the Newton-Euler formulation:

ẋO = JO(ηO)vO, (4.7a)
MO(xO)v̇O + CO(xO, ẋO)vO + gO(xO) + dO(xO, ẋO, t) = fO, (4.7b)
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where MO : M→ R6×6 is the positive definite inertia matrix, CO : M× R6 → R6×6

is the Coriolis matrix, gO : M→ R6 is the gravity vector, dO : M× R6 × R≥0 → R6

a bounded vector representing modeling uncertainties and external disturbances,
and fO ∈ R6 is the vector of generalized forces acting on the object’s center of
mass. Moreover, JO : T → R6×6 is the object representation Jacobian JO(ηO) :=
diag{I3, JOη (ηO)}, where JOη : T→ R3×3:

JOη (ηO) :=

1 sin(φO) tan(θO) cos(φO) tan(θO)
0 cos(φO) − sin(θO)
0 sin(φO)

cos(θO)
cos(φO)
cos(θO)

 ,
and is not well-defined when θO = ±π2 , which is referred to as representation
singularity. Moreover, it can be proved that

‖JO(ηO)‖ =
√
|sin(θO)|+1
1−sin2(θO) , (4.8a)

‖JO(ηO)−1‖ =
√

1 + sin(θO) ≤
√

2, (4.8b)

where JO(·)−1 denotes the matrix inverse.
A possible way to avoid the aforementioned singularity is to transform the Euler

angles to a unit quaternion representation for the orientation. Hence, the term ηO
can be transformed to the unit quaternion ζO = [ϕO, ε>O ]> ∈ S3 [26], for which,
following Section 4.2.1 and (4.2), one obtains:

ζ̇O = 1
2E(ζO)ωO

ωO = 2[E(ζO)]>ζ̇O,

which is a singularity-free representation.

4.3.3 Coupled Dynamics
In view of Fig. 4.1, one concludes that the pose of the agents and the object’s center
of mass are related as

pEi(qi) = pO + pEi/O(qi) = pO +REi
(qi)pEiEi/O, (4.9a)

ηEi(qi) = ηO + ηEi/O, (4.9b)

∀i ∈ N , where pEiEi/O and ηEi/O are the constant distance and orientation offset
vectors between {O} and {Ei}. Following (4.9), along with the fact that, due to the
grasping rigidity, it holds that ωEi = ωO,∀i ∈ N , one obtains

vi = JOi(qi)vO, (4.10)

where JOi : Rni → R6×6 is the object-to-agent Jacobian matrix, with

JOi(x) =
[

I3 S(pO/Ei(x))
03×3 I3

]
,∀x ∈ Rni , (4.11)
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which is always full-rank. Moreover, from (4.10), one obtains

v̇i = JOi(qi)v̇O + JdOi(qi, q̇i)vO (4.12)

and JdOi : R2ni → R6×6, with JdOi(qi, q̇i) := J̇Oi(qi). In addition, it can be proved for
JOi that

‖JOi(x)‖ ≤
∥∥pEiO/Ei∥∥+ 1,∀x ∈ Rni , i ∈ N , (4.13)

which will be used in the subsequent analysis.
The kineto-statics duality along with the grasp rigidity suggest that the force fO

acting on the object’s center of mass and the generalized forces fi, i ∈ N , exerted
by the agents at the grasping points, are related through:

fO = [G(q)]>f, (4.14)

where G : Rn → R6N×6, with G(q) := [[JO1(q1)]>, . . . , [JON (qN )]>]>, is the full
column-rank grasp matrix. By substituting (4.6) into (4.14), we obtain:

fO = [G(q)]> (u−M(q)v̇ − C(q, q̇)v − g(q)− d(q, q̇, t)) ,

which, after substituting (4.10), (4.12) , (4.7), and rearranging terms, yields the
overall system coupled dynamics:

M̃(x)v̇O + C̃(x)vO + g̃(x) + d̃(x, t) = [G(q)]>u, (4.15)

where

M̃(x) :=MO(xO) + [G(q)]>M(q)G(q) (4.16a)
C̃(x) :=CO(xO, ẋO) + [G(q)]>C(q, q̇)G(q) + [G(q)]>M(q)Gd(q, q̇) (4.16b)
g̃(x) :=gO(xO) + [G(q)]>g(q). (4.16c)

d̃(x, t) :=dO(xO, ẋO, t) + [G(q)]>d(q, q̇, t) (4.16d)

Gd(q, q̇) :=
[
[JdO1

(q1, q̇1)]>, . . . , [JdON (qN , q̇N )]>
]>
, (4.16e)

and x is the overall state x := [q>, q̇>, x>O , ẋ>O ]> ∈ R2n+6 × M. Moreover, the
following Lemma is necessary for the following analysis.

Lemma 4.1. The matrix M̃(x) is symmetric and positive definite and the matrix
˙̃
M(x)− 2C̃(x) is skew symmetric, i.e.,[ ˙̃

M(x)− 2C̃(x)
]>

= −
[ ˙̃
M(x)− 2C̃(x)

]
,∀x ∈ R6

y>
[ ˙̃
M(x)− 2C̃(x)

]
y = 0, ∀x, y ∈ R6.
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Proof. The matrices MO and Mi are symmetric and positive definite, ∀i ∈ N and
the matrices Ṁi(qi)−2Ci(qi, q̇i), MO(xO)−2CO(xO, ẋO) are skew-symmetric, ∀i ∈ N
[26], which leads to the skew-symmetry of Ṁ(q)− 2C(q, q̇). Therefore, since G(q)
is full column-rank, we can conclude the symmetry and positive definiteness of
M̃(x). Regarding the skew symmetry of ˙̃

M(x) − 2C̃(x), we define first A(x) :=
[Ġ(q)]>M(q)G(q), and we have from (4.16b):

˙̃
M(x)− 2C̃(x) =ṀO(xO)− 2CO(xO, ẋO) + [G(q)]>(Ṁ(q)− 2C(q, q̇))G(q)+

A(x)− [A(x)]>,

which, by employing the skew-symmetry of MO(xO) − 2CO(xO, ẋO) and Ṁ(q) −
2C(q, q̇), leads to [ ˙̃

M(x) − 2C̃(x)]> = −[ ˙̃
M(x) − 2C̃(x)], which completes the

proof.

The positive definiteness of M̃(x) leads to the property

mI6 ≤ M̃(x) ≤ m̄I6, (4.17)

∀x ∈ R2n+6 × R, where m and m̄ are positive unknown constants.
We are now ready to state the problem treated in this paper:

Problem 4.1. Given a desired bounded object smooth pose trajectory specified
by x̄d(t) := [(pd(t))>, (ηd(t))>]>, pd(t) ∈ R3, ηd(t) := [ϕd(t), θd(t), ψd(t)] ∈ T, with
bounded first and second derivatives, and θd(t) ∈ [−θ̄, θ̄] ⊂ (−π2 ,

π
2 ),∀t ∈ R≥0, as

well as vO(0) = 06, determine a continuous time-varying control law u in (4.15) such
that

lim
t→∞

[
pO(t)
ηO(t)

]
=
[
pd(t)
ηd(t)

]
.

The requirement θd(t) ∈ [−θ̄, θ̄] ⊂ (−π2 ,
π
2 ),∀t ∈ R≥0 is a necessary condition needed

to ensure that tracking of θd will not result in singular configurations of JO(ηO),
which is needed for the control protocol of Section 4.4.2. The constant θ̄ ∈ [0, π2 )
can be taken arbitrarily close to π

2 .
To solve the aforementioned problem, we need the following assumptions re-

garding the agent feedback, the bounds of the uncertainties/disturbances, and the
kinematic singularities.

Assumption 4.1. (Feedback) Each agent i ∈ N has continuous feedback of its
own state qi, q̇i.

Assumption 4.2. (Object geometry) Each agent i ∈ N knows the constant offsets
p
Ei
Ei/O

and ηEi/O,∀i ∈ N .
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Assumption 4.3. (Kinematic singularities) The robotic agents operate away from
kinematic singularities, i.e., qi ∈ {qi ∈ Rni : |det(Ji(qi)[Ji(qi)]>)| ≥ J i > 0} for
positive constants J i > 0,∀i ∈ N .

Assumption 4.1 is realistic for real manipulation systems, since on-board sensor
can provide accurately the measurements qi, q̇i. The object geometrical characteristics
in Assumption 4.2 can be obtained by on-board sensors, whose inaccuracies are
not modeled here and constitute part of future work. Finally, Assumption 4.3 is
used for those qi that bring xO close to the desired trajectory x̄d(t). Intuitively, this
assumption states that the qi that achieve xO(t) = x̄d(t),∀t ∈ R≥0 are sufficiently
far from kinematic singular configurations.

Since each agent has feedback from its state qi, q̇i, it can compute through the
forward and differential kinematics the end-effector pose pEi(qi), ηEi(qi) and the
velocity vi, ∀i ∈ N . Moreover, since it knows pEiEi/O and ηEi/O, it can compute JOi(qi)
from (4.11), and xO, vO by inverting (4.9) and (4.10), respectively. Consequently,
each agent can then compute the object unit quaternion ζO as well as ζ̇O.

4.4 Main Results

In this section we present two control schemes for the solution of Problem 4.1. The
proposed controllers are decentralized, in the sense that the agents calculate their
control signal on their own, without communicating with each other, as well as
robust, since they do not take into account the dynamic properties of the agents
or the object (mass/inertia moments) or the uncertainties/external disturbances
modeled by the function d̃(x, t) in (4.15). The first control scheme is presented in
Section 4.4.1, and is based on quaternion feedback and adaptation laws, while the
second control scheme is given in Section 4.4.2 and is inspired by the Prescribed
Performance Control (PPC) methodology introduced in [29].

4.4.1 Adaptive Control with Quaternion Feedback
Firstly, we need the following assumption regarding the model uncertainties/external
disturbances.

Assumption 4.4. (Uncertainties/Disturbance parameterization) There exist posi-
tive, finite unknown constants d̄O, d̄i and known bounded functions δO : M× R6 ×
R≥0 → R6, δi : R2ni × R≥0 → R6, such that

dO(xO, ẋO, t) = d̄OδO(xO, ẋO, t),
di(qi, q̇i, t) = d̄iδi(qi, q̇i, t),

∀qi, q̇i ∈ Rni , xO ∈M, ẋO ∈ R6, t ∈ R≥0, i ∈ N .

The desired Euler angle orientation vector ηd : R≥0 → T is transformed first to the
unit quaternion ζd : R≥0 → S3 [26]. Then, we need to define the errors associated
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with the object pose and the desired pose trajectory. We first define the state that
corresponds to the position error:

ep := pO − pd(t).

Since unit quaternions do not form a vector space, they cannot be subtracted to form
an orientation error; instead we should use the properties of the quaternion group
algebra. Let eζ = [eϕ, e>ε ]> ∈ S3 be the unit quaternion describing the orientation
error. Then, it holds that [26],

eζ = ζd(t)⊗ ζ+
O =

[
ϕd(t)
εd(t)

]
⊗

[
ϕO

−εO

]
,

which, by using (4.1), becomes:

eζ =
[
eϕ

eε

]
:=
[

ϕOϕd(t) + ε>O εd(t)
ϕOεd(t)− ϕd(t)εO + S(εO)εd(t)

]
. (4.18)

By employing (4.2) and certain properties of skew-symmetric matrices [106], it can
be shown that the error dynamics of ep, eϕ are:

ėp =ṗO − ṗd(t) (4.19a)
ėϕ = 1

2e
>
ε eω (4.19b)

ėε =− 1
2 [eϕI3 + S(eε)] eω − S(eε)ωd(t), (4.19c)

where eω := ωO − ωd(t) is a state for the angular velocity error, with ωd(t) =
2[E(ζd(t))]>ζ̇d(t), as indicated by (4.2b).

Due to the ambiguity of unit quaternions, when ζO = ζd, then eζ = [1, 0>3 ]> ∈ S3.
If ζO = −ζd, then eζ = [−1, 0>3 ]> ∈ S3, which, however, represents the same
orientation. Therefore, the control objective established in Problem 4.1 is equivalent
to

lim
t→∞

 ep(t)|eϕ(t)|
eε(t)

 =

03

1
03

 .
The left hand side of (4.5), after employing (4.10) and (4.12), becomes

Mi(qi)v̇i + Ci(qi, q̇i)vi + gi(qi) + di(qi, q̇i, t) = Mi(qi)
(
JOi(qi)v̇O + JdOi(qi, q̇i)vO

)
+ Ci(qi, q̇i)JOi(qi)vO + gi(qi) + di(qi, q̇i, t).

which, according to Assumption 4.4 and the fact that the manipulator dynamics
can be linearly parameterized with respect to dynamic parameters [107], becomes

Mi(qi)JOi(qi)v̇O +
(
Mi(qi)JdOi(qi, q̇i) + Ci(qi, q̇i)JOi(qi)

)
vO + gi(qi) + di(qi, q̇i, t) =

Hi(qi, q̇i, vO, v̇O)ϑi + d̄iδi(qi, q̇i, t), (4.20a)
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∀i ∈ N , where ϑi ∈ R`, ` ∈ N, are vectors of unknown but constant dynamic
parameters of the agents, appearing in the terms Mi, Ci, gi, and Hi : R2ni+12 → R6×`

are known regressor matrices, independent of ϑi, i ∈ N . Without loss of generality,
we assume here that the dimension of ϑi is the same, ` for all the agents. Similarly,
the dynamical terms of the left hand side of (4.7b) can be written as

MO(xO)v̇O + CO(xO, ẋO)vO + gO(xO) + dO(xO, ẋO, t) = YO(xO, ẋO, vO, v̇O)ϑO+
d̄OδO(xO, ẋO, t), (4.20b)

where ϑO ∈ R`O , `O ∈ N is a vector of unknown but constant dynamic parameters
of the object, appearing in the terms MO, CO, gO, and YO : M× R18 → R6×`O is a
known regressor matrix, independent of ϑO. It is worth noting that the choice for `
and `O is not unique. In the same vein, since JOi(qi), as given in (4.11), depends
only on qi and not on ϑi, ϑO,∀i ∈ N , we can write:

[JOi(qi)]
>Mi(qi)JOi(qi)v̇O + [JOi(qi)]

>gi(qi) +
(

[JOi(qi)]
>Mi(qi)JdOi(qi, q̇i)

+ [JOi(qi)]
>Ci(qi, q̇i)JOi(qi)

)
vO + [JOi(qi)]

>di(qi, q̇i, t) = Yi(qi, q̇i, vO, v̇O)ϑi

+ [JOi(qi)]
>d̄iδi(qi, q̇i, t), (4.21)

where Yi : R2ni+12 → R6×` are also regressor matrices independent of ϑi, ϑO. Hence,
in view of (4.16), (4.20) and (4.21), the left-hand side of (4.15) can be written as:

M̃(x)v̇O + C̃(x)vO + g̃(x) + d̃(x, t) = YO(xO, ẋO, vO, v̇O)ϑO + [Y (q, q̇, vO, v̇O)]>ϑ+

d̄OδO(xO, ẋO) +
∑
i∈N

[JOi(qi)]
>d̄iδi(qi, q̇i, t) (4.22)

where ϑ := [ϑ>1 , . . . , ϑ>N ]> ∈ RN` and Y (q, q̇, vO, v̇O) := [[Y1(q1, q̇1, vO, v̇O)]>, . . . ,
[YN (qN , q̇N , vO, v̇O)]>]> ∈ RN`×6.

Let us now introduce the states ϑ̂Oi ∈ R`O and ϑ̂i ∈ R` which represent the
estimates of ϑO and ϑi, respectively, by agent i ∈ N , and the corresponding stack
vectors ϑ̂O := [(ϑ̂O1)>, . . . , (ϑ̂ON )>]> ∈ RN`O , ϑ̂ := [ϑ̂>1 , . . . , ϑ̂>N ]> ∈ RN`, for which
we formulate the associated errors eϑO ∈ RN`O , eϑ ∈ RN` as

eϑO :=


eϑO,1

...
eϑO,N

 :=


ϑO − ϑ̂O1

...
ϑO − ϑ̂ON

 = ϑO · 1N`O − ϑ̂O (4.23a)

eϑ :=


eϑ1

...
eϑN

 :=


ϑ1 − ϑ̂1

...
ϑN − ϑ̂N

 = ϑ− ϑ̂. (4.23b)
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In the same vein, we introduce the states d̂Oi ∈ R and d̂i ∈ R that correspond to
the estimates of the constants d̄O and d̄i, respectively, by agent i ∈ N , and the
corresponding stack vectors d̂O := [d̂O1 , . . . , d̂ON ]> ∈ RN , d̂ := [d̂1, . . . , d̂N ]> ∈ RN ,
for which we also formulate the associated errors edO , ed ∈ RN as

edO :=


edO,1

...
edO,2

 :=


d̄O − d̂O1

...
d̄O − d̂ON

 = d̄O · 1N − d̂O (4.24a)

ed :=


ed1

...
edN

 :=


d̄1 − d̂1

...
d̄N − d̂N

 = d̄− d̂, (4.24b)

where we have also used the notation d̄ := [d̄1, . . . , d̄N ]>.
Next, we design the reference velocity vf : R6 × R≥0 → R6 as

vf (e, t) := vd(t)−Kfe =
[
ṗd(t)− kpep
ωd(t) + kζeε

]
(4.25)

with Kf := diag{kp, kζ}, e := [e>p ,−e>ε ]> ∈ R6, kp, kζ positive control gains, and
the derivative vdf : R6 × S3 × R≥0 → R6, with

vdf (ṗO, eω, eζ , t) := v̇f (e, t) =
[
p̈d(t)− kpėp
ω̇d(t) + kζ ėε,

]
(4.26)

where we have implicitly used (4.19); ω̇d(t) can be calculated via (4.2c). We also
introduce the respective velocity error ev as

evf := vO − vf (e, t). (4.27)

Denote by χi the overall state χi = [q>i , q̇>i , x>O , ẋ>O , e>p , e>ζ , e>vf , e
>
ω , e
>
ϑi
, e>ϑO,i , edi , edO,i ]

>

of appropriate dimension Xi, and design the adaptive control law ui : Xi×R≥0 → R6

in (4.15), for each agent i ∈ N , as:

ui(χi, t) = [JOi(qi)]
−>
[
Yi

(
qi, q̇i, vf (e, t), vdf (ṗO, eω, eζ , t)

)
ϑ̂i − cie−Kvievf+

ciYO

(
xO, ẋO, vf (e, t), vdf (ṗO, eω, eζ , t)

)
ϑ̂Oi + cid̂OiδO(xO, ẋO, t)

]
+ d̂iδi(qi, q̇i, t),

(4.28)

where Kvi are diagonal positive definite gain matrices, ∀i ∈ N , and ci are load
sharing coefficients satisfying ci ∈ (0, 1),∀i ∈ N , and

∑
i∈N ci = 1. Note that

we have implicitly used the expressions ϑ̂i = eϑi + ϑi, ϑ̂Oi = eϑO,i + ϑO, d̂i =
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edi + d̄i, d̂Oi = edO,i + d̄O to express ui, i ∈ N , as a function of the errors (4.23) and
(4.24).

In addition, we design the following adaptation laws:

˙̂
θi = −γi

[
Yi

(
qi, q̇i, vf (e, t), vdf (ṗO, eω, eζ , t)

)]>
evf , (4.29a)

˙̂
θOi = −ciγOi

[
YO

(
xO, ẋO, vf (e, t), vdf (ṗO, eω, eζ , t)

)]>
evf (4.29b)

˙̂
di = −βi(δi(qi, q̇i, t))>JOi(qi)evf (4.29c)
˙̂
dOi = −ciβOi(δO(xO, ẋO, t))>evf , (4.29d)

with arbitrary bounded initial conditions, where βi, βOi , γi, γOi ∈ R>0 are positive
gains, ∀i ∈ N .

The following theorem summarizes the main results of this subsection.

Theorem 4.1. Consider N robotic agents rigidly grasping an object with cou-
pled dynamics described by (4.15) and unknown dynamic parameters. Then, under
Assumptions 4.1-4.4, by applying the control protocol (4.28) with the adaptation
laws (4.29), the object pose converges asymptotically to the desired pose trajectory.
Moreover, all closed loop signals are bounded.

Proof. Consider the stack state vector χ := [χ>1 , . . . , χ>N ]> ∈ X := X1 × · · · × XN ,
and the nonnegative function V : X→ R≥0, with

V (χ) := 1
2e
>
p ep + 2(1− eϕ) + 1

2e
>
vf
M̃(x)evf + 1

2e
>
ϑ Γ−1eϑ + 1

2e
>
ϑOΓ−1

O eϑO+
1
2e
>
d B
−1ed + 1

2e
>
dOB

−1
O edO , (4.30)

where B := diag{[βi]i∈N }, BO := diag{[βOi ]i∈N },Γ := diag{[γiI`]i∈N },ΓO :=
diag{[γOiI`O ]i∈N }. Recall that the error quaternion eζ as defined (4.18) is a unit
quaternion and hence eϕ ∈ [−1, 1].

By considering the derivatives of the elements in χ, it can be concluded from
the aforementioned dynamics that the closed loop dynamics can be written in the
form χ̇ = fcl(χ, t), for a locally Lipschitz function fcl : X×R≥0 → X. By taking the
derivative of V along the solutions of the closed loop system, we obtain

V̇ (χ) = e>(vO − vd(t)) + 1
2e
>
vf

˙̃
M(x)evf − e>vf M̃(x)v̇f + e>vf

(
[G(q)]>u− C̃(x)vO−

g̃(x)− d̃(x)
)
− e>ϑ Γ−1 ˙̂

ϑ− e>ϑOΓ−1
O

˙̂
ϑO − e>d B−1 ˙̂

d− e>dOB
−1
O

˙̂
dO,

which, by using (4.27) and (4.25), becomes

V̇ (χ) = −e>Kfe+ 1
2e
>
vf

˙̃
M(x)evf − e>vf C̃(x)evf + e>vf

(
[G(q)]>u+ e−

M̃(x)vdf (ṗO, eω, eζ , t)− g̃(x)− C̃(x)vf (e, t)− d̃(x, t)
)
− e>ϑ Γ−1 ˙̂

ϑ− e>ϑOΓ−1
O

˙̂
ϑO

− e>d B−1 ˙̂
d− e>dOB

−1
O

˙̂
dO.
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By employing Lemma 4.1 as well as (4.22), V̇ (χ) can be written as

V̇ (χ) = −e>Kfe+ e>vf

∑
i∈N

[
[JOi(qi)]

>ui + cie− δO(xO, ẋO, t)cid̄O−

YO

(
xO, ẋO, vf (e, t), vdf (ṗO, eω, eζ , t)

)
ciϑO − Yi

(
qi, q̇i, vf (e, t), vdf (ṗO, eω, eζ , t)

)
θi

− [JOi(qi)]
>δi(qi, q̇i, t)d̄i

]
−
∑
i∈N

(e>ϑi
γi

˙̂
ϑi +

e>ϑO,i
γOi

˙̂
ϑOi + edi

βi

˙̂
di +

edO,i
βOi

˙̂
dOi

)
,

and after substituting the adaptive control laws (4.28),

V̇ (χ) = −e>Kfe−
∑
i∈N

e>vfKvievf −
∑
i∈N

(e>ϑi
γi

˙̂
ϑi +

e>ϑO,i
γOi

˙̂
ϑOi + edi

βi

˙̂
di −

edO,i
βOi

˙̂
dOi

)
− e>vf

∑
i∈N

[
YO

(
xO, ẋO, vf (e, t), vdf (ṗO, eω, eζ , t)

)
cieϑO,i + δO(xO, ẋO, t)ciedO,i+

Yi

(
qi, q̇i, vf (e, t), vdf (ṗO, eω, eζ , t)

)
eθi + [JOi(qi)]

>δi(qi, q̇i, t)edi
]
,

which, after substituting the adaptation laws (4.29), finally becomes

V̇ (χ) = −e>Kfe−
∑
i∈N

e>vfKvievf = −kp‖ep‖2 − kζ‖eε‖2 −
∑
i∈N

e>vfKvievf ,

which is non-positive. We conclude therefore the boundedness of V and of χ, which
implies the boundedness of the dynamic terms M̃(x), C̃(x), g̃(x). Moreover, by
invoking the boundedness of pd(t), vd(t), ωd(t), v̇d(t), ω̇d(t), we conclude the bound-
edness of vf (e, t), vO, vi, ϑ̂O, ϑ̂, d̂, d̂O. From (4.19) and (4.26) we also conclude the
boundedness of v̇f (e, t) and therefore, the boundedness of the control and adapta-
tion laws (4.28) and (4.29). Thus, we can conclude the boundedness of the second
derivative V̈ (χ) and hence the uniform continuity of V̇ (χ). By invoking Barbalat’s
lemma [108], we deduce therefore that limt→∞ V̇ (χ(t)) = 0 and, consequently, that
limt→∞ ep(t) = 03, limt→∞ evf (t) = 06, and limt→∞ ‖eε(t)‖2 = 0, which, given that
eζ is a unit quaternion, leads to the configuration (ep, evf , eϕ, eε) = (03, 06,±1, 03).
The closed loop dynamics of eϕ, as given in (4.19b), can be written, in view of (4.25),
as ėϕ = kζ

1
2‖eε‖

2 + 1
2 [0>3 , e>ε ]evf . Since the first term is always positive, we conclude

that the equilibrium point (ep, evf , eϕ, eε) = (03, 06,−1, 03) is unstable and, therefore,
the system will converge to the configuration (ep, evf , eϕ, eε) = (03, 06, 1, 03).

Remark 4.1 (Unwinding). Note that the two configurations where eϕ = 1 and
eϕ = −1, respectively, represent the same orientation. The closed loop dynamics of eϕ,
as given in (4.19b), can be written, in view of (4.25), as ėϕ = kζ

1
2‖eε‖

2+ 1
2 [0>3 , e>ε ]evf .

Since the first term is always positive, we conclude that the equilibrium point
(ep, evf , eϕ, eε) = (03, 06,−1, 03) is unstable. Therefore, there might be trajectories
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close to the configuration eϕ = −1 that will move away and approach eϕ = 1, i.e.,
a full rotation will be performed to reach the desired orientation (of course, if the
system starts at the equilibrium (ep, evf , eϕ, eε) = (03, 06,−1, 03), it will stay there,
which also corresponds to the desired orientation behavior). This is the so-called
unwinding phenomenon [70]. Note, however, that the desired equilibrium point
(ep, evf , eϕ, eε) = (03, 06, 1, 03) is eventually attractive, meaning that for each
δε > 0, there exist finite a time instant T ≥ 0 such that 1− eϕ(t) < δε,∀t > T ≥ 0.
A similar behavior is observed if we stabilize the point eϕ = −1 instead of eϕ = 1,
by setting e := [e>p , e>ε ]> in (4.25) and considering the term 2(1 + eϕ) instead of
2(1− eϕ) in the Lyapunov function (4.30).

In order to avoid the unwinding phenomenon, instead of the error e = [e>p ,−e>ε ]>,
we can instead choose e = [e>p ,−eϕe>ε ]> (see [14]). Then by considering the Lyapunov
function

V (χ) = 1
2e
>
p ep + 1− e2

ϕ + 1
2e
>
vf
M̃(x)evf + 1

2e
>
ϑ Γ−1eϑ + 1

2e
>
ϑOΓ−1

O eϑO

+ 1
2e
>
d B
−1ed + 1

2e
>
dOB

−1
O edO ,

and the design (4.25), (4.28), and (4.29), we conclude by proceeding with a similar
analysis that (ep, ‖eε‖eϕ, evf )→ (03, 0, 06), which implies that the system is asymp-
totically driven to either the configuration (ep, evf , eϕ, eε) = (03, 06,±1, 03), which
is the desired one, or a configuration (ep, evf , eϕ, eε) = (03, 06, 0, ẽε), where ẽε ∈ S2

is a unit vector. The latter represents a set of invariant undesired equilibrium points.
The closed loop dynamics are the following:

∂

∂t
eϕ = 1

2eϕ‖eε‖
2 + 1

2[0>3 , e>ε ]ev, (4.31a)

∂

∂t

(
‖eε‖2

)
= −e2

ϕ‖eε‖2 − eϕ[0>3 , e>ε ]ev. (4.31b)

We can conclude from the term [0>3 , e>ε ]ev in (4.31) that there exist trajectories
that can bring the system close to the undesired equilibrium, rendering thus the
point (ep, evf , eϕ, eε) = (03, 06,±1, 03) only locally asymptotically stable. It has
been proven that eϕ = ±1 cannot be globally stabilized with a purely continuous
controller [70]. Discontinuous control laws have also been proposed (e.g., [71]),
whose combination with adaptation techniques constitute part of our future research
directions. Another possible direction is tracking directly on SO(3) (see e.g., [69]).

Remark 4.2. Notice also that the control protocol compensates the uncertain
dynamic parameters and external disturbances through the adaptation laws (4.29),
although the errors (4.23), (4.24) do not converge to zero, but remain bounded.
Finally, the control gains kp, kζ ,Kvi can be tuned appropriately so that the proposed
control inputs do not reach motor saturations in real scenarios.
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4.4.2 Prescribed Performance Control
In this section, we adopt the concepts and techniques of prescribed performance
control, recently proposed in [29], in order to achieve predefined transient and steady
state response for the derived error, as well as ensure that θO(t) ∈ (−π2 ,

π
2 ),∀t ∈ R≥0.

As stated in Section 2.1, prescribed performance characterizes the behavior where
a signal evolves strictly within a predefined region that is bounded by absolutely
decaying functions of time, called performance functions. This signal is represented
by the object’s pose error

es :=



esx
esy
esz
esφ
esθ
esψ


:= xO − xd(t) (4.32)

First, we reformulate Assumption 4.4, which is now required to be less strict, stating
that the functions dO, di are bounded:

Assumption 4.5. (Uncertainties/Disturbance bound)

• For each fixed t ∈ R≥0, the functions (xO, ẋO)→ dO(xO, ẋO, t) and (qi, q̇i)→
dO(qi, q̇i, t) are continuous, ∀i ∈ N .

• There exist positive, finite unknown constants d̄O, d̄i such that, for each fixed
(xO, ẋO) ∈ M × R6 and (qi, q̇i) ∈ R2ni , the functions t → dO(xO, ẋO, t) and
t→ dO(qi, q̇i, t) are bounded by d̄O and d̄i, respectively, i.e., ‖dO(xO, ẋO, t)‖ ≤
d̄O, and ‖di(qi, q̇i, t)‖ ≤ d̄i, ∀t ∈ R≥0, i ∈ N .

The mathematical expressions of prescribed performance are given by the fol-
lowing inequalities:

− ρsk(t) < esk(t) < ρsk(t),∀k ∈ K, (4.33)

where K := {x, y, z, φ, θ, ψ} and ρk : R≥0 → R>0, with

ρsk(t) := (ρsk,0 − ρsk,∞) exp(−lskt) + ρsk,∞, ∀k ∈ K, (4.34)

are designer-specified, smooth, bounded and decreasing positive functions of time
with lsk , ρsk,∞, k ∈ K, positive parameters incorporating the desired transient and
steady state performance respectively. The terms ρsk,∞ can be set arbitrarily small,
achieving thus practical convergence of the errors to zero. Next, we propose a state
feedback control protocol that does not incorporate any information on the agents’
or the object’s dynamics or the external disturbances and guarantees (4.33) for all
t ∈ R≥0. Given the errors (4.32):
Step I-a. Select the corresponding functions ρsk as in (4.34) with
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(i) ρsθ,0 = ρsθ (0) = θ∗, ρsk,0 = ρsk(0) > |esk(0)|,∀k ∈ K\{θ},

(ii) lsk ∈ R>0,∀k ∈ K,

(iii) ρsk,∞ ∈ (0, ρsk,0),∀k ∈ K,

where θ∗ is a positive constant satisfying θ∗ + θ̄ < π
2 and θ̄ is the desired trajectory

bound (see statement of Problem 4.1)
Step I-b. Introduce the transformed states representing the normalized errors

ξs :=


ξsx
...
ξsψ

 := [ρs(t)]−1es, (4.35)

where ρs(t) := diag{[ρsk(t)]k∈K} ∈ R6×6, as well as the transformed state functions
εs : (−1, 1)6 → R6, and signals rs : (−1, 1)6 → R6×6, with

εs(ξs) :=


εsx(ξsx)

...
εsψ(ξsψ )

 :=


ln
(

1+ξsx
1−ξsx

)
...

ln
( 1+ξsψ

1−ξsψ

)
 (4.36)

rs(ξs) := diag{[qsk ]k∈K} := diag
{[∂εvk(ξsk)

∂ξsk

]
k∈K

}
= diag

{[ 2
1− ξ2

sk

]
k∈K

}
,

(4.37)

and design the reference velocity vector vr : (−1, 1)6 × R≥0 → R6, with:

vr(ξs, t) := −gsJO,inv

(
ηd(t) + ρsη (t)ξsη

)
[ρs(t)]−1rs(ξs)εs(ξs), (4.38)

where JO,inv : T → R6×6 is the matrix inverse JO,inv(ηO) := [JO(ηO)]−1, ρsη(t) :=
diag{ρsφ(t), ρsθ(t), ρsψ(t)}, ξsη := [ξsφ , ξsθ , ξsψ ]>, and we have further used the
relation ξs = [ρs(t)]−1(xO − xd(t)) from (4.32) and (4.35).

Step II-a. Define the velocity error vector

ev :=


evx
...
evψ

 := vO − vr(ξs, t), (4.39)

and select the corresponding positive performance functions ρvk : R≥0 → R>0 with
ρvk(t) := (ρvk,0 − ρvk,∞) exp(−lvkt) + ρvk,∞, such that ρvk,0 = ‖ev(0)‖+ α, lvk > 0
and ρvk,∞ ∈ (0, ρvk,0),∀k ∈ K, where α an is arbitrary positive constant.
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Step II-b. Define the normalized velocity error

ξv :=


ξvx
...
ξvψ

 := [ρv(t)]−1ev, (4.40)

where ρv(t) := diag{[ρvk(t)]k∈K}, as well as the transformed states εv : (−1, 1)6 →
R6 and signals rv : (−1, 1)6 → R6×6, with

εv(ξv) :=


εvx(ξvx)

...
εvψ (ξvψ )

 :=


ln
(

1+ξvx
1−ξvx

)
...

ln
( 1+ξvψ

1−ξvψ

)


rv(ξv) := diag{[qvk ]k∈K} := diag
{[∂εvk(ξvk)

∂ξvk

]
k∈K

}
= diag

{[ 2
1− ξ2

vk

]
k∈K

}
,

and design the distributed control protocol for each agent i ∈ N as ui : Rni ×
(−1, 1)6 × R≥0 → R6:

ui(qi, ξv, t) := −cigv[JOi(qi)]
>[ρv(t)]−1rv(ξv)εv(ξv), (4.41)

where gv is a positive constant gain, JOi as defined in (4.11), and ci the load sharing
coefficients that were also used in (4.28).

The control laws (4.41) can be written in vector form u := [u>1 , . . . , u>N ]>, with:

u(q, ξv, t) = −CgG∗(q)[ρv(t)]−1rv(ξv)εv(ξv), (4.42)

where G?(q) := [JO1(q1)]−1, . . . , [JON (qN )]−1]> ∈ R6N×6 (recall that, due to the
rigidity assumption, the matrices JOi(qi) are invertible, for all i ∈ N ), and Cg :=
gvdiag{[ciI6]i∈N } ∈ R6N×6N .

Remark 4.3. Notice from (4.28), (4.29), and (4.41) that in both control methodolo-
gies each agent i ∈ N can calculate its own control signal, without communicating
with the rest of the team, rendering thus the overall control scheme decentralized.
In fact, it needs feedback only from its own state qi, q̇i, knowledge of the object
geometric characteristics, the desired object profile pd(t), ηd(t), as well as the terms
lk, ρk,0, ρk,∞, α, lvk , and ρvk,∞, k ∈ K, since the performance functions concern
the object pose error and hence are common for all the agents. Moreover, both
schemes guarantee robustness to uncertainties of model uncertainties and external
disturbances. In particular, note that the Prescribed Performance Control protocol
does not even require the structure of the terms M̃, C̃, g̃, d̃, but only the positive
definiteness of M̃ , as will be observed in the subsequent proof of Theorem 4.2. It is
worth noting that, in the case that one or more agents failed to participate in the
task, then the remaining agents would need to appropriately update their control
protocols (e.g., update the load-sharing coefficients ci) to compensate for the failure.
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Remark 4.4. Internal force regulation can be also guaranteed by including in
the control laws (4.28) and (4.41) a term of the form (I6N − 1

NG
?(q)[G(q)]>)f̂int,d,

wheref̂int,d ∈ R6N is a constant vector representing desired internal forces, that can
be transmitted off-line to the agents. The computation, though, of G?(q)[G(q)]>,
by each agent, requires knowledge of all the grasping points pEi , which reduces to
knowledge of the offsets pOEi/O (since all the agents can compute RO and pO), that
can be also transmitted off-line to the agents.

The main results of this subsection are summarized in the following theorem.

Theorem 4.2. Consider N agents rigidly grasping an object with unknown coupled
dynamics (4.15). Then, under Assumptions 4.1-4.3, 4.5, the distributed control
protocol (4.35)-(4.41) guarantees that −ρsk(t) < esk(t) < ρsk(t),∀k ∈ K, t ∈ R≥0
from all the initial conditions satisfying |θ(0)− θd(0)| < θ∗ (where θ∗ was used in
Step I-a (i)), with all closed loop signals being bounded.

Proof. Note first from (4.32), (4.35), (4.39), and (4.40), that the states xO, vO can
be expressed as

xO = xd(t) + ρs(t)ξs, (4.43a)
vO = ρv(t)ξv + vr(ξs, t), (4.43b)

which was used in (4.38) and will be also used in the sequel.
Consider the combined state σ = [q, ξs, ξv] ∈ Rn+12. From the differential

kinematics vi = Ji(qi)q̇i, Assumption 4.3, as well as (4.10) and (4.39), (4.40), we
can derive

q̇ = J̃(q)v = J̃(q)G(q)vO = J̃(q)G(q)
(
ρv(t)ξv + vr(ξs, t)

)
=: fcl,q(σ, t), (4.44)

where J̃(q) := diag{[(Ji(qi))>(Ji(qi)(Ji(qi))>)−1]i∈N } ∈ R6N×n. Next, we obtain
from (4.35):

ξ̇s = [ρs(t)]−1
(
ė− ρ̇s(t)ξs

)
= [ρs(t)]−1

(
ẋO − ẋd(t)− ρ̇s(t)ξs

)
,

which, after employing (4.7a), (4.32), (4.38), as well as (4.43), becomes

ξ̇s =[ρs(t)]−1
[
JO

(
ηd(t) + ρsη (t)ξsη

)
ρv(t)ξv − ρ̇s(t)ξs − gs[ρs(t)]−1rs(ξs)εs(ξs)

− ẋd(t)
]

=: fcl,s(σ, t). (4.45)

Consider now the derivative of JO,inv(ηO) (as was defined in (4.38)) as JdO,inv :
M× R6 → R6×6, with JdO,inv(ηO, ẋO) := J̇O,inv(ηO), which, by employing (4.43), can
be expressed as J̃dO,inv : Rn+12 × R≥0 → R6×6, with

J̃dO,inv(σ, t) := JdO,inv

(
ηd(t) + ρsη (t)ξsη , JO(xd(t) + ρs(t)ξs)[ρv(t)ξv + vr(ξs, t)]

)
.
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Moreover, we define the derivative function of the signal rs(ξs) as rds : Rn+12×R≥0 →
R6×6, with rds(σ, t) := ṙs(ξs), which can be explicitly written as

rds(σ, t) =diag
{[ 2ξsk

(1− ξsk)2

]
k∈K

}∑
k∈K

Ēk ξ̇sēk

=diag
{[ 2ξsk

(1− ξsk)2

]
k∈K

}∑
k∈K

Ēkfcl,s(σ, t)ēk,

where Ēk ∈ R6×6 is the matrix with 1 in the position (k, k) and zeros everywhere
else, and ēk ∈ R6 is the vector with 1 in the position k and zeros everywhere else.

Hence, we can now define the derivative of the reference velocity vr as vdr :
Rn+12 → R6, with vdr (σ, t) := v̇r(ξs, t), or, equivalently,

vdr (σ, t) = −gsJO,inv

(
ηd(t) + ρs(t)sη (t)ξsη

)[
[ρs(t)]−1rds(σ, t)εs(ξs)

+ [ρs(t)]−1[rs(ξs)]2fcl,s(σ, t)− [ρs(t)]−2ṙs(t)rs(ξs)εs(ξs)
]

− gsJ̃dO,inv(σ, t)[ρs(t)]−1rs(ξs)εs(ξs) (4.46)

Moreover, from (4.39) and (4.40) one obtains:

ξ̇v = [ρv(t)]−1
(
ėv − ρ̇v(t)ξv

)
,

= [ρv(t)]−1
(
v̇O − vdr (σ, t)− ρ̇v(t)ξv

)
,

which, after employing (4.15), (4.42), and the fact that
∑
i∈N ci = 1, becomes

ξ̇v =[ρv(t)]−1
(
− ρ̇v(t)ξv − M̃(x(σ, t))

[
C̃(x(σ, t))[ρv(t)ξv + vr(ξs, t)] + g̃(x(σ, t))

+ d̃(x(σ, t), t)− gv[ρv(t)]−1rv(ξv)εv(ξv)
]
− vdr (σ, t)

)
=: fcl,v(σ, t) (4.47)

and where, with a slight abuse of notation and by using (4.43) and (4.44), we have
written x (that was first defined in (4.15)) as a function of σ and t, i.e.,

x(σ, t) =


q

q̇

xO

ẋO

 =


q

fcl,q(σ, t)
xd(t) + ρs(t)ξs

JO

(
ηd(t) + ρsη (t)ξsη

)
[ρv(t)ξv + vr(ξs, t)]

 .
Hence, we can write (4.44)-(4.47) in compact form

σ̇ = fcl(σ, t) :=

fcl,q(σ, t)
fcl,s(σ, t)
fcl,v(σ, t)

 .
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Consider now the open and nonempty set Ω := Rn × (−1, 1)12. The choice of
the parameters ρsk,0 and ρvk,0, k ∈ K in Step I-a and Step II-a, respectively,
along with the fact that the initial conditions satisfy |θO(0) − θd(0)| < θ∗ imply
that |esk(0)| < ρsk(0), |evk(0)| < ρvk(0),∀k ∈ K and hence [[ξs(0)]>, [ξv(0)]>]> ∈
(−1, 1)12. Moreover, it can be verified that fcl : Ω×R≥0 → Rn+12 is locally Lipschitz
in σ over the set Ω and is continuous in t, which makes it also locally integrable
in t for each fixed σ ∈ Ω. Therefore, the hypotheses of Theorem 2.3 hold and the
existence of a maximal solution σ : [0, τmax)→ Ω, for τmax > 0, is ensured. We thus
conclude that

ξsk(t) = esk(t)
ρsk(t) ∈ (−1, 1), (4.48a)

ξvk(t) = evk(t)
ρvk(t) ∈ (−1, 1), (4.48b)

∀k ∈ K, t ∈ [0, τmax), which also implies that ‖ξs(t)‖ ≤
√

6, and ‖ξv(t)‖ ≤
√

6,∀t ∈
[0, τmax). Next, we need to show the boundedness of all closed loop signals as well
as that τmax =∞. Note first from (4.48), that |θO(t)− θd(t)| < ρθ(t) ≤ ρθ(0) = θ∗,
which, since θd(t) ∈ [−θ̄, θ̄],∀t ∈ R≥0, implies that |θO(t)| ≤ θ̃ := θ̄ + θ∗ < π

2 ,∀t ∈
[0, τmax). Therefore, by employing (4.8), one obtains

‖JO(ηO(t))‖ ≤ J̄O :=

√
| sin(θ̃)|+ 1
1− sin2(θ̃)

<∞, ∀t ∈ [0, τmax). (4.49)

Consider now the positive definite and radially unbounded function Vs : R6 → R≥0,
with Vs(εs(ξs)) = 1

2‖εs(ξs)‖2, and its derivative along the solutions of the closed
loop system, which, in view of (4.45), yields

V̇s(εs(ξs)) = −gs‖[ρs(t)]−1rs(ξs)εs(ξs)‖2 + [εs(ξs)]>rs(ξs)[ρs(t)]−1
(
− ρ̇s(t)ξs

− ẋd(t) + JO(ηd(t) + ρsη (t)ξsη )ρv(t)ξv
)

≤ gs‖[ρs(t)]−1rs(ξs)εs(ξs)‖2 + ‖[ρs(t)]−1rs(ξs)εs(ξs)‖
(
‖ẋd(t)‖+ ‖ρ̇s(t)ξs‖+

‖JO(ηd(t) + ρsη (t)ξsη )ρv(t)ξv‖
)
.

In view of (4.49), (4.48), and the structure of ρsk , ρvk , k ∈ K, as well as the fact
that vO(0) = 0 and the boundedness of ẋd(t), the last inequality becomes

V̇s(εs(ξs)) ≤− gs‖[ρs(t)]−1rs(ξs(t))εs(ξs(t))‖2 + ‖[ρs(t)]−1rs(ξs(t))εs(ξs(t))‖B̄s,

∀t ∈ [0, τmax), where

B̄s :=
√

6J̄O(‖v0
r‖+ α) + ¯̇xd +

√
6 max
k∈K
{lk(ρsk,0 − ρsk,∞)},
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is a positive constant independent of τmax, ¯̇xd is the bound of ẋd(t), and v0
r :=

vr(ξs(0), 0). Therefore, V̇s(εs(ξs)) is negative when ‖[ρs(t)]−1rs(ξs(t))εs(ξs(t))‖ >
B̄s
gs

, which, by employing (4.37), the decreasing property of ρsk(t), k ∈ K as well as

(4.48a), is satisfied when ‖εs(ξs(t))‖ >
maxk∈K{ρsk,0}B̄s

2gs . Hence, we conclude that

‖εs(ξs(t))‖ ≤ ε̄s := max
{
‖εs(ξs(0))‖,

max
k∈K
{ρsk,0}B̄s

2gs

}
, (4.50)

∀t ∈ [0, τmax). Furthermore, since |εsk(ξsk)| ≤ ‖εs(ξs)‖,∀k ∈ K, taking the inverse
logarithm function from (4.36), we obtain

−1 < exp(−ε̄s)− 1
exp(−ε̄s) + 1 =: −ξ̄s ≤ ξsk (t) ≤ ξ̄s := exp(ε̄s)− 1

exp(ε̄s) + 1 < 1, (4.51)

∀t ∈ [0, τmax). Hence, recalling (4.37), one obtains

‖rs(ξs(t))‖ ≤ r̄s := 2
1− ξ̄2

s

= (exp(ε̄s) + 1)2

2 exp(ε̄s)
,

∀t ∈ [0, τmax). Therefore, we obtain from (4.38) the boundedness of vr with

‖vr(ξs(t), t)‖ ≤ v̄r := gsJ̄O
ε̄s(exp(ε̄s) + 1)2

2 min
k∈K
{ρsk,∞} exp(ε̄s)

, (4.52)

∀t ∈ [0, τmax). Since vO = vr(ξs, t) + ρv(t)ξv, we also conclude that

‖vO(t)‖ ≤ v̄O := gsJ̄O
ε̄s(exp(ε̄s) + 1)2

2 min
k∈K
{ρk,∞} exp(ε̄s)

+
√

6 max
k∈K
{ρvk,0}, (4.53)

∀t ∈ [0, τmax), which, through (4.10) and (4.13), leads to

‖vi(t)‖ ≤ v̄i := (‖pEiO/Ei‖+ 1)v̄O,∀i ∈ N , t ∈ [0, τmax). (4.54)

In a similar vein, we can also derive a bound for the derivative of the reference
velocity (4.46), ‖vdr (σ(t), t)‖ ≤ v̄dr ,∀t ∈ [0, τmax), which is not written explicitly for
presentation clarity. From (4.7), (4.51) and (4.32) we also conclude that ‖xO(t)‖ ≤
x̄O := x̄d +

√
6ξ̄s max

k∈K
{ρsk,0}, t ∈ [0, τmax), as well as ‖ẋO(t)‖ ≤ J̄Ov̄O.

Applying the aforementioned line of proof, we consider the positive definite and
radially unbounded function Vv : R6 → R≥0, with Vv(εv(ξv)) = 1

2‖εv(ξv)‖2, and its
derivative along the solutions of the closed loop system, which, in view of (4.47),
yields

V̇v(εv(ξv)) = −gv[εv(ξv)]>rv(ξv)[ρv(t)]−1M̃(x(σ, t))[ρv(t)]−1rv(ξv)εv(ξv)

+ [εv(ξv)]>rv(ξv)[ρv(t)]−1
(
− ρ̇v(t)ξv − M̃(x(σ, t))

[
C̃(x(σ, t))[ρv(t)ξv + vr(ξs, t)]

+ g̃(x(σ, t)) + d̃(x(σ, t), t)
]
− vdr (σ, t)

)
, (4.55)
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Figure 4.2: Two WidowX Robot Arms rigidly grasping an object.

By using (4.9) and the fact that the rotation matrix REi
(qi) is an orthogonal ma-

trix, we obtain ‖xEi(t)‖ := ‖[p>Ei(qi(t), η
>
Ei

(qi(t))]>‖ ≤ ‖xO(t)‖+ [(pEiEi/O)>, η>Ei/O]>
and hence, in view of the inverse kinematics of the agents [26], we conclude the
boundedness of q(t) as

‖q(t)‖ ≤ q̄,∀t ∈ [0, τmax), (4.56)

where q̄ is a positive constant. From Assumption 4.3 and the forward differential
agent kinematics, we can also conclude that there exists a positive constant J̄ such
that ‖q̇(t)‖ ≤ J̄‖v‖ ≤ J̄

∑
i∈N v̄i,∀t ∈ [0, τmax), where v̄i was defined in (4.54).

Therefore, we conclude that

‖x(t)‖ ≤ x̄ := q̄ + J̄
∑
i∈N

v̄i + x̄O + J̄Ov̄O, (4.57)

∀t ∈ [0, τmax).
Invoking Assumption 4.5 and the boundedness of the states qi(t), q̇i(t), xO(t),

ẋO(t), ∀t ∈ [0, τmax), we conclude the boundedness of dO(xO(t), ẋO(t), t) and
di(qi(t), q̇i(t), t), ∀t ∈ [0, τmax), by positive and finite constants d̄′O and d̄′i, respec-
tively, ∀i ∈ N . Hence, from expressions (4.13) and (4.16d), we obtain ‖d̃(x(t))‖ ≤
d̄ := d̄′O +

∑
i∈N {‖p

Ei
O/Ei
‖+ 1}d̄′i.

In addition, since the terms C̃(x), g̃(x) are continuous, we conclude from (4.57)
that there exist positive constants c̄, ḡ, independent of τmax (since x̄ is also indepen-
dent of τmax), such that ‖C̃(x(t))‖ ≤ c̄, ‖g̃(x(t))‖ ≤ ḡ, ∀t ∈ [0, τmax).

Thus, by combining the aforementioned results along with the boundedness of
vr, (4.48), (4.52), (4.57) as well as (4.17), we obtain from (4.55)

V̇v(εv(ξv)) ≤ −gvm‖[ρv(t)]−1rv(ξv(t))εv(ξv(t))‖2 + ‖[ρv(t)]−1rv(ξv(t))εv(ξv(t))‖B̄v,
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Figure 4.3: Simulations results for the controller of subsection 4.4.1, for t ∈ [0, 70]
[sec]. Top: The desired (with blue) and actual (with red) object trajectory in x- and
z-axis as well as the quaternion desired and actual object trajectory. Middle: The
position and quaternion errors ep(t), eζ(t), respectively. Bottom: The velocity errors
evf (t).

∀t ∈ [0, τmax), where

B̄v :=
√

6 max
k∈K
{lvk(ρvk,0 − ρvk,∞)}+ v̄dr + m̄

(
ḡ + d̄+

c̄(v̄r +
√

6(‖v0
r‖+ α))

)
. (4.58)

By proceeding similarly as with V̇ (εs(ξs)), we conclude that

‖εv(ξv(t))‖ ≤ ε̄v := max
{
‖εv(ξv(0))‖,

max
k∈K
{ρvk,0}B̄v

2gvm

}
, (4.59)

∀t ∈ [0, τmax), from which we obtain

−1 < exp(−ε̄v)− 1
exp(−ε̄v) + 1 =: −ξ̄v ≤ ξvk (t) ≤ ξ̄v := exp(ε̄v)− 1

exp(ε̄v) + 1 < 1, (4.60)

as well as

‖rv(ξv(t))‖ ≤ r̄v := 2
1− ξ̄2

vk

= (exp(ε̄v) + 1)2

2 exp(ε̄v)
,
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Figure 4.4: The agent joint torques and velocities of the simulation of the controller
in subsection 4.4.1, for t ∈ [0, 70] [sec], with their respective limits (purple and green
lines, respectively). Top: The joint torques of agent 1 (left) and agent 2 (right). Bottom:
The joint velocities of agent 1 (left) and agent 2 (right).

0 20 40 60

-0.1

0

0.1

0 20 40 60

-0.1

0

0.1

Figure 4.5: The norms of the adaptation signals eϑi(t) (left) and eϑO,i(t), ∀i ∈ {1, 2},
t ∈ [0, 70] [sec] of the simulation of the controller in subsection 4.4.1.
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∀t ∈ [0, τmax). Hence, we can also conclude the boundedness of the control inputs
(4.41)

‖ui(qi(t), ξv(t), t)‖ ≤ ūi := cigv(‖pEiO/Ei‖+ 1) max
k∈K

{ 1
ρvk,∞

}
r̄v ε̄v, ∀t ∈ [0, τmax).

(4.61)

What remains to be shown is that τmax =∞. To this end, note from (4.56), (4.51),
(4.60), that the solution σ(t) remains in a compact subset of Ω = Rn × (−1, 1)12,
i.e.,

σ(t) ∈ Ω′ := [−q̄, q̄]× [−ξ̄s, ξ̄s]6 × [−ξ̄v, ξ̄v]6,

∀t ∈ [0, τmax). Hence, assuming τmax < ∞ and since Ω′ ⊂ Ω, Proposition 2.1
dictates the existence of a time instant t′ ∈ [0, τmax) such that σ(t′) /∈ Ω′, which is a
contradiction. Therefore, τmax =∞. Thus, all closed loop signals remain bounded
and moreover σ(t) ∈ Ω′ ⊂ Ω,∀t ∈ R≥0. Finally, by multiplying (4.51) by ρk(t), k ∈ K,
we obtain

− ρsk(t) < −ξ̄sρsk(t) ≤ esk(t) ≤ ξ̄sρsk(t) < ρsk(t), (4.62)

∀t ∈ R≥0, which leads to the conclusion of the proof.

Remark 4.5. From the aforementioned proof it can be deduced that the Prescribed
Performance Control scheme achieves its goal without resorting to the need of
rendering the ultimate bounds ε̄s, ε̄v of the modulated pose and velocity errors
εs(ξs(t)), εv(ξv(t)) arbitrarily small by adopting extreme values of the control gains
gs and gv (see (4.50) and (4.59)). More specifically, notice that (4.51) and (4.60)
hold no matter how large the finite bounds ε̄s, ε̄v are. In the same spirit, large
uncertainties involved in the coupled model (4.15) can be compensated, as they
affect only the size of ε̄v through B̄v (see (4.58)), but leave unaltered the achieved
stability properties. Hence, the actual performance given in (4.62), which is solely
determined by the designed-specified performance functions ρsk(t), ρvk(t), k ∈ K,
becomes isolated against model uncertainties, thus extending greatly the robustness
of the proposed control scheme.

Remark 4.6 (Control Input Bounds). The aforementioned analysis of the
Prescribed Performance Control methodology reveals the derivation of implicit
bounds for the velocity vi and control input ui of each agent. More specifically,
notice that (4.54) and (4.53) provide a bound for the agents’ velocity, ‖vi(t)‖ ≤ v̄i.
Therefore, given a bound for the agents’ velocity v̄i,b (derived from bounds on the
joint velocities q̇i), i ∈ N , the desired trajectory velocity bound ¯̇xd, as well as the
initial velocity error v0

r (which is proportional to εs(ξs(0))), we can tune appropriately
the control gain gs as well as the parameters ρsk,0, ρvk,0, ρsk,∞, ρvk,∞, lsk , lvk , and
α, to achieve v̄i ≤ v̄i,b,∀i ∈ N . In the same spirit, (4.61) provides a bound ūi for
the control inputs of the agents. Hence, given bounds for the agents’ inputs ūi,b
(derived from bounds on the joint torques τi), i ∈ N , if the upper bound term B̄v



4.5. Simulation and Experimental Results 75

0 20 40 60

0.2

0.3

0.4

0 20 40 60

0.05

0.15

0.25

0 20 40 60

0

0.5

1

0 20 40 60

-0.03

0

0.03

0 20 40 60

-0.03

0

0.03

0 20 40 60

0

0.5

1

0 20 40 60

-1

0

1

0 20 40 60

-1

0

1

0 20 40 60

-3

0

3

Figure 4.6: Experimental results for the controller of subsection 4.4.1, for t ∈ [0, 70]
[sec]. Top: The desired (with blue) and actual (with red) object trajectory in x- and
z-axis as well as the quaternion desired and actual object trajectory. Middle: The
position and quaternion errors ep(t), eζ(t), respectively. Bottom: The velocity errors
evf (t).

is known, we can further tune the control gain gv as as well as the performance
function parameters to achieve ū ≤ ūi,b. Explicit closed-loop expressions for the
choice of these gains and parameters are beyond the scope of this paper and consist
part of future work. It is also worth noting that the selection of the control gains
gs, gv affects the evolution of the errors e, ev inside the corresponding performance
envelope.

4.5 Simulation and Experimental Results

In this section, we provide simulation and experimental results for the two developed
control schemes. Firstly, in subsection 4.5.1 we present results from computer
simulations using the realistic environment of V-REP [109] as well as experimental
results using the adaptive control protocol developed in Section 4.4.1. Then, in
subsection 4.5.2, we provide simulation and experimental results using the Prescribed
Performance Control algorithm developed in Section 4.4.2.

The tested scenario consists of two WidowX Robot Arms [110] rigidly grasping
a wooden cuboid object (see Fig. 4.2) that has to track a planar time trajectory
pd(t) = [xd(t), 0, zd(t)]>, ηd(t) = [0, θd(t), 0]>. For that purpose, we employ the
three rotational -with respect to the y axis - joints of the arms. The lower joint
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Figure 4.7: The agent joint torques and velocities of the experiment of the controller
in subsection 4.4.1, for t ∈ [0, 70] [sec], with their respective limits (purple and green
lines, respectively). Top: The joint torques of agent 1 (left) and agent 2 (right). Bottom:
The joint velocities of agent 1 (left) and agent 2 (right).
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Figure 4.8: The norms of the adaptation signals eϑi(t) (left) and eϑO,i(t), ∀i ∈
{1, 2}, t ∈ [0, 70] [sec] of the experiment of the controller in subsection 4.4.1.
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Figure 4.9: Simulations results for the controller of subsection 4.4.2, for t ∈ [0, 45]
[sec]. Top: The desired (with blue) and actual (with red) object trajectory in x-,
z-axis, and around y-axis. Middle: The pose errors es(t) (with blue), as well as the
performance functions ρs(t) (with red), respectively. Bottom: The velocity errors ev(t)
(with blue), as well as the performance functions ρv(t) (with red), respectively.

consists of a MX-64 Dynamixel Actuator, whereas each of the two upper joints
consists of a MX-28 Dynamixel Actuator from the MX Series [111]. Both actuators
provide feedback of the joint angle and rate qi, q̇i, ∀i ∈ {1, 2}. The micro-controller
used for the actuators of each arm is the ArbotiX-M Robocontroller [112], which
is serially connected to an i-7 desktop computer with 4 cores and 16GB RAM. All
the computations for the real-time experiments are performed at a frequency of 120
[Hz] and for the V-REP simulations at 60 [Hz]. Finally, we consider that the MX-64
motor can exert a maximum torque of 3 [Nm], and the MX-28 motors can exert
a maximum torque of 1.25 [Nm], values that are slightly more conservative than
the actual limits. In the same vein, we also assume a velocity bound of 0.5 [rad/s]
for the experiments and 2 [rad/s] for the V-REP simulations. In all cases, we set
the load sharing coefficients at c1 = 0.75 and c2 = 0.25, in order to demonstrate a
potential difference in the power capabilities of the agents.

4.5.1 Adaptive Control with Quaternion Feedback

In this subsection, we present simulation and experimental results for the control
protocol developed in Section 4.4.1.



78 Cooperative Manipulation

0 15 30 45

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 15 30 45

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 15 30 45

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 15 30 45

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 4.10: The agent joint torques and velocities of the simulation of the controller
in subsection 4.4.2, for t ∈ [0, 45] [sec], with their respective limits (purple and green
lines, respectively). Top: The joint torques of agent 1 (left) and agent 2 (right). Bottom:
The joint velocities of agent 1 (left) and agent 2 (right).

Simulation Results

The desired trajectory for the V-REP simulations is set to xd(t) = 0.35+0.05 sin
( 2πt

15
)

[m], zd(t) = 0.15−0.05 cos
( 2πt

15
)

[m], which defines a circle in the x-z plane of center
(0.35, 0.15) [m] and radius 0.05 [m], and θd(t) = π

20 sin
( 5πt

15
)

[rad], which is translated

to the desired 2D quaternion trajectory ζd(t) =
[
cos
(
θd(t)

2

)
, 0, 0, sin

(
θd(t)

2

)]>
. The

simulation results are depicted in Figs. 4.3-4.5 for t ∈ [0, 70] [sec]; Fig. 4.3 pictures
the desired and actual trajectory of the object’s center of mass (top), the pose errors
ep(t), eζ(t) (middle), as well as the velocity error evf (t) (bottom). We can verify
from the figure that the desired trajectory is tracked almost perfectly, with negligible
oscillations. The control inputs as well as the agent velocities with their respective
limits are illustrated in Fig. 4.4. By appropriately tuning the control gains, which
were set as kp = 15, kζ = 30, Kv1 = Kv2 = diag{5, 2, 0.1}, we achieved confinement
of the signals in the domain formed by the limits. Note also the difference due to
the different load sharing coefficients. Finally, Fig. 4.3 depicts the norms of the
adaptation signals eϑi(t) and eϑOi (t), ∀i ∈ {1, 2}, which, as proven in the theoretical
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Figure 4.11: Experimental results for the controller of subsection 4.4.2, for t ∈ [0, 45]
[sec]. Top: The desired (with blue) and actual (with red) object trajectory in x-,
z-axis, and around y-axis. Middle: The pose errors es(t) (with blue), as well as the
performance functions ρs(t) (with red), respectively. Bottom: The velocity errors ev(t)
(with blue), as well as the performance functions ρv(t) (with red), respectively.

analysis, remain bounded. The functions δO(xO, ẋO, t), δi(qi, q̇i, t) were taken as 06
and 0ni , respectively, and hence, the adaptation controller (4.29c), (4.29d) were
not employed. Loosely speaking, the disturbances dO(xO, ẋO, t), di(qi, q̇i, t) were not
taken into account in our model, without, however, degrading the performance of
the proposed scheme.

Experimental Results

The desired trajectory for the experimental results of the controller developed in
Section 4.4.1 was set to xd(t) = 0.3 + 0.05 sin

( 2πt
35
)

[m], zd(t) = 0.15− 0.05 cos
( 2πt

35
)

[m], which defines a similar circle with the simulations section, and θd(t) =
π
20 sin

( 5πt
35
)

[rad], which is translated to the corresponding desired 2D quater-

nion trajectory ζd(t) =
[
cos
(
θd(t)

2

)
, 0, 0, sin

(
θd(t)

2

)]>
. The control gains here were

chosen as kp = 50, kζ = 80, Kv1 = Kv2 = diag{3.5, 0.5, 0.5}. The disturbances
dO(xO, ẋO, t), di(qi, q̇i, t) were also not taken into account in this case, by setting
the functions δO(xO, ẋO, t), δi(qi, q̇i, t) to 06 and 0ni , respectively. The simulation
results are depicted in Figs. 4.6-4.8 for t ∈ [0, 70] [sec]; Fig. 4.6 pictures the desired
and actual trajectory of the object’s center of mass (top), the pose errors ep(t), eζ(t)
(middle), as well as the velocity error evf (t) (bottom). We can verify from the
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Figure 4.12: The agent joint torques and velocities of the experiment of the controller
in subsection 4.4.2, for t ∈ [0, 45] [sec], with their respective limits (purple and green
lines, respectively). Top: The joint torques of agent 1 (left) and agent 2 (right). Bottom:
The joint velocities of agent 1 (left) and agent 2 (right).

figure that the desired trajectory is tracked also for the experimental case, with
oscillations in the velocity errors, which can be attributed to model uncertainties,
sensor noise, or the un-modeled external disturbances, that have a larger effect
in this (experimental) scenario. The control inputs as well as the agent velocities
with their respective limits are illustrated in Fig. 4.7, which are confined in their
respective limits. Finally, Fig. 4.6 depicts the norms of the adaptation signals eϑi(t)
and eϑOi (t), ∀i ∈ {1, 2}, which are bounded in this case as well.

4.5.2 Prescribed Performance Control
In this subsection, we present simulation and experimental results for the control
protocol developed in Section 4.4.2.

Simulation Results

The desired trajectory in this subsection was chosen the same as in subsection
4.5.1, i.e., xd(t) = 0.35 + 0.05 sin

( 2πt
15
)

[m], zd(t) = 0.15 − 0.05 cos
( 2πt

15
)

[m], and
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θd(t) = π
20 sin

( 5πt
15
)

[rad]. The prescribed performance functions are chosen as:
ρsx(t) = ρsz(t) = 0.03 exp(−0.5t) + 0.01 [m], ρsθ(t) = 0.45 exp(−0.5t) + 0.05 [rad],
ρvx(t) = 3 exp(−0.5t) + 4 [m/s], ρvz(t) = 5 exp(−0.5t) + 5 [m/s], and ρvθ(t) =
5 exp(−0.5t) + 5 [rad/s]. The simulation results are depicted in Figs. 4.9 and 4.10;
Fig. 4.9 shows the desired and actual trajectory of the object’s center of mass (top),
the pose errors es(t) along with the performance functions ρs(t) (middle), as well as
the velocity error ev(t) along with the velocity performance functions ρv(t) (bottom).
It is verified that we achieve tracking of the desired trajectory with prescribed
performance. The control inputs (joint torques) as well as the joint velocities are
given in Fig. 4.10. By following the procedure described in the proof of theorem 4.2,
we tune the gains to the values gs = 0.05 and gv = 7 so that the joint torques and
velocities respect their respective bounds.

Experimental Results

We set the desired trajectory in this subsection as in subsection 4.5.1, i.e., xd(t) =
0.3 + 0.05 sin

( 2πt
35
)

[m], zd(t) = 0.15 − 0.05 cos
( 2πt

35
)

[m], and θd(t) = π
20 sin

( 5πt
35
)

[rad]. The parameters for the prescribed performance functions are chosen as:
ρsx(t) = ρsz(t) = 0.03 exp(−0.2t) + 0.02 [m], ρsθ(t) = 0.2 exp(−0.2t) + 0.2 [rad],
ρvx(t) = 5 exp(−0.2t) + 5 [m/s], ρvz(t) = 5 exp(−0.2t) + 10 [m/s], and ρvθ(t) =
4 exp(−0.2t)+3 [m/s]. The values for the gains are set at gs = 0.05 and gv = 6.8. The
simulation results are depicted in Figs. 4.11 and 4.12; Fig. 4.11 shows the desired
and actual trajectory of the object’s center of mass (top), the pose errors es(t)
along with the performance functions ρs(t) (middle), as well as the velocity error
ev(t) along with the velocity performance functions ρv(t) (bottom). The prescribed
performance tracking can be verified in the experimental case as well. The control
inputs (joint torques) as well as the joint velocities are given in Fig. 4.12, where it
is shown that they respect their corresponding limits.

4.5.3 Discussion

It is clear from the aforementioned figures that the tracking of the desired trajectory
is achieved by both controllers in the computer simulation and experimental cases.
It is worth noting first the difference between the simulations and experiments,
which, for both control protocols, lies in the velocity errors. The latter present
some oscillatory behavior in the experimental case, which can be attributed to
sensor noise, external disturbances/model uncertainties, or inaccuracies/delays of
the internal ArbotiX-M controller. The same reason led us to choose slower desired
trajectories for the real-time experiments. Nonetheless, these oscillations do not
affect the overall tracking performance. Recall that for the Prescribed Performance
Controller, tracking of the desired trajectory does not require the functions ρvk(t) -
and hence the velocity errors evk , k ∈ K - to asymptotically approach zero.

Among the two control schemes, we can notice a slightly more aggressive behavior
of the joint velocities and torques for the Prescribed Performance Controller, which
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can be attributed to the virtual force that “pushes” the errors esk , evk not to hit
the bounds of the performance functions ρs(t), ρv(t), respectively, ∀k ∈ K. Note,
however, that this methodology does not require knowledge of the structure of
the dynamic terms Mi(qi), Ci(qi, q̇i), gi(qi), whose derivation can be tedious, and
yields thus significantly lower analytic complexity, without sacrificing the actual
performance.

4.6 Conclusion and Future Work

We presented two novel decentralized control protocols for the cooperative manipula-
tion of a single object by N robotics agents. Firstly, we developed a quaternion-based
approach that avoids representation singularities with adaptation laws to compen-
sate for dynamic uncertainties. Secondly, we developed a robust control law that
guarantees prescribed performance for the transient and steady state of the object.
Both methodologies were validated via realistic simulations and experimental results.
Future efforts will be devoted towards applying the proposed techniques to cases
with non rigid grasping points as well as uncertain object geometric characteristics.



Chapter 5

Model-Predictive Cooperative
Transportation

This chapter addresses the problem of cooperative transportation of an object
rigidly grasped by N robotic agents. In particular, we propose two Nonlinear Model
Predictive Control (NMPC) schemes that guarantee the navigation of the object
to a desired pose in a bounded workspace with obstacles, while complying with
certain input saturations of the agents. The first control scheme is centralized, in
the sense that a central computer calculates the control inputs of the robotic agents,
whereas the second control scheme is based on inter-agent communication and
is decentralized, since each agent calculates its own control signal. Moreover, the
proposed methodologies ensure that the agents do not collide with each other or
with the workspace obstacles as well as that they do not pass through singular
configurations. The feasibility and convergence analysis of the NMPC are explicitly
provided. Finally, simulation results illustrate the validity and efficiency of the
proposed methods.

5.1 Introduction

Constrained-based control has always been of special interest to the automatic
control/robotics community, due to the advantages it yields, by keeping variables of
interest in specific compact sets, while achieving a primary task. A widely employed
methodology in the last years is the methodology of Model Predictive Control
(MPC) [113], where a constrained optimization problem is solved for a finite horizon
in the future, providing a prediction of the state evolution. Motivated by the
power limitations of robot actuators as well as collision- and singularity avoidance
properties in cooperative manipulation tasks, we aim to design a MPC scheme for
the cooperative transportation of an object by N robotic agents, while complying
with certain constraints.

Regarding manipulation tasks, such as pose/force or trajectory tracking (see
the references of the previous chapter), collision with obstacles of the environment

83
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has been dealt with only by exploiting the extra degrees of freedom that appear in
over-actuated robotic agents. Potential field-based algorithms may suffer from local
minima and navigation functions [114] cannot be extended to multi-agent second
order dynamical systems in a trivial way. Moreover, these methods usually result
in high control input values near obstacles that need to be avoided, which might
conflict the saturation of the actual motor inputs.

Another important property that concerns robotic manipulators is the singu-
larities of the Jacobian matrix, which maps the joint velocities of the agent to a
6D vector of generalized velocities. Such singular kinematic configurations, which
indicate directions towards which the agent cannot move, must be always avoided,
especially when dealing with task-space control in the end-effector [26]. In the same
vein, representation singularities can also occur in the mapping from coordinate
rates to angular velocities of a rigid body.

In the previous chapter we considered the problem of trajectory tracking for
the center of mass of the object, without taking into account potential workspace
obstacles or kinematic singularities. Such constraints are incorporated in this chapter,
where we address the problem of cooperative transportation of an object in a bounded
workspace with obstacles. In particular, given N agents that rigidly grasp an object,
we design control inputs for the navigation of the object to a final pose, while
avoiding inter-agent collisions as well as collisions with obstacles. Moreover, we
take into account constraints that emanate from control input saturation as well
kinematic and representation singularities. We propose both a centralized and a
decentralized methodology.

For the design of a stabilizing feedback control law under such constraints, one
would ideally look for a closed-loop solution for the feedback law satisfying the con-
straints while optimizing the performance. However, typically the optimal feedback
law cannot be found analytically, even in the unconstrained case, since it involves the
solution of the corresponding Hamilton-Jacobi-Bellman partial differential equations.
One approach to circumvent this problem is the repeated solution of an open-loop
finite-horizon optimal control problem for a given state. The first part of the resulting
open-loop input signal is implemented and the whole process is repeated. Control
approaches using this strategy are referred to as Nonlinear Model Predictive Control
(NMPC) (see e.g. [113, 115–123]), which we aim to use in this work for the problem
of the constraint cooperative object manipulation. We design a centralized control
protocol, where a central computer calculates the control signal of all the agents as
well as decentralized control laws, based on inter-agent communication.

The remainder of the chapter consists of two main parts. Section 5.2 presents the
centralized methodology, with 5.2.1 and 5.2.2 presenting the problem formulation and
its solution, respectively, and 5.2.3 providing simulation results. Similarly, Section
5.3 presents the decentralized methodology, where Sections 5.3.1, 5.3.2, and 5.3.3
give the respective problem formulation, its solution, and the simulation results,
respectively. Finally, Section 5.4 concludes the paper.
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Figure 5.1: Two robotic arms rigidly grasping an object with the corresponding
frames.

5.2 Centralized Cooperative Transportation

5.2.1 Problem Formulation

Consider a bounded and convex workspace W ⊆ R3 consisting of N robotic agents
rigidly grasping an object, (see Fig. 5.1), and Z obstacles described by the ellipsoids
Oz :=

{
p ∈ R3 : (p− cz)>POz (p− cz) ≤ 1

}
, z ∈ Z := {1, . . . , Z}, where cz ∈ R3 is

the center of the ellipsoid, and POz is a matrix whose eigenvalues are the lengths
of the ellipsoid’s three semi-axes. The agents are considered to be fully actuated
and they consist of a base that is able to move around the workspace (e.g., mobile
or aerial vehicle) and a robotic arm. The reference frames corresponding to the
i-th end-effector and the object’s center of mass are denoted with {Ei} and {O},
respectively, whereas {I} corresponds to an inertial reference frame. The rigidity of
the grasps implies that the agents can exert any forces/torques along every direction
to the object. We consider that each agent i knows the position and velocity only of
its own state as well as its own and the object’s geometric parameters. Moreover,
no interaction force/torque measurements or on-line communication is required.

System model

In this section we provide the modeling of the robotic agents, the object, and the
coupled dynamics, which follows closely the modeling of chapter 4, elaborating in
more detail on the structure of the agents.

Robotic Agents
We denote by qi ∈ Rni the joint space variables of agent i ∈ N , with ni := nαi+6,

qi := [p>Bi , η
>
Bi
, α>i ]>, where pBi := [xBi , yBi , zBi ]> ∈ R3, ηBi := [φBi , θBi , ψBi ]> ∈ T is

the position and Euler-angle orientation of the agent’s base, and αi :∈ Rnαi , nαi > 0,
are the degrees of freedom of the robotic arm. The overall joint space configuration
vector is denoted as q := [q>1 , . . . , q>N ]> ∈ Rn, with n :=

∑
i∈N ni. In addition, we

denote as pEi : Rni → R3, ηEi : Rni → T the position and Euler-angle orientation of
agent i’s end-effector. Let also vi = [ṗ>Ei , ω

>
Ei

]> ∈ R6 denote the velocity of agent i’s
end-effector, where ṗBi , ωBi are the linear and angular velocity, respectively, of the
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agent’s base.
We consider that each agent i ∈ N has access to its own state qi as well as ṗBiBi , ω

Bi
Bi

,
and α̇i via on-board sensors. Then, ṗBi , ωBi can be obtained via ṗBi = RBi(ηBi)ṗ

Bi
Bi

,
ωBi = RBi

(ηBi)ω
Bi
Bi

, where RBi
: T→ SO(3) is the rotation matrix of the agent i’s

base. Moreover, η̇Bi is related to ωBi via ωBi = JBi(ηBi)η̇Bi , where JBi : T→ R3×3,
with

JBi(ηBi) :=

1 0 sin(θBi)
0 cos(φBi) − cos(θBi) sin(φBi)
0 sin(φBi) cos(θBi) cos(φBi)

 .
The pose of the ith end-effector can be computed via

pEi(qi) = pBi +RBi
(ηBi)kpi(αi),

ηEi(qi) = kηi(ηBi , αi),

where kpi : Rnαi → R3, kηi : T×Rnαi → T are the forward kinematics of the robotic
arm [26]. Then, vi can be computed as

vi =
[
ṗEi(qi)

ωEi(qi, q̇i)

]
=
[
ṗBi − S(RBi

kpi)ωBi +RBi

∂kpi
∂αi

ωBi +RBi
JAi α̇i

]
, (5.1)

where JAi : Rnαi → R3×nαi is the angular Jacobian of the robotic arm with respect
to the agent’s base. The differential kinematics (5.1) can be written as

vi =
[
ṗEi(qi)

ωEi(qi, q̇i)

]
= Ji(qi)q̇i, (5.2)

where Ji : Rni → R6×ni is the agent Jacobian matrix, with

Ji(qi) :=
[
I3 −S(RBi

(ηBi)kpi(αi))JBi(ηBi) RBi
(ηBi)

∂kpi (αi)
∂αi

03×3 JBi(ηBi) RBi
(ηBi)JAi(qi)

]
.

Remark 5.1. Note that JBi becomes singular at representation singularities, when
θBi = ±π2 and Ji becomes singular at kinematic singularities defined by the set

Qi := {qi ∈ Rni : det(J>i Ji) = 0}, i ∈ N .

In the following, we will aim at guaranteeing that qi will always be in the closed set:

Q̃i := {qi ∈ Rni : |det(J>i Ji)| ≥ ε > 0}, i ∈ N ,

for a small positive constant ε.

The joint-space dynamics for agent i ∈ N can be computed using the Lagrangian
formulation, as in (4.3) (see [124] for the explicit derivation when a moving base
with an attached robotic arm is concerned):

Bi(qi)q̈i + Cqi(qi, q̇i)q̇i + gqi(qi) = τi − J>i λi, (5.3)
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where we use λi ∈ R6 for the generalized force vector that agent i exerts on the
object; τi ∈ Rni is the vector of generalized joint-space inputs, with τi := [λ>Bi , τ

>
αi ]
>,

where λBi := [f>Bi , µ
>
Bi

]> ∈ R6 is the generalized force vector on the center of mass
of the agent’s base and ταi ∈ Rnαi is the torque inputs of the robotic arms’ joints.
Similarly to (4.5), we obtain the task-space dynamics:

Mi(qi)v̇i + Ci(qi, q̇i)vi + gi(qi) = ui − λi. (5.4)

We define by Ai(qi), i ∈ N , the ellipsoid that bounds the i th agent’s volume,
i.e., the workspace of the arm of agent i [26] enlarged so that it includes the ith
base. Note that Ai depends on qi and can be explicitly found.

Object Dynamics
Similarly to chapter 4 for the object, we denote by xO := [p>O , η>O ]>, vO :=

[ṗ>O , ω>O ]> the pose and velocity of the object, with the second order dynamics:

ẋO = JO(ηO)vO, (5.5a)
λO = MO(xO)v̇O(t) + CO(xO, ẋO)vO + gO(xO), (5.5b)

with the corresponding terms as in (4.7); λO ∈ R6 is the force vector acting on the
object’s center of mass. Also, similarly to the robotic agents, we define by CO(xO)
as the bounding ellipsoid of the object.

Coupled Dynamics By following Section 4.3, we obtain the coupled object-
agents dynamics:

M̃(q)v̇O + C̃(q, q̇)vO + g̃(q) = GT (q)u, (5.6)

with the respective terms as in (4.15)

Remark 5.2. As mentioned in Chapter 4, since the geometric object parameters
p
Ei
Ei/O

and ηEi/O are known, each agent can compute pO, ηO and vO from the coupled
kinematics and dynamics, respectively, without employing any sensory data. In the
same vein, all agents can also compute the object’s bounding ellipsoid CO, which
depends on q.

Remark 5.3. Note that the agents dynamics under consideration hold for generic
robotic agents comprising of a moving base and a robotic arm. Hence, the considered
framework can be applied for mobile, aerial, or underwater manipulators.

We can now formulate the problem considered in this work:

Problem 5.1. Consider N robotic agents rigidly grasping an object, governed
by the coupled dynamics (5.6). Given the desired pose xO,des, design the control
input u ∈ R6N such that lim

t→∞
xO(t) = xO,des, while ensuring the satisfaction of the

following collision avoidance and singularity properties:

1. Ai(qi(t)) ∩ Oz = ∅,∀i ∈ N , z ∈ Z,
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2. CO(xO(t)) ∩ Oz = ∅,∀z ∈ Z,

3. Ai(qi(t)) ∩ Aj(qj(t)) = ∅,∀i, j ∈ N , i 6= j,

4. −π2 < −θ̄ ≤ θO(t) ≤ −θ̄ < π
2 ,

5. −π2 < −θ̄ ≤ θBi(t) ≤ −θ̄ <
π
2 ,

6. qi(t) ∈ Q̃i,

∀t ∈ R≥0, for a 0 < θ̄ < π
2 , as well as the input and velocity magnitude constraints:

|τik | ≤ τ̄i, |q̇ik | ≤ ¯̇qi,∀k ∈ {1, . . . , ni}, i ∈ N , for some positive constants τ̄i, ¯̇qi, i ∈ N .
The aforementioned constraints correspond to the following specifications:

• 1) stands for collision avoidance between the agents and the obstacles.

• 2) stands for collision avoidance between the object and the obstacles.

• 3) stands for collision avoidance between the agents.

• 4) stands for representation singularity avoidance of the object.

• 5) stands for representation singularity avoidance of the agents’ bases.

• 6) stands for kinematic singularity avoidance of the agents.

In order to solve the aforementioned problem, we need the following reasonable
assumption regarding the workspace, which implies that the collision-free space is
connected:

Assumption 5.1. (Problem feasibility) The set {q ∈ Rn : Ai(qi)∩Oz = ∅,Ai(qi)∩
Aj(qj) = ∅, Ci(xOi(qi)) ∩ Oz = ∅,∀i, j ∈ N , i 6= j, z ∈ Z}, is connected.

In the aforementioned assumption, xOi := [p>Oi , η
>
Oi

]> denotes the pose of the
object as a function of qi, derived by inverting (4.9):

pO = pOi(qi) := pEi(qi) + pO/Ei(qi) := pEi(qi) +REi
(qi)pEiO/Ei , (5.7a)

ηO = ηOi(qi) = ηEi(qi) + ηO/Ei , (5.7b)

We also define the following sets for every i ∈ N :

Si,O := {qi ∈ Rni : Ai(qi) ∩ Oz 6= ∅,∀z ∈ Z},
Si,A := {q ∈ Rn : Ai(qi) ∩ Aj(qj) 6= ∅,∀j ∈ N\{i}},
SO := {xO ∈M : CO(xO) ∩ Oz 6= ∅}.

associated with the desired collision-avoidance properties. Note that the afore-
mentioned sets can be explicitly calculated, since the ellipsoids Ai, CO, Oz are
known.
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5.2.2 Problem Solution
In this section, a systematic solution to Problem 1 is introduced. Our overall approach
builds on designing a Nonlinear Model Predictive control scheme for the system
of the manipulators and the object. Nonlinear Model Predictive Control (see e.g.
[113, 115–122]) have been proven suitable for dealing with nonlinearities and state
and input constraints.

The coupled agents-object nonlinear dynamics can be written in compact form
as follows:

ẋ = f(x, u) :=

f1(x, u)
f2(x, u)
f3(x, u)

 , x(0) := x0, (5.8)

where x := [x>O , v>O , q>]> ∈ Rn+12, u ∈ R6N and

f1(x, u) := JO(ηO)vO,

f2(x, u) := M̃−1(q)
[
G>(q)u− C̃(q, q̇)vO − g̃(q)

]
,

f3(x, u) := Ĵ(q)J̄O(q)ĨvO,

where we have also used that:

Ĵ(q) := diag
{
J>i
[
(JiJ>i )−1]

i∈N

}
∈ Rn×6N ,

J̄O(q) := diag
{[
JOi
]
i∈N

}
∈ R6N×6N ,

Ĩ :=
[
I6, · · · , I6

]>
∈ R6N×6 (5.9)

Note that f is locally Lipschitz continuous in its domain since it is continuously
differentiable in its domain. Next, we define the respective errors:

e(t) := x(t)− xdes =

xO(t)
vO(t)
q(t)

−
xO,des

ẋO,des

qdes

 =

xO(t)− xO,des

vO(t)
q(t)− qdes

 ∈ Rn+12, (5.10)

where qdes := [q1,des, . . . , qN,des]> is appropriately chosen such that xOi(qi,des) =
xO,des, and ẋO,des = q̇des = 0. The error dynamics are then ė(t) = f(x(t), u(t)), which
can be appropriately transformed to be written as:

ė(t) = fe(e(t), u(t)), e(0) = e0 = x(0)− xdes. (5.11)

where fe(t) := f(e(t) + xdes, u(t)). By ignoring over-actuated input terms, we have
that τi = J>i (qi)ui, which becomes

‖τi‖ ≤ τ̄i ⇔ σmin,i‖ui‖ ≤ τ̄i, (5.12)
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where we have employed the property σmin(J>i )‖ui‖ ≤ ‖J>i ui‖, with σmin(J>i )
denoting the minimum singular value of J>i , which is strictly positive, if the constraint
qi ∈ Q̃i is always satisfied. Hence, the constraint |τik | ≤ τ̄i is equivalent to

‖ui‖ ≤
τ̄i

σmin(J>i )
,∀i ∈ N . (5.13)

Let us now define the following set U ⊆ R6N :

U := {u ∈ R6N : ‖ui‖ ≤
τ̄i

σmin(J>i )
,∀i ∈ N}, (5.14)

as the set that captures the control input constraints of the error dynamics system
(5.11). Define also the set X ⊆ Rn+12:

X :=
{
x ∈ Rn+12 : θO ∈ [θ̄, θ̄], θBi ∈ [θ̄, θ̄],

|q̇ki | ≤ ¯̇qi, qi ∈ Q̃i\ (Si,O(qi) ∪ Si,A(q)) ,∀i ∈ N , xO ∈ R3\SO(xO)
}
.

The set X captures all the state constraint of the system dynamics (5.8). In view of
(5.10), we define the set E ⊆ Rn+12 as:

E := {e ∈ Rn+12 : e ∈ X ⊕ (−xdes)},

as the set that captures all the constraints of the error dynamics system (5.11).
The problem in hand is the design of a control input u(t) ∈ U such that

limt→∞ ‖e(t)‖ = 0 while ensuring e(t) ∈ E,∀t ∈ R≥0. In order to solve the aforemen-
tioned problem, we propose a Nonlinear Model Predictive scheme, that is presented
hereafter.

Consider a sequence of sampling times {ti}i≥0 with a constant sampling period
0 < h < Tp, where is Tp is the prediction horizon, such that:

ti+1 = ti + h,∀ i ≥ 0. (5.15)

In the sampling-data NMPC, a finite-horizon open-loop optimal control problem
(OCP) is solved at discrete sampling time instants ti based on the current state error
information e(ti). The solution is an optimal control signal û(t), for t ∈ [ti, ti + Tp].
For more details, the reader is referred to [115]. The open-loop input signal applied
in between the sampling instants is given by the solution of the following Optimal
Control Problem (OCP):

min
û(·)

J(e(ti), û(·)) = min
û(·)

{
V (ê(ti + Tp)) +

∫ ti+Tp

ti

F (ê(s), û(s))ds
}

(5.16a)

subject to:
˙̂e(s) = fe(ê(s), û(s)), ê(ti) = e(ti), (5.16b)
ê(s) ∈ E, û(s) ∈ U, s ∈ [ti, ti + Tp], (5.16c)
ê(ti + Tp) ∈ Ef , (5.16d)
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where the hat ·̂ denotes the predicted variables (internal to the controller), i.e. ê(·)
is the solution of (5.16b) driven by the control input û(·) : [ti, ti + Tp] → U with
initial condition e(ti). Note that the predicted values are not necessarily the same
with the actual closed-loop values (see [115]). The term F : E × U → R≥0, is the
running cost, and is chosen as:

F (e(t), u(t)) := e>Qe+ u>Ru. (5.17)

The terms V : E → R>0 and Ef are the terminal penalty cost and bounded terminal
set, respectively, and are used to enforce the stability of the system (see Section
4.2). The terminal cost is given by V (e) := e>Pe. The terms Q ∈ R(n+12)×(n+12)

≥0 ,
P ∈ R(n+12)×(n+12)

>0 and R ∈ R6N×6N
>0 are chosen as:

Q := diag{q̃1, . . . , q̃n+12},
P := diag{p̃1, . . . , p̃n+12},
R := diag{r̃1, . . . , r̃6N}.

where q̃i ∈ R≥0, p̃i ∈ R>0,∀i ∈ {1, . . . , n+ 12} and r̃j ∈ R>0,∀j ∈ {1, . . . , 6N} are
constant weights. For the running cost, it holds that F (0, 0) = 0, as well as:

m‖[e>u>]>‖2 ≤ m
∥∥∥∥∥
[
e

u

]∥∥∥∥∥
2

≤ F (e, u) ≤M
∥∥∥∥∥
[
e

u

]∥∥∥∥∥
2

≤M‖[e>u>]>‖2, (5.18)

where

m := min{q̃1, . . . , q̃n+12, r̃1, . . . , r̃6N},
M := max{q̃1, . . . , q̃n+12, r̃1, . . . , r̃6N}.

Note that m‖[e>u>]>‖2, M‖[e>u>]>‖2 are K∞ functions, according to Definition
2.3.

The solution of the OCP (5.16a)-(5.16d) at time ti provides an optimal control
input denoted by û?(t; e(ti)), for t ∈ [ti, ti + Tp]. It defines the open-loop input that
is applied to the system until the next sampling instant ti+1:

u(t; e(ti)) = û?(ti; e(ti)), t ∈ [ti, ti+1). (5.19)

The corresponding optimal value function is given by:

J?(e(ti)) , J?(e(ti), û?(·; e(ti))). (5.20)

where J(·) as is given in (5.16a). The control input u(t; e(ti)) is a feedback, since it is
recalculated at each sampling instant using the new state information. The solution
of (5.11) starting at time t1 from an initial condition e(t1), applying a control input
u : [t1, t2]→ U is denoted by e(s;u(·), e(t1)), s ∈ [t1, t2]. The predicted state of the
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system (5.11) at time ti + s, s > 0 is denoted by ê(ti + s;u(·), e(ti)) and it is based
on the measurement of the state e(ti) at time ti, when a control input u(·; e(ti)) is
applied to the system (5.11) for the time period [ti, ti + s]. Thus, it holds that:

e(ti) = ê(ti;u(·), e(ti)). (5.21)

We define an admissible control input as:

Definition 5.1. A control input u : [0, Tp]→ R6N for a state e0 is called admissible,
if all the following hold:

1. u(·) is piecewise continuous;

2. u(s) ∈ U,∀ s ∈ [0, Tp];

3. e(s;u(·), e0) ∈ E,∀ s ∈ [0, Tp];

4. e(Tp;u(·), e0) ∈ Ef ;

Lemma 5.1. The terminal penalty function V (·) is Lipschitz continues in Ef , with
Lipschitz constant LV = 2ε0σmax(P ), for all e(t) ∈ Ef , where ε0 := sup{‖e‖ : e ∈
Ef}.

Proof. For every e1, e2 ∈ Ef , the following holds:

|V (e1)− V (e2)| = |e>1 Pe1 − e>2 Pe2| = |e>1 Pe1 + e>1 Pe2 − e>1 Pe2 − e>2 Pe2|
= |e>1 P (e1 − e2)− e>2 P (e1 − e2)| ≤ |e>1 P (e1 − e2)|+ |e>2 P (e1 − e2)|.

(5.22)

By employing the property that:

|x>Ay| ≤ σmax(A)‖x‖‖y‖,∀ x, y ∈ Rn, A ∈ Rn×n,

(5.22) is written as:

|V (e1)− V (e2)| ≤ σmax(P )‖e1‖‖e1 − e2‖+ σmax(P )‖e2‖‖e1 − e2‖
= σmax(P )(‖e1‖+ ‖e2‖)‖e1 − e2‖
≤ σmax(P )(ε0 + ε0)‖e1 − e2‖ = [2ε0σmax(P )] ‖e1 − e2‖.

which completes the proof.

Through the following theorem, we guarantee the stability of the system which
is the solution to Problem 1.

Theorem 5.1. Let Assumption 5.1 hold. Suppose also that:

1. The OCP (5.16a)-(5.16d) is feasible for the initial time t = 0.
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2. The terminal set Ef ⊆ E is closed, with 0n+12 ∈ Ef .

3. The terminal set Ef is chosen such that there exists an admissible control
input uf : [0, h]→ U such that for all e(s) ∈ Ef it holds that:

a) e(s) ∈ Ef ,∀ s ∈ [0, h].

b) ∂V

∂e
fe(e(s), uf (s)) + F (e(s), uf (s)) ≤ 0,∀ s ∈ [0, h].

Then, the closed loop system (5.11), under the control input (5.19), converges to the
set Ef for t→∞.

Proof. As usual in predictive control the proof consists of two parts: in the first part
it is established that initial feasibility implies feasibility afterwards. Based on this
result it is then shown that the error e(t) converges to the terminal set Ef .

Feasibility Analysis: Consider any sampling time instant ti for which a solution
exists. In between ti and ti+1, the optimal control input û?(s; e(ti)),∀s ∈ [ti, ti+1)
is implemented. According to (5.21), it holds that:

e(ti+1) = ê(ti+1; û?(·; e(ti)), e(ti)).

The remaining piece of the optimal control input û?(s; e(ti)), s ∈ [ti+1, ti + Tp]
satisfies the state and input constraints E,U , respectively. Furthermore,

ê(ti + Tp; û?(·; e(ti)), e(ti)) ∈ Ef ,

and we know from Assumption 2b of Theorem 1 that for all e(t) ∈ Ef , there exists
at least one control input uf (·) that renders the set Ef invariant over h. Picking any
such input, a feasible control input ū(·; e(ti+1)), at time instant ti+1, may be the
following:

ū(s; e(ti+1)) :=
{
û?(s; e(ti)), s ∈ [ti+1, ti + Tp),
uf (ê(ti + Tp;u?(·), e(ti))), s ∈ [ti + Tp, ti+1 + Tp].

(5.23)

Thus, from feasibility of û?(s, e(ti)) and the fact that uf (e(t)) ∈ U , for all e(t) ∈ Ef ,
it follows that:

ū(s; e(ti+1)) ∈ U,∀ s ∈ [ti+1, ti + Tp].
Hence, the feasibility at time ti implies feasibility at time ti+1. Therefore, if the
OCP (5.16a) - (5.16d) is feasible at time t = 0, it remains feasible for every t ≥ 0.

Convergence Analysis: The second part involves proving convergence of the state
e in the terminal set Ef . In order to prove this, it must be shown that a proper value
function is decreasing along the solution trajectories starting at a sampling time ti.
Consider the optimal value function J?(e(ti)), as is given in (5.20). Consider also
the cost of the feasible control input, indicated by:

J̄(e(ti+1)) := J̄(e(ti+1), ū(·; e(ti+1))). (5.24)
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Define:

u1(s) := ū(s; e(ti+1)), (5.25)
e1(s) := ē(s;u1(s), e(ti+1)), s > ti+1,

where e1(s) stands for the predicted state e at time s, based on the measurement of
the state e at time ti+1, while using the feasible control input ū(s; e(ti+1)). Let us
also define the following terms:

u2(s) = û?(s; e(ti)), (5.26)
e2(s) = ê(s;u2(s), e(ti)), s > ti+1.

(5.25), (5.26) form convenient notations for the readability of the proof hereafter.
By employing (5.16a), (5.20) and (5.24), the difference between the optimal and

feasible cost is given by:

J̄(e(ti+1))− J?(e(ti)) = V (e1(ti+1 + Tp)) +
∫ ti+1+Tp

ti+1

[
F (e1(s), u1(s))

]
ds

− V (e2(ti + Tp))−
∫ ti+Tp

ti

[
F (e2(s), u2(s))

]
ds

= V (e1(ti+1 + Tp)) +
∫ ti+Tp

ti+1

[
F (e1(s), u1(s))

]
ds− V (e2(ti + Tp))+∫ ti+1+Tp

ti+Tp

[
F (e1(s), u1(s))

]
ds−

∫ ti+1

ti

[
F (e2(s), u2(s))

]
ds

−
∫ ti+Tp

ti+1

[
F (e2(s), u2(s))

]
ds. (5.27)

Note that, from (5.23), the following holds:

ū(s; e(ti+1)) = û?(s; e(ti)),∀ s ∈ [ti+1, ti + Tp]. (5.28)

By combining (5.25), (5.26) and (5.28), it yields that:

u1(s) = u2(s) = ū(s),∀ s ∈ [ti+1, ti + Tp], (5.29)

which implies that:
e1(s) = e2(s),∀ s ∈ [ti+1, ti + Tp]. (5.30)

The combination of (5.29) and (5.30) implies that:

F (e1(s), u1(s)) = F (e1(s), u1(s)),∀ s ∈ [ti+1, ti + Tp].

which implies that:∫ ti+Tp

ti+1

[
F (e1(s), u1(s))

]
ds =

∫ ti+Tp

ti+1

[
F (e2(s), u2(s))

]
ds. (5.31)
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By employing (5.31), (5.27) becomes:

J̄(e(ti+1))− J?(e(ti)) = V (e1(ti+1 + Tp)) +
∫ ti+1+Tp

ti+Tp

[
F (e1(s), u1(s))

]
ds

− V (e2(ti + Tp))−
∫ ti+1

ti

[
F (e2(s), u2(s))

]
ds. (5.32)

Due to the fact that ti+1 + Tp − (ti + Tp) = ti+1 − ti = h, and that Assumption 3b
of Theorem 5.1 holds for one sampling period h, we obtain:∫ ti+1+Tp

ti+Tp

[∂V
∂e

fe(e1(s), u1(s)) + F (e1(s), u1(s))
]
ds ≤ 0

⇔
∫ ti+1+Tp

ti+Tp

[
V̇ (e1(s))

]
ds+

∫ ti+1+Tp

ti+Tp

[
F (e1(s), u1(s))

]
ds ≤ 0

⇔V (e1(ti+1 + Tp))− V (e1(ti + Tp)) +
∫ ti+1+Tp

ti+Tp

[
F (e1(s), u1(s))

]
ds ≤ 0

⇔V (e1(ti+1 + Tp))− V (e1(ti + Tp)) +
∫ ti+1+Tp

ti+Tp

[
F (e1(s), u1(s))

]
ds

≤ V (e2(ti + Tp))− V (e2(ti + Tp))

⇔V (e1(ti+1 + Tp)) +
∫ ti+1+Tp

ti+Tp

[
F (e1(s), u1(s))

]
ds− V (e2(ti + Tp))

≤ V (e1(ti + Tp))− V (e2(ti + Tp)).

By employing the property y ≤ |y|,∀y ∈ R, we get:

V (e1(ti+1 + Tp)) +
∫ ti+1+Tp

ti+Tp

[
F (e1(s), u1(s))

]
ds− V (e2(ti + Tp))

≤ |V (e1(ti + Tp))− V (e2(ti + Tp))| . (5.33)

By employing Lemma 5.1, we have that:

|V (e1(ti + Tp))− V (e2(ti + Tp))| ≤ LV ‖e1(ti + Tp)− e2(ti + Tp)‖. (5.34)

By combining (5.33) and (5.34) we get:

V (e1(ti+1 + Tp)) +
∫ ti+1+Tp

ti+Tp

[
F (e1(s), u1(s))

]
ds− V (e2(ti + Tp))

≤ LV ‖e1(ti + Tp)− e2(ti + Tp)‖ (5.35)

For s = ti + Tp, (5.30) gives:

e1(ti + Tp) = e2(ti + Tp). (5.36)
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By combining (5.36) and (5.35) we have:

V (e1(ti+1 + Tp)) +
∫ ti+1+Tp

ti+Tp

[
F (e1(s), u1(s))

]
ds− V (e2(ti + Tp)) ≤ 0. (5.37)

By combining (5.32) with (5.37), the following holds:

J̄(e(ti+1))− J?(e(ti)) ≤ −
∫ ti+1

ti

[
F (e2(s), u2(s))

]
ds. (5.38)

By substituting e = e2(s), u = u2(s) in (5.18) we get:

F (e2(s), u2(s)) ≥ m‖e2(s)‖2

or equivalently: ∫ ti+1

ti

[
F (e2(s), u2(s))

]
ds ≥ m

∫ ti+1

ti

‖e2(s)‖2ds

⇔−
∫ ti+1

ti

[
F (e2(s), u2(s))

]
ds ≤ −m

∫ ti+1

ti

‖e2(s)‖2ds. (5.39)

By combining (5.38) and (5.39) we finally get:

J̄(e(ti+1))− J?(e(ti)) ≤ −m
∫ ti+1

ti

‖e2(s)‖2ds. (5.40)

It is clear that the optimal solution at time ti+1, i.e., J?(e(ti+1)), will not be worse
than the feasible one at the same time i.e. J̄(e(ti+1)). Therefore, (5.40) implies:

J?(e(ti+1))− J?(e(ti)) ≤ −m
∫ ti+1

ti

‖e2(s)‖2s ≤ 0, (5.41)

or, by using the fact that
∫ ti

t0

‖e2(s)‖2ds =
i−1∑
j=0

∫ tj+1

tj

‖e2(s)‖2ds, equivalently, we

obtain:

J?(e(ti+1))− J?(e(ti)) ≤ −m
∫ ti+1

t0

‖e2(s)‖2ds+m

i−1∑
j=0

∫ tj+1

tj

‖e2(s)‖2ds. (5.42)

By using induction and the fact that ti = h · i, ti+1 = h · (i+ 1),∀i ≥ 0, from (5.15),
(5.42) is written as:

J?(e(ti))− J?(e(t0)) ≤ −m
∫ ti

t0

‖e2(s)‖2ds. (5.43)
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Since t0 = 0 we obtain:

J?(e(ti)) ≤ J?(e(0))−m
∫ ti

0
‖e2(s)‖2ds. (5.44)

which implies that:
J?(e(ti)) ≤ J?(e(0)). (5.45)

By combining (5.41), (5.45), we obtain:

J?(e(ti+1)) ≤ J?(e(ti)) ≤ J?(e(0)),∀ ti = i · h, i ≥ 0. (5.46)

Therefore, the value function J?(e(ti)) has proven to be non-increasing for all the
sampling times. Let us define the function:

Ṽ (e(t)) := J?(e(s)) ≤ J?(e(0)), t ∈ R≥0, (5.47)

where s = max{ti : ti ≤ t}. Since J?(e(0)) is bounded, (5.47) implies that Ṽ is
bounded. Since the signals e(t), u(t) are bounded (e(t) ∈ E, u(t) ∈ U), according to
(5.11), it holds that ė(t) is also bounded. From (5.44) we have that:

Ṽ (e(t)) = J?(e(s)) ≤ J?(e(0))−m
∫ s

0
‖e2(s)‖2ds.

which due to the fact that s ≤ t, is equivalent to:

Ṽ (e(t)) ≤ J?(e(0))−m
∫ t

0
‖e2(s)‖2ds, t ∈ R≥0. (5.48)

From (5.48), we get:∫ t

0
‖e2(s)‖2ds ≤ 1

m

[
J?(e(0))− Ṽ (e(t))

]
, t ∈ R≥0. (5.49)

Since J?(e(0)), V (e(t)) has been proven to be bounded, the term
∫ t

0
‖e2(s)‖2ds is

also bounded. Therefore, by employing Lemma 2.2, we have that ‖e2(t)‖ → 0, as
t→∞. The latter implies that:

lim
t→∞

‖e(t)‖ = 0⇒ lim
t→∞

‖e(t)‖ ∈ Ef ,

and leads to the conclusion of the proof.
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Figure 5.2: The states of the object.
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Figure 5.3: The velocities of the object.

5.2.3 Simulation Results

To demonstrate the efficiency of the proposed control protocol, we consider two
simulation scenarios.

Scenario 1: Consider N = 2 ground vehicles equipped with 2 DOF manipulators,
rigidly grasping an object with n1 = n2 = 4, n = n1 + n2 = 8. From (5.8) we
have that x = [x>O , v>O , q>]> ∈ R16, u ∈ R8, with xO = [p>O , ηO]> ∈ R4, vO =
[ṗ>O , ωxO ]> ∈ R4, pO = [xO, yO, zO]> ∈ R3, q = [q>1 , q>2 ]> ∈ R8, qi = [p>Bi , α

>
i ]> ∈

R4, pBi = [xBi , yBi ]> ∈ R2, αi = [αi1 , αi2 ]> ∈ R2, i ∈ {1, 2}. The manipulators
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become singular when sin(αi1) = 0}, i ∈ {1, 2}, thus the state constraints for the
manipulators are set to:

ε < α11 <
π

2 − ε,−
π

2 + ε < α12 <
π

2 − ε,

−π2 + ε < α21 < −ε,−
π

2 + ε < α22 <
π

2 − ε.

We also consider the input constraints:

−10 ≤ ui,j(t) ≤ 10, i ∈ {1, 2}, j ∈ {1, . . . , 4}.

The initial conditions are set to:

xO(0) =
[
0,−2.2071, 0.9071, π2

]>
, vO(0) = [0, 0, 0, 0]> ,

q1(0) =
[
0, 0, π4 ,

π

4

]>
, q2(0) =

[
0,−4.4142,−π4 ,−

π

4

]>
.

The desired goal states are set to:

xO,des =
[
10, 10, 0.9071, π2

]>
, vO,des = [0, 0, 0, 0]> ,

q1,des =
[
10, 12.2071, π4 ,

π

4

]>
, q2,des =

[
10, 7.7929,−π4 ,−

π

4

]>
.

We set an obstacle between the initial and the desired pose of the object, that is
spherical with center [5, 5, 1] and radius 2. The sampling time is h = 0.1 seconds,
the horizon is set to Tp = 0.3 seconds, and the total simulation time is 80 seconds;
The matrices P,Q,R are set to:

P = Q = 10I16×16, R = 2I8×8.

The simulation results are depicted in Fig. 5.2- Fig. 5.7, which shows that the states
of the agents as well as the states of the object converge to the desired ones while
guaranteeing that the obstacle is avoided and all state and input constraints are
met.

Scenario 2: Consider N = 3 ground vehicles equipped with 2 DOF manipulators,
rigidly grasping an object with n1 = n2 = n3 = 4, n = n1 + n2 + n3 = 12. From
(5.8) we have that x = [x>O , v>O , q>]> ∈ R20, u ∈ R12, with xO = [p>O , ηO]> ∈ R4,
vO = [ṗ>O , ωxO ]> ∈ R4, pO = [xO, yO, zO]> ∈ R3, q = [q>1 , q>2 , q>3 ]> ∈ R12, qi =
[p>Bi , α

>
i ]> ∈ R4, pBi = [xBi , yBi ]> ∈ R2, αi = [αi1 , αi2 ]> ∈ R2, i ∈ {1, 2}. The

manipulators become singular when sin(αi1) = 0}, i ∈ {1, 2, 3}, thus the state
constraints for the manipulators are set to:

ε < α11 <
π

2 − ε,−
π

2 + ε < α12 <
π

2 − ε,

−π2 + ε < α21 < −ε,−
π

2 + ε < α22 <
π

2 − ε.
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Figure 5.4: The errors of vehicle 1 as well as the errors of the manipulator.
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Figure 5.5: The errors of vehicle 2 as well as the errors of the manipulator.

We also consider the input constraints:

−10 ≤ ui,j(t) ≤ 10, i ∈ {1, 2}, j ∈ {1, . . . , 4}.
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Figure 5.6: The control inputs of the actuators of agent 1.
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Figure 5.7: The control inputs of the actuators of agent 2.

The initial conditions are set to:

xO(0) =
[
0,−2.2071, 0.9071, π2

]>
, vO(0) = [0, 0, 0, 0]> ,

q1(0) =
[
0.5, 0, π4 ,

π

4

]>
, q2(0) =

[
0,−4.4142,−π4 ,−

π

4

]>
,

q3(0) =
[
−0.5, 0, π4 ,

π

4

]>
.



102 Model-Predictive Cooperative Transportation

Time [sec]
0 10 20 30 40 50 60 70 80 90 100

e
x
o
(t
),
e
y
o
(t
),
e
z o
(t
),
e
φ
o
(t
)

-6

-5

-4

-3

-2

-1

0

1

2

Errors of the Object

xO(t)− xO,des

yO(t)− yO,des

zO(t)− zO,des

φO(t)− φO,des

Figure 5.8: The errors of the object.

The desired goal states are set to:

xO,des =
[
5,−2.2071, 0.9071, π2

]>
, vO,des = [0, 0, 0, 0]> ,

q1,des =
[
5.5, 0, π4 ,

π

4

]>
, q2,des =

[
5,−4.4142,−π4 ,−

π

4

]>
,

q3,des =
[
4.5, 0.0, π4 ,

π

4

]>
.

The sampling time is h = 0.1 seconds, the horizon is set to Tp = 0.5 seconds, and
the total simulation time is 100 seconds; The matrices P,Q,R are set to:

P = Q = 0.5I20×20, R = 0.5I12×12.

The terminal set is taken as a ball of radius 0.1 around 0 for both scenarios. The
simulation results are depicted in Fig. 5.8- Fig. 5.15, which shows that the states
of the agents as well as the states of the object converge to the desired ones while
guaranteeing that all state and input constraints are met. The simulation scenarios
were carried out by using the NMPC toolbox given in [119] and they took 23500,
45547 seconds for Scenario 1 and 2, respectively, in MATLAB Environment on a
desktop computer with 8 cores, 3.60 GHz CPU and 16GB of RAM.

5.3 Decentralized Cooperative Transportation

The controller synthesize in the previous section is centralized, i.e., a central computer
unit calculated all the MPC-based input signals for the agents. In this section, we aim
at extending the results to a decentralized framework, where each agent calculates
its own control signal.
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Figure 5.9: The velocities of the object.
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Figure 5.10: The errors of vehicle 1 as well as the errors of the manipulator.

5.3.1 Problem Formulation

The formulation we adopt here follows from the previous section, so we omit the
derivations of the agents’ and the object’s dynamic modeling.

The grasping rigidity along with (5.7a) yields

vO = vOi(qi, q̇i) := JiO (qi)vi(qi, q̇i), (5.50)

for every i ∈ N , where JiO (qi) := [JOi(qi)]−1, with JOi(qi) as defined in (4.10).
Consider now the constants ci, with 0 < ci < 1 and

∑
i∈N

ci = 1 that play
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Figure 5.11: The errors of vehicle 2 as well as the errors of the manipulator.
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Figure 5.12: The errors of vehicle 3 as well as the errors of the manipulator.

the role of load sharing coefficients for the agents. Then (5.5b) can be written
as:

∑
i∈N

ci

{
MO(xOi(qi))v̇Oi(qi, q̇i) + gO(xOi(qi))CO(xOi(qi), vOi(qi, q̇i))vOi(qi, q̇i)

}
=∑

i∈N
[JOi(qi)]>λi, from which, by employing the grasp coupling (see (4.14)), (5.2),

(5.50), and after straightforward algebraic manipulations, we obtain the coupled
dynamics ∑

i∈N

{
M̃i(qi)q̈i + C̃i(qi, q̇i)q̇i + g̃i(qi)

}
=
∑
i∈N

[JOi(qi)]
>ui, (5.51)
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Figure 5.13: The control inputs of the actuators of agent 1.
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Figure 5.14: The control inputs of the actuators of agent 3.

where:

M̃i(qi) := ciMO(xOi(qi))JiO (qi)Ji(qi) + [JOi(qi)]
>Mi(qi)Ji(qi),

C̃i(qi, q̇i) := [JOi(qi)]
>
(
Mi(qi)J̇i(qi) + Ci(qi, q̇i)Ji(qi)

)
+

ciMO(xOi(qi))JiO (qi)J̇i(qi) + ciMO(xOi(qi))J̇iO (qi)Ji(qi),
+ ciCO(xOi(qi), vOi(qi, q̇i)),

g̃i(qi) := cigO(xOi(qi)) + [JOi(qi)]
>gi(qi), i ∈ N .

The problem in hand in this section is the same as Problem 5.1, with the extra
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Figure 5.15: The control inputs of the actuators of agent 3.

constraint that the control design needs to be decentralized. For that, we need the
following assumption regarding the agent communication:

Assumption 5.2. (Sensing and communication capabilities) Each agent i ∈ N is
able to continuously measure the other agents’ state qj , q̇j , j ∈ N\{i}. Moreover,
each agent i ∈ N is able to communicate with the other agents j ∈ N\{i} without
any delays.

Note that the aforementioned sensing assumption is reasonable, since in coopera-
tive manipulation tasks, the agents are sufficiently close to each other, and therefore
potential sensing radii formed by realistic sensors are large enough to cover them.
Moreover, each agent i ∈ N can construct at every time instant the set-valued
functions Aj(qj), ∀j ∈ N\{i}, whose structure can be transmitted off-line to all
agents.

Along with the sets Si,O, Si,A defined in the previous section, we also define
SOi := {qi ∈ Rni : CO(xOi(qi)) ∩ Oz 6= ∅}, ∀i ∈ N , as well as the projection sets
for agent i S̃i,A([q`]`∈N\{i}) := {qi ∈ Rni : q ∈ Si,A}, ∀i ∈ N , where the notation
[q`]`∈N\{i} stands for the stack vector of all q`, ` ∈ N\{i}.

5.3.2 Main Results
In this section, a systematic solution to Problem 1 is introduced, based on NMPC.
The proposed methodology is decentralized, since we do not consider a centralized
system that calculates all the control signals and transmits them to the agents, like in
the previous section. To achieve that, we employ a leader-follower perspective. More
specifically, as will be explained in the sequel, at each sampling time, a leader agent
solves part of the coupled dynamics (5.51) via an NMPC scheme, and transmits
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its predicted variables to the rest of the agents. Assume, without loss of generality,
that the leader corresponds to agent i = 1. Loosely speaking, the proposed solution
proceeds as follows: agent 1 solves, at each sampling time step, the receding horizon
model predictive control subject to the forward dynamics:

M̃1(q1)q̈1 + C̃1(q1, q̇1)q̇1 + g̃(q1) = [JO1(q1)]>u1, (5.52)

and a number of inequality constraints, as will be clarified later. After obtaining a
control input sequence and a set of predicted variables for q1, q̇1, denoted as q̂1, ˆ̇q1,
it transmits the corresponding predicted state for the object xO1(q̂1), vO1(q̂1, ˆ̇q1) for
the control horizon to the other agents {2, . . . , N}. Then, the followers solve the
receding horizon NMPC subject to the forward dynamics:

M̃i(qi)q̈i + C̃i(qi, q̇i)q̇i + g̃(qi) = [JOi(qi)]
>ui, (5.53)

the state equality constraints:

xOi(qi) = xO1(q̂1), vOi(qi, q̇i) = vO1(q̂1, ˆ̇q1), (5.54)

i ∈ {2, . . . , N} as well as a number of inequality constraints that incorporate obstacle
and inter-agent collision avoidance. More specifically, we consider that there is a
priority sequence among the agents, which we assume, without loss of generality,
that is defined by {1, . . . , N}. Each agent, after solving its optimization problem,
transmits its calculated predicted variables to the agents of lower priority, which
take them into account for collision avoidance. Note that the coupled object-agent
dynamics are implicitly taken into account in equations (5.52), (5.53) in the following
sense. Although the coupled model (5.51) does not imply that each one of these
equations is satisfied, by forcing each agent to comply with the specific dynamics
through the optimization procedure, we guarantee that (5.51) is satisfied, since it’s
the result of the addition of (5.52) and (5.53), for i = 1 and every i ∈ {2, . . . , N},
respectively. Intuitively, the leader agent is the one that determines the path that
the object will navigate through, and the rest of the agents are the followers that
contribute to the transportation. Moreover, the equality constraints (5.54) guarantee
that the predicted variables of the agents {2, . . . , N} will comply with the rigidity
at the grasping points through the equality constraints (5.54).

By using the notation xi := [x>i1 , x
>
i2

]> := [q>i , q̇>i ]> ∈ R2ni , i ∈ N , the nonlinear
dynamics of each agent can be written as:

ẋi = f̃i(xi, ui) :=
[
f̃i1(xi)

f̃i2(xi, ui)

]
, (5.55)

where f̃i : Ei × R6 → R2ni is the locally Lipschitz function: f̃i1(xi, ui) := xi2 ,
f̃i2(xi, ui) := M̂i(qi)

(
[JOi(qi)]>ui−C̃i(qi, q̇i)q̇−g̃i(qi)

)
, i ∈ N , where M̂i : Rni\Qi →

Rni×6, is the pseudo-inverse M̂i(qi) := [M̃i]>(qi)
(
M̃i(qi)[M̃i(qi)]>

)−1
, and Ei :=
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Rni\Qi × Rni , ∀i ∈ N . It can be proved that in the set Rni\Qi the matrix
M̃i(qi)[M̃i(qi)]> has full rank and hence, M̂i(qi) is well defined for all q ∈ Rni\Qi.
By abusing the notation with respect to the proof of Theorem 5.1, we define the
error vector e1 : E1 →M× R6, as:

e1(x1) :=
[
xO1(q1)− xdes

vO1(q1, q̇1),

]
which gives us the error dynamics:

ė1 = g1(x1, u1), (5.56)

with g1 : E1 × R6 → R2ni :

g1(x1, u1) :=

[
[JO(ηO1(q1))]J1O (q1)J1(q1)q̇1

J1O (q1)J1(q1)f12(x1, u1) +
(
J1O J̇1(q1) + J̇1O (q1)J1(q1)

)
q̇1,

]
where we employed (5.56) and the object dynamics.

Remark 5.4. It can be concluded that g1(·, u1) is Lipschitz continuous in E1 since it
is continuously differentiable in its domain. Thus, for every x1, x

′
1 ∈ E1, with x1 6= x′1,

there exists a Lipschitz constant Lg such that: |g(x1, u)− g(x′1, u)| ≤ Lg‖x1 − x′1‖.

The time derivative of joint space inputs is given by: τ̇i = [J̇i(qi)]>ui+[Ji(qi)]>u̇i.
Hence, the constraints for τik and τ̇ik , k ∈ Rni ,i ∈ N , can be written as coupled
state-input constraints: ‖τi‖ ≤ τ̄i ⇔ ‖[J(qi)]>ui‖ ≤ τ̄i, ‖τ̇i‖ ≤ ¯̇τi ⇔ ‖[J̇i(qi)]>ui +
[Ji(qi)]>u̇i‖ ≤ ¯̇τi. Let us now define the following sets Ui ⊆ R6×6×(2ni):

Ui :=
{

(ui, u̇i, xi) ∈ R6×6×(2ni) : ‖[J(qi)]>ui‖ ≤ τ̄i,

‖[J̇i(qi)]>ui + [Ji(qi)]>u̇i‖ ≤ ¯̇τi
}
, i ∈ N , (5.57)

as the sets that capture the control input constraints of (5.55) (note that, compared
to the previous section, these sets capture also constraints of the input rate), as well
as their projections

Ui,u :=
{
ui ∈ R6 : (ui, u̇i, xi) ∈ Ui

}
, i ∈ N . (5.58)

Define also the set-valued functions Xi : Rn−ni ⇒ R2ni , i ∈ N , by:

X1([q`]`∈{2,...,N}) :=
{
x1 ∈ R2n1 : θO1(q1) ∈ [−θ̄, θ̄], θB1 ∈ [−θ̄, θ̄], |q̇k1 | ≤ ¯̇q1,

q1 ∈ Q̃1\
(
S1,O ∪ S̃1,A([q`]`∈{2,...,N})

)
, xO1(q1) ∈ R3\SO1

}
Xi([q`]`∈N\{i}) :=

{
xi ∈ R2ni : θBi ∈ [−θ̄, θ̄], |q̇ki | ≤ ¯̇qi,

qi ∈ Q̃i\ (Si,O ∪ Si,A([q`]`∈N\{i}))
}
,
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∀i ∈ {2, . . . , N}. Note that qi ∈ Xi([q`]`∈N\{i}) =⇒ qi /∈ Qi, ∀i ∈ N .
The sets Xi capture all the state constraints of the system dynamics (5.55), i.e.,

representation- and singularity-avoidance, collision avoidance among the agents and
the obstacles, as well as collision avoidance of the object with the obstacles, which
is assigned to the leader agent only. We further define the set-valued functions E1 :
Rn−n1 ⇒M× R6 as E1([q`]`∈{2,...,N}) := {e1(x1) ∈M× R6 : x1 ∈ X1([q`]`∈{2,...,N})},
which now represent the constraints sets for the NMPC scheme.

The main problem at hand is the design of a feedback control law u1 ∈ U1 for
agent 1 which guarantees that the error signal e1 with dynamics given in (5.56),
satisfies limt→∞ ‖e1(x1(t))‖ → 0, while ensuring singularity avoidance, collision
avoidance between the agents, between the agents and the obstacles as well as
the object and the obstacles. The role of the followers {2, . . . , N} is, through the
load-sharing coefficients c2, . . . , cN in (5.51), to contribute to the object trajectory
execution, as derived by the leader agent 1. In order to solve the aforementioned
problem, we propose a NMPC scheme, that is presented hereafter.

Consider a sequence of sampling times {tj}, j ∈ N as defined in the previous
section. For agent 1, the open-loop input signal applied in between the sampling
instants is given by the solution of the following FHOCP:

min
û1(·)

J1(e1(x1(tj)), û1(·)) = min
û1(·)

{
V1(e1(x̂1(tj + Tp)))

+
∫ tj+Tp

tj

[
F1(e1(x̂1(s)), û1(s))

]
ds

}
(5.59a)

subject to:
ė1(x̂1(s)) = g1(x̂1(s), û1(s)), e1(x̂1(tj)) = e1(x1(tj)), (5.59b)
e1(x̂1(s)) ∈ E1([q`(tj)]`∈{2,...,N}), s ∈ [tj , tj + Tp], (5.59c)
(û1(s), ˆ̇u1(s), x̂1(s)) ∈ U1, s ∈ [tj , tj + Tp], (5.59d)
e1(x̂1(tj + Tp)) ∈ F1([q`]`∈{2,...,N}). (5.59e)

At a generic time tj then, agent 1 solves the aforementioned FHOCP. In the following,
we use the notation E1(·) instead of E1([q`]`∈{2,...,N}) for brevity. The functions
F1 : E1(·)×U1,u → R≥0, V1 : E1(·)→ R≥0 stand for the running cost and the terminal
penalty cost, respectively, and they are defined as: F1

(
e1, u1

)
:= e>1 Q1e1 + u>1 R1u1,

V1
(
e1
)

:= e>1 P1e1; R1 ∈ R6×6 and P1 ∈ R(2n1)×(2n1) are symmetric and positive
definite controller gain matrices to be appropriately tuned; Q1 ∈ R(2n1)×(2n1) is
a symmetric and positive semi-definite controller gain matrix to be appropriately
tuned. The bounded terminal set is defined here as F1. Note that, similarly to (5.18),
there exists class K∞ functions α1, α2 such that α1(‖[e>1 , u>1 ]>‖) ≤ F1(e1, u1) ≤
α2(‖[e>1 , u>1 ]>‖), ∀[e>1 , u>1 ]> ∈ E1(·)× U1,u.
The terminal set F1(·) is chosen as: F1([q`]`∈{2,...,N}) := {e1 ∈ E1([q`]`∈{2,...,N}) :
V1(e1) ≤ ε1}, where ε1 ∈ R>0 is an arbitrarily small constant to be appropriately
tuned. Moreover, similarly to the case of 5.2, it can be proved that the terminal
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penalty function V1, is Lipschitz continuous in F1(·), and it holds that:
∣∣V1(e1)−

V1(e′1)
∣∣ ≤ LV1‖e1 − e′1‖,∀e1, e

′
1 ∈ F1(·), where LV1 := 2σmax(P1) sup{‖e1‖ : e1 ∈

F1}‖e1‖.
The solution to FHOCP (5.59a) - (5.59e) at time tj provides an optimal control

input, denoted by û?1(s; e1(x1(tj)), x1(tj)), s ∈ [tj , tj + Tp]. This control input is
then applied to the system until the next sampling instant tj+1:

u1 (s; x1(tj), e1(x1(tj))) = û?1 (s; x1(tj), e1(x1(tj))) , (5.60)

for every s ∈ [tj , tj + h). At time tj+1 = tj + h a new FHOCP is solved in the same
manner, leading to a receding horizon approach. The control input u1(·) is of feedback
form, since it is recalculated at each sampling instant based on the then-current state.
The solution of (5.56) at time s, s ∈ [tj , tj + Tp], starting at time tj , from an initial
condition x1(tj), e1(x1(tj)), by application of the control input u1 : [tj , s]→ U1,u is
denoted by e1

(
x1(s); u1(·); x1(tj), e1(x1(tj))

)
, s ∈ [tj , tj + Tp]. The predicted state

of the system (5.59b) at time s, s ∈ [tj , tj + Tp] based on the measurement of the
state at time tj , x1(tj), by application of the control input u1

(
t; x1(tj), e1(x1(tj))

)
as in (5.60), is denoted by x̂1

(
s; u1(·); x1(tj), e1(x1(tj))

)
, and the corresponding

predicted error by e1(x̂1(·); u1(·); x1(tj), e1(x1(tj))
)
, s ∈ [tj , tj + Tp].

After the solution of the FHOCP and the calculation of the predicted states
x̂1
(
s; u1(·), e1(x1(tj)), x1(tj)

)
, s ∈ [tj , tj + Tp] at each time instant tj , agent 1

transmits the values q̂1(s, ·), ˆ̇q1(s, ·) as well as xO1(q̂1(s, ·)) and vO1(q̂1(s, ·), ˆ̇q1(s, ·)),
as computed by (5.7), (5.50), ∀s ∈ [tj , tj + Tp] to the rest of the agents {2, . . . , N}.
The rest of the agents then proceed as follows. Each agent i ∈ {2, . . . , N}, solves
the following FHOCP:

min
ûi(·)

Ji(xi(tj)), ûi(·)) (5.61a)

subject to:
ẋi = f̃i(xi(s), ui(s)), (5.61b)

xi(s) ∈ Xi

(
[q`(tj)]`∈{i+1,...,N}

)
, (5.61c)

xi(s) ∈ Xi

(
[q̂`(s, ·)]j∈{1,...,i−1}

)
, (5.61d)

xOi(qi(s)) = xO1(q̂1(s; ·)), (5.61e)
vOi(qi(s), q̇i(s)) = vO1(q̂1(s; ·), ˆ̇q1(s; ·)), (5.61f)
(ui(s), u̇i(s), xi(s)) ∈ Ui, s ∈ [tj , tj + Tp], (5.61g)

at every sampling time tj . Note that, through the equality constraints (5.61e),
(5.61f), the follower agents must comply with the trajectory computed by the leader
q̂1(s, ·), ˆ̇q1(s, ·). This can be problematic in the sense that this trajectory might drive
the followers to collide with an obstacle or among each other. Resolution of such
cases is not in the scope of this paper and constitutes part of future research. We
state that with the following assumption:
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Assumption 5.3. The sets {(q, s) ∈ Rn × [tj , tj + Tp] : xOi(qi(s)) = xO1(q̂1(s; ·)),
vOi(qi(s), q̇i(s)) = vO1(q̂1(s; ·), ˆ̇q1(s; ·))} ∩ Si,O ∩ S̃i,A([q`(tj)]`∈{i+1,...,N}) ∩
S̃i,A([q`(s)]`∈{1,...,i−1}) are nonempty, ∀i ∈ {2, . . . , N}.

Next, similarly to the leader agent i = 1, it calculates the predicted states
q̂i(s, ·), ˆ̇qi(s, ·), s ∈ [tj , tj + Tp], which then transmits to the agents {i+ 1, . . . , N}.
In that way, at each time instant tj , each agent i ∈ {2, . . . , N} measures the other
agents’ states (as stated in Assumption 5.2), incorporates the constraint (5.61c) for
the agents {i+1, . . . , N}, receives the predicted states q̂`(s, ·), ˆ̇q`(s, ·) from the agents
` ∈ {2, . . . , i − 1} and incorporates the collision avoidance constraint (5.61d) for
the entire horizon. Loosely speaking, we consider that each agent i ∈ N takes into
account the first state of the next agents in priority (q`(tj), ` ∈ {i+ 1, . . . , N}), as
well as the transmitted predicted variables q̂`(s, ·), ` ∈ {1, . . . , i− 1} of the previous
agents in priority, for collision avoidance. Intuitively, the leader agent executes the
planning for the followed trajectory of the object’s center of mass (through the
solution of the FHOCP (5.59a)-(5.59e)), the follower agents contribute in executing
this trajectory through the load sharing coefficients ci (as indicated in the coupled
model (5.51)), and the agents low in priority are responsible for collision avoidance
with the agents of higher priority. Moreover, the aforementioned equality constraints
(5.61e), (5.61f) as well as the forward dynamics (5.61a) guarantee the compliance of
all the followers with the model (5.51). For the followers, the cost Ji(xi(tj), ûi(·))
can be selected as any function of xi, ui, ∀i ∈ {2, . . . , N}.

Therefore, given the constrained FHOCP (5.61a)-(5.61g), the solution of problem
lies in the capability of the leader agent to produce a state trajectory that guarantees
xO1(q1(t)) → xdes, by solving the FHOCP (5.59a)-(5.59e), which is discussed in
Theorem 5.2.

Remark 5.5. Note that, if the satisfaction of the equality constraints (5.61e),
(5.61f) guarantees that there is no collision among the agents (e.g., in the case that
two agents grasp a large object from two symmetrical - with respect to the object’s
center of mass - grasping points), then the transmission of the predicted variables
among the follower agents {2, . . . , N} is not needed. In that case, the followers
can solve the problem (5.61a) - (5.61g) simultaneously, reducing thus the overall
computation time.

We redefine now the admissible control input, in order to be consistent with this
section’s notation, and provide the theorem that summarizes the main results.

Definition 5.2. A control input u1 : [tj , tj+Tp]→ Rm for a state e1(x1(tj)) is called
admissible for the FHOCP (5.59a)-(5.59e) if the following hold: 1) u1(·) is piecewise
continuous; 2) u1(s) ∈ U1,u,∀s ∈ [tj , tj+Tp]; 3) e1

(
x1(s); u1(·); x1(tj), e1(x1(tj))

)
∈

E1(·),∀ s ∈ [tj , tj + Tp], and 4) e1
(
x1(tj + Tp); u1(·); x1(tj), e1(x1(tj))

)
∈ F1(·).

Theorem 5.2. Suppose that: 1) Assumption 5.1 - 5.3 hold; 2) The FHOCP (5.59a)-
(5.59e) is feasible for the initial time t = 0; 3) There exists an admissible control
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input κ1 : [tj + Tp, tj+1 + Tp] → U1 such that for all e1 ∈ F1(·) and for every
s ∈ [tj +Tp, tj+1 +Tp] it holds that: e1(x1(s)) ∈ F1(·) and ∂V1

∂e1
g1(e1(x1(s)), κ1(s))+

F1(e1(x1(s)), h1(s)) ≤ 0. Then, the system (5.56), under the control input (5.60),
converges to the set F1(·) when t→∞.

Proof. The proof is similar to the proof of Theorem 5.1 and is omitted.

5.3.3 Simulation Results

To demonstrate the efficiency of the proposed control protocol, we consider a
simulation example with N = 3 ground vehicles equipped with 2 DOF manipulators,
rigidly grasping an object with n1 = n2 = n3 = 4, n = n1 +n2 +n3 = 12. The states
of the agents are given as: qi = [p>Bi , α

>
i ]> ∈ R4, pBi = [xBi , yBi ]> ∈ R2, αi = [αi1 ,

αi2 ]> ∈ R2, i ∈ {1, 2, 3}. The state of the object is xO = [p>O , ηO]> ∈ R4 and it is
calculated though the states of the agents. The manipulators become singular when
sin(αi1) = 0}, i ∈ {1, 2}, thus the state constraints for the manipulators are set to:
ε < α11 <

π
2 − ε, −

π
2 + ε < α12 <

π
2 − ε, −

π
2 + ε < α21 < −ε, −π2 + ε < α22 <

π
2 − ε.

We also consider the input constraints: −8.5 ≤ ui,j(t) ≤ 8.5, i ∈ {1, 2}, j ∈ {1, . . . , 4}.
The initial conditions of agents and the object are set to: q1(0) = [0.5, 0, π4 ,

π
4 ]>,

q2(0) = [0,−4.4142,−π4 ,−
π
4 ]>, q3(0) = [−0.50,−4.4142,−π4 ,−

π
4 ]>, q̇1(0) = q̇2(0) =

q̇3(0) = [0, 0, 0, 0]> and xO(0) = [0,−2.2071, 0.9071, π2 ]>. The desired goal state
the object is set to xO,des = [5,−2.2071, 0.9071, π2 ]>, which, due to the structure of
the considered robots, corresponding uniquely to q1,des = [5.5, 0, π4 ,

π
4 ]>, q2,des =

[5,−4.4142,−π4 ,−
π
4 ]>, q3,des = [4.5, 0,−π4 ,−

π
4 ]>, q̇3,des = [0, 0, 0, 0]> and q̇1,des =

q̇2,des = q̇3,des = [0, 0, 0, 0]>. We set an obstacle between the initial and the desired
pose of the object. The obstacle is spherical with center [2.5,−2.2071, 1] and radius√

0.2. The sampling time is h = 0.1 seconds, the horizon is Tp = 0.5 seconds,
and the total simulation time is 60 seconds; The matrices Pi, Qi, Ri are set to:
Pi = Qi = 0.5I8×8, Ri = 0.5I4×4, ∀i ∈ {1, 2, 3}, and the load sharing coefficients as
c1 = 0.3, c2 = 0.5, and c3 = 0.2. The simulation results are depicted in Fig. 5.16-
Fig. 5.23; Fig. 5.16, Fig. 5.17 and Fig. 5.18 show the error states of agent 1, 2 and
3, respectively, which converge to 0; Fig. 5.19 depicts the states of the objects; Fig.
5.23 shows the collision-avoidance constraint with the obstacle; Fig. 5.20 - Fig. 5.22
depict the control inputs of the three agents. Note that the different load-sharing
coefficients produce slightly different inputs. The simulation was carried out by using
the NMPC toolbox given in [119] and it took 13450 sec in MATLAB Environment
on a desktop computer with 8 cores, 3.60 GHz CPU and 16GB of RAM. Note the
significant time difference with respect to the centralized case of the previous section.
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Figure 5.16: The error states of agent 1.
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Figure 5.17: The error states of agent 2.

5.4 Conclusions and Future Work

In this work we proposed two NMPC schemes for the cooperative transportation
of an object rigidly grasped by N robotic agents. The proposed control scheme
deals with singularities of the agents, inter-agent collision avoidance as well as
collision avoidance between the agents and the object with the workspace obstacles.
We proved the feasibility and convergence analysis of the proposed methodology
and simulation results verified the efficiency of the approach. Future efforts will be



114 Model-Predictive Cooperative Transportation

Time [sec]
0 10 20 30 40 50 60

q 3
(t
)
−

q 1
,d
e
s
,q̇

3
(t
)
−

q̇ 3
,d
e
s

-5

-4

-3

-2

-1

0

1

Errors states of agent 3

xB3
(t)− 5.5

yB3
(t)

α31
(t)− π

4

α32
(t)− π

4
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Figure 5.18: The error states of agent 3.
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Figure 5.19: The states of object converging to the desired ones.

devoted towards reconfiguration in case of task infeasibility for the followers, event-
triggered communication between the agents so as to reduce the communication
burden that is required for solving the FHOCP at every sampling time, and real-time
experiments.
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Figure 5.20: The control inputs of agent 1 with −8.5 ≤ u1,j(t) ≤ 8.5.
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Figure 5.21: The control inputs of agent 2 with −8.5 ≤ u2,j(t) ≤ 8.5.
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Figure 5.22: The control inputs of agent 3 with −8.5 ≤ u3,j(t) ≤ 8.5.
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Chapter 6

Abstractions for Multi-Agent
Manipulator-Endowed Systems

This chapter addresses the motion planning problem for a team of manipulator-
endowed robotic agents under high level goals. We propose a hybrid control strategy
that guarantees the accomplishment of each agent’s local goal specification, which is
given as a temporal logic formula, while guaranteeing inter-agent collision avoidance
and connectivity maintenance. The overall approach is based on abstraction of
the continuous systems to discrete transition systems, which we accomplish by
designing suitable decentralized continuous controllers based on previous work on
navigation functions. Next, given specific high-level tasks encoded by temporal
logic formulas, we employ standard formal verification techniques and we derive
high-level control algorithms that satisfy the agents’ specifications. Simulation and
experimental results verify the validity of the proposed methods.

6.1 Introduction

The importance of using multi-agent systems, highlighted in the previous chapters,
is evident when the multi-agent system consists of manipulator-endowed agents,
such as, e.g., mobile/aerial manipulators or unmanned aerial vehicles (UAVs). These
type of systems are widely used for inspection, surveillance as well as manipulation
tasks, such as pick-and-place tasks or object transportation.

In the case of aerial vehicles, the multi-agent problems are well studied in the
related literature. The standard problem of formation control for a team of aerial
vehicles is addressed in [125–130], whereas [131–135] consider leader-follower for-
mation approaches, where the latter also treats the problem of collision avoidance
with static obstacles in the environment; [136], [137] and [138] employ dynamic
programming, Model Predictive Control and reachable set algorithms, respectively,
for inter-agent collision avoidance. In [139] the cooperative evader pursuit prob-
lem is treated. Regarding the related literature that concerns cooperative robotic
manipulation tasks, we refer the reader to the previous chapters.
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Ultimately, we would like the robotic agents to execute more complex high-
level tasks, involving combinations of safety (”never enter a dangerous regions”),
surveillance (”keep visiting regions A and B infinitely often”) or sequencing (”collect
data in region C and upload it in region D”) properties. Temporal logic languages
offer a means to express the aforementioned specifications, since they can describe
complex planning objectives in a more efficient way than the well-studied navigation
algorithms. A recent direction in the multi-agent control and robotics field is the use
of temporal logic languages for motion and/or action planning, since they provide
a fully-automated correct-by-design controller synthesis approach for autonomous
robots. Temporal logics, such as linear temporal logic (LTL), computation tree logic
(CTL) or metric-interval temporal logic (MITL), provide formal high-level languages
that can describe planning objectives more complex than the usual navigation
techniques. The task specification is given as a temporal logic formula with respect
to a discretized abstraction of the robot motion modeled as a finite transition
system, and then, a high-level discrete plan is found by off-the-shelf model-checking
algorithms, given the finite transition system and the task specification [38].

There exists a wide variety of works that employ temporal logic languages
for single- and multi-agent systems, e.g., [140–156]. Regarding aerial vehicles, [157]
addresses the vehicle routing problem using MTL specifications and [158] approaches
the LTL motion planning using MILP optimization techniques, both in a centralized
manner. Markov Decision Processes are used for the LTL planning in [159]. The
aforementioned works, however, consider discrete agent models and do not take
into account their continuous dynamics. The discretization of a multi-agent system
to an abstracted finite transition system necessitates the design of appropriate
continuous-time controllers for the transition of the agents among the states of the
transition system [38]. Most works in the related literature, however, including the
aforementioned ones, either assume that there exist such continuous controllers or
adopt single- and double-integrator models, ignoring the actual dynamics of the
agents. Discretized abstractions, including design of the discrete state space and/or
continuous-time controllers, have been considered in [160–164] for general systems
and [165, 166] for multi-agent systems.

Another drawback of the majority of works in the related literature of temporal
logic-based motion planning is the point-agent assumption (as, e.g. in [143, 147, 148]),
which does not take into account potential collisions between the robotic agents.
The latter is a crucial safety property in real-time scenarios, where actual vehicles
are used in the motion planning framework.

The contribution of this chapter is the design of well-defined abstractions for a
multi-agent manipulator-endowed system.

1. Firstly, we propose a novel decentralized control protocol for the motion plan-
ning of a team of aerial vehicles under LTL specifications with simultaneous
inter-agent collision avoidance. In particular, we extend previous work on
decentralized navigation functions [37] to abstract the motion of each agent
as a finite transition system. Then, we employ standard formal-verification
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techniques to derive plans that satisfy each agent’s LTL specification. The pro-
posed control protocol is decentralized in the sense that each agent has limited
sensing information and derives and executes its desired path without commu-
nicating with the other agents or knowing their respective goals/specifications.
Simulation and experimental results with quadrotors verify the effectiveness
of the proposed framework.

2. Secondly, we design robust continuous-time controllers for the navigation of a
team of 2nd order mobile manipulators among predefined regions of interest.
The proposed methodology is decentralized, since each agent uses only local
information based on limited sensing capabilities. Moreover, we guarantee
(i) inter-agent collision avoidance by introducing a novel transformation-free
ellipsoid-based strategy, (ii) connectivity maintenance for a subset of the
initially connected agents, which might be important for potential cooperative
tasks, and (iii) kinematic singularity avoidance of the robotic agents.

The rest of the chapter consists of two main parts: Firstly, Section 6.3 is devoted
to the abstraction derivation of a team of aerial vehicles, with Sections 6.3.1,
6.3.2, 6.3.3, and 6.3.4 defining and solving the problem in hand, and providing
simulation and experimental results, respectively. Similarly, Section 6.4 presents
the decentralized abstraction for the team of mobile manipulators with Sections
6.4.1, 6.4.2, and 6.4.3 providing the corresponding problem formulation, solution
and simulation results, respectively. Finally, Section 6.5 concludes the chapter.

6.2 Preliminaries

6.2.1 Cubic Equations and Ellipsoid Collision
Proposition 6.1. Consider the cubic equation f(λ) = c3λ

3+c2λ2+c1λ+c0 = 0 with
c` ∈ R,∀` ∈ {0, . . . , 3} and roots (λ1, λ2, λ3) ∈ C3, with f(λ1) = f(λ2) = f(λ3) = 0.
Then, given its discriminant ∆ = (c3)4∏

i∈{1,2}
j∈{i+1,...,3}

(λi − λj)2, the following hold:

(i) ∆ = 0⇔ ∃i, j ∈ {1, 2, 3}, with i 6= j, such that λi = λj , i.e., at least two roots
are equal,

(ii) ∆ > 0 ⇔ λi ∈ R,∀i ∈ {1, 2, 3}, and λi 6= λj ,∀i, j ∈ {1, 2, 3}, with i 6= j, i.e.,
all roots are real and distinct.

Proposition 6.2. [167] Consider two planar ellipsoids A = {z ∈ R3 s.t. z>A(t)z ≤
0}, B = {z ∈ R3 s.t. z>B(t)z ≤ 0}, with z = [p>1]> being the homogeneous
coordinates of p ∈ R2, and A,B : R≥0 → R3×3 terms that describe their motion in
2D space. Given their characteristic polynomial f : R→ R with f(λ) = det(λA−B),
which has degree 3, the following hold:

(i) ∃λ∗ ∈ R>0 s.t. f(λ∗) = 0, i.e, the polynomial f(λ) always has one positive
real root,
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Figure 6.1: Bounding sphere of an aerial vehicle.

(ii) A ∩ B = ∅ ⇔ ∃λ∗1, λ∗2 ∈ R<0, with λ∗1 6= λ∗2, and f(λ∗1) = f(λ∗2) = 0, i.e., A
and B are disjoint if and only if the characteristic equation f(λ) = 0 has two
distinct negative roots.

(iii) A ∩ B 6= ∅ and
◦
A ∩

◦
B = ∅ ⇔ ∃λ∗1, λ∗2 ∈ R<0, with λ∗1 = λ∗2, and f(λ∗1) =

f(λ∗2) = 0, i.e., A and B touch externally if and only if the characteristic
equation f(λ) = 0 has a negative double root.

6.3 Decentralized Motion Planning with Collision
Avoidance for a Team of UAVs under High Level Goals

6.3.1 System and Problem Formulation

Consider N aerial agents operating in a static workspace that is bounded by a
large sphere in 3-D space W = Br0(p0) = {p ∈ R3 s.t. ‖p − p0‖ ≤ r0}, where
p0 ∈ R3 and r0 > 0 are the center and radius of W. Within W there exist K
smaller spheres around points of interest, which are described by πk = Brπk (pπk) =
{p ∈ R3 s.t. ‖p− pπk‖ ≤ rπk} ⊂ W, where pπk ∈ R3, rπk > 0 are the central point
and radius, respectively, of πk. We denote the set of all πk as Π = {π1, . . . , πK}.
For the workspace partition to be valid, we consider that the regions of interest
are sufficiently distant from each other and from the workspace boundary, i.e.,
d3(pπk , pπk′ ) > 4 maxk∈{1,...,K}(rπk) and d3(pπk , p0) < r0−3rπk ,∀k, k′ ∈ {1, . . . ,K}
with k 6= k′. Moreover, we introduce a set of atomic propositions Ψi for each agent
i ∈ {1, . . . , N} that indicates certain properties of interest of agent i in Π and
are expressed as boolean variables. The properties satisfied at each region πk are
provided by the labeling function Li : Π → 2Ψi , which assigns to each region
πk, k ∈ {1, . . . ,K} the subset of the atomic propositions Ψi that are true in that
region.
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System model

Each agent i ∈ {1, . . . , N} occupies a bounding sphere: Bri(pi(t)) = {p(t) ∈ W s.t.
‖p(t)− pi(t)‖ ≤ ri}, where pi : R≥0 → R3 is the center and ri > 0 the radius of the
sphere (Fig. 6.1). We also consider that ri < rπk ,∀i ∈ {1, . . . , N}, k ∈ {1, . . . ,K},
i.e., the regions of interest are larger than the aerial vehicles. The motion of each
agent is controlled via its centroid pi through the single integrator dynamics:

ṗi = ui, i ∈ {1, . . . , N}. (6.1)

Moreover, we consider that agent i has a limited sensing range of dsi > maxi,j={1,...,N}
(ri+ rj). Therefore, by defining the neighboring set Ni = {j ∈ {1, . . . , N}, s.t. ‖pi−
pj‖ ≤ dsi}, agent i knows at each time instant the position of all pj ,∀j ∈ Ni as well
as its own position pi. The workspace is perfectly known, i.e., pπk , rπk are known to
all agents, for all k ∈ {1, . . . ,K}.

With the above ingredients, we provide the following definitions:

Definition 6.1. An agent i ∈ {1, . . . , N} is in a region πk, k ∈ {1, . . . ,K} at a
configuration pi, denoted as Ai(pi) ∈ πk, if and only if Bri(pi) ⊆ Brπk (pπk).

Definition 6.2. Assume that Ai(pi(t0)) ∈ πk, i ∈ {1, . . . , N}, k ∈ {1, . . . ,K} for
some t0 ≥ 0. Then there exists a transition for agent i from region πk to region
πk′ , k

′ ∈ {1, . . . ,K}, denoted as πk →i πk′ , if and only if there exists a finite
tf ≥ 0 and a bounded control trajectory ui such that (i) Ai(pi(tf )) ∈ πk′ , (ii)
Bri(pi(t)) ∩ Brπm (pπm) = ∅, and (iii) Bri(pi(t)) ∩ Bri′ (pi′(t)) = ∅,∀m ∈ {1, . . . ,K}
with m 6= k, k′,∀i′ ∈ {1, . . . , N} with i′ 6= i and t ∈ [0, tf ].

Loosely speaking, an agent i can transit between two regions of interest πk and
πk′ , if there exists a bounded control trajectory ui in (6.1) that takes agent i from πk
to πk′ while avoiding entering all other regions and colliding with the other agents.

Specification

Our goal is to control the multi-agent system subject to (6.1) so that each agent’s
behavior obeys a given specification over its atomic propositions Ψi.

Given a trajectory pi(t) of agent i, its corresponding behavior is given by the
infinite sequence βi = (pi(t), ψi) = (pi1 , ψi1)(pi2 , ψi2) . . . , with ψim ∈ 2Ψi and
A(pim) ∈ πkm , ψim ∈ Li(πkm), km ∈ {1, . . . ,K},∀m ∈ N.

Definition 6.3. The behavior βi = (pi(t), ψi) satisfies an LTL formula φ if and
only if ψi |= φ.

Problem Formulation

The control objectives are given for each agent separately as LTL formulas φi
over Ψi, i ∈ {1, . . . , N}. An LTL formula is satisfied if there exists a behavior
βi = (pi(t), ψi) of agent i that satisfies φi. Formally, the problem treated in this
section is the following:
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Problem 6.1. Given a set of aerial vehicles N subject to the dynamics (6.1) and N
LTL formulas φi, over the respective atomic propositions Ψi, i ∈ {1, . . . , N}, achieve
behaviors βi that (i) yield satisfaction of φi,∀i ∈ {1, . . . , N} and (ii) guarantee
inter-agent collision avoidance.

6.3.2 Main Results
Continuous Control Design

The first ingredient of our solution is the development of a decentralized feedback
control law that establishes a transition relation πk →i πk′ ,∀k, k′ ∈ {1, . . . ,K}
according to Def. 6.2. Our approach is based on the concept of Decentralized
Navigation Functions, introduced in [37], for which an overview can be found in
Section 2.3. More specifically, given that Ai(pi(t0)) for some t0 ≥ 0, we propose a
decentralized control law ui for the transition πk →i πk′ , as defined in Def. 6.2.

Initially, we define the set of ”undesired” regions as Πk,k′ = {πm ∈ Π,m ∈
{1, . . . ,K}\{k, k′}} and the corresponding free space Fk,k′ =W\{Brπ (pπ)}π∈Πk,k′ .
As the goal configuration we consider the centroid pπk′ of πk′ and we construct the
function γik′ : Fk,k′ → R≥0 with γik′ (pi) = ‖pi − pπk′‖2. For the collision avoidance
between the agents, we employ the function Gi : Fk,k′ × R3(N−1) → R as defined in
[37].

Moreover, we also need some extra terms that guarantee that agent i will avoid the
rest of the regions as well as the workspace boundary. To this end, we construct the
function αik,k′ : Fk,k′ → R with αik,k′ (pi) = αi,0(pi)

∏
m∈Πk,k′

αi,m(pi), where the
function αi,0 : Fk,k′ → R is a measure of the distance of agent i from the workspace
boundary αi,0 = (r0−ri)2−‖pi−p0‖2 and the function αi,m : Fk,k′ → R is a measure
of the distance of agent i from the undesired regions αi,m = ‖pi− pm‖2− (ri + rm)2.

With the above ingredients, we construct the following navigation function
ϕik,k′ : Fk,k′ × R3(N−1) → [0, 1]:

ϕik,k′ (p(t)) =
γik′ (pi) + fi(Gi)

(γλiik′ (pi) +Gi(p)αik,k′ (pi))1/λi
(6.2)

for agent i, with λi > 0 and the following vector field:

cik,k′ (t) =

 −kgi
∂ϕik,k′ (p(t))

∂pi(t)
, if πk 6≡ πk′

0 if πk ≡ πk′
(6.3)

for all t ≥ t0, with kgi > 0 and fi(Gi) as defined in [37].
The navigation field (6.3) guarantees that agent i will not enter the undesired

regions or collide with the other agents and limt→∞ pi(t) = pπk′ . The latter prop-
erty of asymptotic convergence along with the assumption that ri < rπk ,∀i ∈
{1, . . . , N}, k ∈ {1, . . . ,K}, implies that there exists a finite time instant tfi,k′ ≥ t0
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such that pi(tfi,k′) ∈ Brπk′ (pπk′ ) and more specifically that Ai(pi(tfi,k′)) ∈ πk′ ,
which is the desired behavior. The time instant tfi,k′ can be chosen from the set
Stk′ = {t ≥ t0,Ai(pi(t)) ∈ πk′}.

Note, however, that once agent i leaves region πk, there is no guarantee that it will
not enter that region again (note that Fk,k′ includes πk). Therefore, we define the set
Π∅,k′ = {πm ∈ Π,m ∈ {1, . . . ,K}\{k′}} and the corresponding free space F∅,k′ =
W\{Brπ (pπ)}π∈Π∅,k′ , and we construct the function ϕi∅,k′ : F∅,k′ ×R3(N−1) → [0, 1]:

ϕi∅,k′ (p(t)) =
γik′ (pi) + fi(Gi)

(γλiik′ (pi) +Gi(p)αi∅,k′ (pi))1/λi
(6.4)

where αi∅,k′ = αi,0(pi)
∏
m∈Π∅,k′

αi,m(pi), with corresponding vector field:

ci∅,k′ (t) = −kgi
∂ϕi∅,k′ (p(t))

∂pi(t)
, (6.5)

which guarantees that region πk will be also avoided. Therefore, we develop a
switching control protocol that employs (6.3) until agent i is out of region πk and
then switches to (6.5) until t = tfi,k′ . Consider the following switching function:

s(x) = 1
2(sat(2x− 1) + 1) (6.6)

where sat : R → [−1, 1] is the standard saturation function (sat(x) = x, if
|x| ≤ 1; sat(x) = x/|x|, if |x| > 1), and the time instant t′i,k that represents
the moment that agent i is out of region πk, i.e., t′i,k = minSt 6k , where St6k =
{t ≥ t0,Bri(pi(t)) ∩ Brπk (pπk) = ∅}. Note that t′i,k < tfi,k′ , since d3(pπk , pπk′ ) >
4 maxk∈{1,...,K}(rπk),∀k, k′ ∈ {1, . . . ,K} with k 6= k′. Then, we propose the follow-
ing switching control protocol ui : [t0, tfi,k′)→ R3:

ui(t) =

{
cik,k′ (t), t ∈ T1

(1− s(ξi,k))cik,k′ (t) + s(ξi,k)ci∅,k′ (t), t ∈ T2
(6.7)

where T1 = [t0, t′i,k), T2 = [t′i,k, t
f

i,k′) and ξi,k = t− t′i,k
νi

, where νi is a design param-
eter indicating the time period of the switching process, with tfi,k′ − t′i,k > νi > 0.
Invoking the continuity of pi(t), we obtain limt→(tf

i,k′
)− pi(t) = pi(tfi,k′) ∈ Brπk′ (pπk′ )

and hence the control protocol (6.7) guarantees, for sufficiently small νi, that agent
i will navigate from πk to πk′ in finite time without entering any other regions or
colliding with other agents and therefore establishes a transition πk →i πk′ . The
proof of correctness of (6.2) and (6.4) follows closely the one in [37] and is therefore
omitted.
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High-Level Plan Generation

The next step of our solution is the high-level plan, which can be generated using
standard techniques inspired by automata-based formal verification methodologies.
In Section 6.3.2, we proposed a continuous control law that allows the agents to
transit between any πk, πk′ ∈ Π in the given workspace W, without colliding with
each other. Thanks to this and to our definition of LTL semantics over the sequence
of atomic propositions, we can abstract the motion capabilities of each agent as a
finite transition system Ti as follows [38]:

Definition 6.4. The motion of each agent i ∈ {1, . . . , N} in W is modeled by the
following Transition System (TS):

Ti = (Πi,Πinit
i ,→i,Ψi,Li), (6.8)

where Πi ⊆ Π is the set of states represented by the regions of interest that the
agent can be at, according to Def. 6.1, Πinit

i ⊆ Πi is the set of initial states that
agent i can start from, →i⊆ Πi ×Πi is the transition relation established in Section
6.3.2, abbreviated as πk → πk′ , πk, πk′ ∈ Πi, and Ψi,Li are the atomic propositions
and labeling function respectively, as defined in Section 6.3.1.

After the definition of Ti, we translate each given LTL formula φi, i ∈ {1, . . . , N}
into a Büchi automaton Ci and we form the product T̃i = Ti × Ci. The accepting
runs of T̃i satisfy φi and are directly projected to a sequence of waypoints to be
visited, providing therefore a desired path for agent i. Although the semantics of
LTL is defined over infinite sequences of atomic propositions, it can be proven that
there always exists a high-level plan that takes a form of a finite state sequence
followed by an infinite repetition of another finite state sequence. For more details
on the followed technique, we kindly refer the reader to the related literature, e.g.,
[38].

Following the aforementioned methodology, we obtain a high-level plan for
each agent as sequences of regions and atomic propositions pi = πi1πi2 . . . and
ψi = ψi1ψi2 . . . with im ∈ {1, . . . ,K}, ψim ∈ 2Ψi , ψim ∈ Li(πim),∀m ∈ N and
ψi |= φi,∀i ∈ {1, . . . , N}.

The execution of (pi, ψi) produces a trajectory pi(t) that corresponds to the
behavior βi = (pi(t), ψi) = (pi1(t), ψi1)(pi2(t), ψi2) . . . , with Ai(pim) ∈ πim and
ψim ∈ Li(πim), ∀m ∈ N. Therefore, since ψi |= φi, the behavior βi yields satisfaction
of the formula φi. Moreover, the property of inter-agent collision avoidance is inherent
in the transition relations of Ti and guaranteed by the navigation control algorithm
of Section 6.3.2. The previous discussion is summarized in the following theorem:

Theorem 6.1. The individual executions of (pi, ψi), i ∈ {1, . . . , N}, that satisfy the
respective φi, produce agent behaviors βi, i ∈ {1, . . . , N} that (i) yield the satisfaction
of all φi, i ∈ {1, . . . , N} and (ii) guarantee inter-agent collision avoidance, providing,
therefore, a solution to Problem 6.1.
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Figure 6.2: Initial workspace of the simulation studies. The grey spheres represent
the regions of interest while the black, green and red crosses represent agents 1,2 and
3, respectively, along with their bounding spheres.

Figure 6.3: The resulting 3-dimensional control signals of the 3 agents for the
simulation studies. Top: agent 1, middle: agent 2, bottom: agent 3.

Remark 6.1. The proposed control algorithm is decentralized in the sense that
each agent derives and executes its own plan without communicating with the rest of
the team. The only information that each agent has is the position of its neighboring
agents that lie in its limited sensing radius.

6.3.3 Simulation Results
To demonstrate the efficiency of the proposed algorithm, we consider N = 3 aerial
vehicles Bri(pi(t)), with ri = 0.3m, dsi = 0.65m, ∀i = {1, 2, 3}, operating in a
workspace W = Br0(p0) with r0 = 10m and p0 = [0, 0, 0]Tm. Moreover, we consider
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(a) (b)
Figure 6.4: Initial workspace for the first real experimental scenario. (a): The UAVs
with the projection of their bounding spheres, (with blue and green), and the centroids
of the regions of interest (with red). (b): Top view of the described workspace. The
UAVs are represented by the blue and green circled X’s and the regions of interest by
the red disks π1, . . . , π4.

K = 5 spherical regions of interest Brπk (pπk) with rπk = 0.4m, ∀k = {1, . . . , 5}
and pπ1 = [0, 0, 2]Tm, pπ2 = [1,−9, 5]Tm, pπ3 = [−8,−1, 4]Tm, pπ4 = [2, 7,−2]Tm
and pπ5 = [7.5, 2,−3]Tm. The initial configurations of the agents are taken as
p1(0) = pπ1 , p2(0) = pπ3 , p3(0) = pπ4 and therefore, A1(p1(0)) ∈ π1,A2(p2(0)) ∈ π3
and A3(p3(0)) ∈ π4. An illustration of the described workspace is depicted in Fig.
6.2.

We consider that agent 2 is assigned with inspection tasks and has the atomic
propositions Ψ2 = {“insa”, “insb”, “insc”, “insd”, “obs”} with L2(π1) = {“obs”},
L2(π2) = {“insa”},L2(π3) = {“insb”},L2(π4) = {“insc”} and L2(π5) = {“insd”},
where we have considered that region π1 is an undesired (”obstacle”) region for
this agent. More specifically, the task for agent 2 is the continuous inspection
of the workspace while avoiding region π1. The corresponding LTL specifica-
tion is φ2 = (�¬“obs”) ∧ �(♦“insa” ∧ ♦“insb” ∧ ♦“insc” ∧ ♦“insd”). Agents 1
and 3 are interested in moving around resources scattered in the workspace and
have propositions Ψ1 = Ψ3 = {“resa”, “resb”, “resc”, “resd”, “rese”} with L1(π1) =
L3(π1) = {resa},L1(π2) = L3(π2) = {resb},L1(π3) = L3(π3) = {resc},L1(π4) =
L3(π4) = {resd} and L1(π5) = L3(π5) = {rese}. We assume that “resa” is shared
between the two agents whereas “resb” and “rese” have to be accessed only by
agent 1 and “resc” and “resd” only by agent 3. The corresponding specifica-
tions are φ1 = �¬(“resc” ∨ “resd”) ∧ �♦(“resa” © “rese” © “resb”) and φ3 =
�¬(“resb” ∨ “rese”) ∧�♦(“resa”© “resc”© “resd”), where we have also included
a specific order for the access of the resources. Next, we employ the off-the-shelf
tool LTL2BA [168] to create the Büchi automata Ci, i = {1, 2, 3} and by following
the procedure described in Section 6.3.2, we derive the paths p1 = (π1π5π2)ω, p2 =
(π3π2π5π4)ω, p3 = (π4π1π3)ω, whose execution satisfies φ1, φ2, φ3. Regarding the
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continuous control protocol, we chose kgi = 15, λi = 5,∀i ∈ {1, 2, 3} in (6.3), (6.5)
and the switching duration in (6.7) was calculated online as νi = 0.1t′i,k, where
we assume that the large distance between the regions πk (see Fig. 6.2) implies
that tfi,k′ > 1.1t′i,k and thus, νi < tfi,k′ − t′i,k. The simulation results are depicted
in Fig. 6.3 and 6.5. In particular, Fig. 6.5 illustrates the execution of the paths
(π1π5π2)2π1, (π3π2π5π4)2π3π2π5 and (π4π1π3)2π4 by agents 1, 2 and 3 respectively,
where the superscript 2 here denotes that the corresponding paths are executed
twice. Fig. 6.3 depicts the resulting control inputs ui,∀i ∈ {1, 2, 3}. The figures
demonstrate the successful execution of the agents’ paths and therefore, satisfaction
of the respective formulas with inter-agent collision avoidance.

6.3.4 Experimental Results

The validity and efficiency of the proposed solution was also verified through real-
time experiments. The experimental setup involved two remotely controlled IRIS+
quadrotors from 3D Robotics, which we consider to have sensing range dsi = 0.65m,
upper control input bound |um| ≤ 1m/s, m ∈ {x, y, z}, and bounding spheres with
radius ri = 0.3m, ∀i ∈ {1, 2}. We considered two 2-dimensional scenarios in a
workspace W = {p ∈ R2 s.t. ‖p‖ ≤ 2.5m}, i.e. p0 = [0, 0]T and r0 = 2.5m.

The first scenario included 4 regions of interest Π = {π1, . . . , π4} in W, with
rπk = 0.4,∀k ∈ {1, . . . , 4} and pπ1 = [0, 0]Tm, pπ2 = [−1, 0]Tm, pπ3 = [0, 1.25]Tm
and pπ4 = [0.8,−0.7]Tm. The initial positions of the agents were taken such that
A1(p1(0)) ∈ π2 and A2(p2(0)) ∈ π4 (see Fig. 6.4). We also defined the atomic propo-
sitions Ψ1 = Ψ2 = {“obs”, “a”, “b”, “c”} with L1(π1) = L2(π1) = {“obs”}, L1(π2) =
L2(π2) = {“a”}, L1(π3) = L2(π3) = {“b”}, L1(π4) = L2(π4) = {“c”}. In this sce-
nario, we were interested in area inspection while avoiding the ”obstacle” region,
and thus, we defined the individual specifications with the following LTL formulas:
φ1 = φ2 = �¬“obs” ∧�♦(“a”© “c”© “b”). By following the procedure described
in Section 6.3.2, we obtained the paths p1 = (π2π4π3)ω, p2 = (π4π2π3)ω. Fig. 6.6
depicts the execution of the paths (π2π4π3)1 and (π4π2π3)1 by agents 1 and 2,
respectively, and Fig. 6.7 shows the corresponding input signals, which do not
exceed the control bounds 1m/s. It can be deduced by the figures that the agents
successfully satisfy their individual formulas, without colliding with each other.

The second experimental scenario included 3 regions of interest Π = {π1, . . . , π3}
in W, with rπk = 0.4,∀k ∈ {1, . . . , 3} and pπ1 = [−1,−1.7]Tm, pπ2 = [−1.3, 1.3]Tm
and pπ3 = [1.2, 0]Tm. The initial positions of the agents were taken such that
A1(p1(0)) ∈ π1 and Ai(p2(0)) ∈ π2 (see Fig. 6.8). We also defined the atomic
propositions Ψ1 = Ψ2 = {“resa”, “resb”, “base”}, corresponding to a base and several
resources in the workspace, with L1(π1) = L2(π1) = {“resa”}, L1(π2) = L2(π2) =
{“base”}, L1(π3) = L2(π3) = {“resb”}. We considered that the agents had to transfer
the resources to the ”base” in π2; both agents were responsible for “resa” but only
agent 1 should access “resb”. The specifications were translated to the formulas φ1 =
�(♦(“resa”© “base”)∧♦(“resb”© “base”)), φ2 = �¬“resb”∧�♦(“resa”© “base”)
and the derived paths were p1 = (π1π2π3π2)ω and p2 = (π1π2)ω. The execution of
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
Figure 6.5: Execution of the paths (π1π5π2)2π1, (π3π2π5π4)2π3π2π5 and (π4π1π3)2π4
by agents 1, 2 and 3, respectively, for the simulation studies.
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(a) (b) (c)

(d) (e) (f)
Figure 6.6: Execution of the paths (π2π4π3)1 and (π4π3π2)1 by agents 1 and 2,
respectively for the first experimental scenario. (a), (d): π2 →1 π4, π4 →2 π3, (b), (e):
π4 →1 π3, π3 →2 π2, (c), (f):π3 →1 π2, π2 →2 π4.

Figure 6.7: The resulting 2-dimensional control signals of the 2 agents for the first
experimental scenario. Top: agent 1, bottom: agent 2.

the paths (π1π2π3π2)1 and (π2π1)2 by agents 1 and 2, respectively, are depicted in
Fig. 6.10, and the corresponding control inputs are shown in Fig. 6.9. The figures
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(a) (b)
Figure 6.8: Initial workspace for the second experimental scenario. (a): The UAVs
with the projection of their bounding spheres, (with red and green), and the regions
of interest (blue disks). (b): Top view of the described workspace. The UAVs are
represented by the red and green circled X’s and the regions of interest by the blue
disks π1, . . . , π3.

demonstrate the successful execution and satisfaction of the paths and formulas,
respectively, and the compliance with the control input bounds.

Regarding the continuous control protocol in the aforementioned experiments,
we chose kgi = 3, λi = 2 in (6.3), (6.5) and the switching duration in (6.7) as
νi = 0.1t′i,k,∀i ∈ {1, 2}.

Remark 6.2. Note that, although the limited available workspace in the exper-
iments did not satisfy all the conditions regarding the distance between regions
and the workspace boundary, as introduced in Section 6.3.1, the two experimental
scenarios were successfully conducted.

The simulations and experiments were conducted in Python environment using
an Intel Core i7 2.4 GHz personal computer with 4 GB of RAM, and are clearly
demonstrated in the video found in https://youtu.be/dO77ZYEFHlE.

6.4 Robust Decentralized Abstractions for Multiple Mobile
Manipulators

6.4.1 Problem Formulation
Consider N ∈ N fully actuated agents with V := {1, . . . , N}, N ≥ 2, composed by
a robotic arm mounted on an omnidirectional mobile base, operating in a static
workspace W that is bounded by a large sphere in 3D space, i.e. W = B̊p0,r0 =
{p ∈ R3 s.t. ‖p − p0‖ < r0}, where p0 ∈ R3 is the center of W, and r0 ∈ R≥0 is
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Figure 6.9: The resulting 2-dimensional control signals of the 2 agents for the second
experimental scenario. Top: agent 1, bottom: agent 2.

(a) (b) (c)

(d) (e) (f)
Figure 6.10: Execution of the paths (π1π2π3π2)1 and (π2π1)2 by agents 1 and 2,
respectively for the second experimental scenario. (a), (d): π1 →1 π2, π2 →2 π1, (b),
(e): π2 →1 π3, π1 →2 π2, (c), (f): π3 →1 π2, π2 →2 π1.
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Figure 6.11: An agent that consists of `i = 3 rigid links.

its radius. Without loss of generality, we consider that p0 = 03×1, corresponding
to an inertial frame {I}. Within W there exist K disjoint spheres around points
of interest, which are described by πk = Bpk,rk = {p ∈ R3 s.t. ‖p− pk‖ ≤ rk}, k ∈
K := {1, . . . ,K}, where pk ∈ R3 and rk ∈ R>0 are the center and radius of the
kth region, respectively. The regions of interest can be equivalently described by
πk = {z ∈ R4 s.t. z>Tπkz ≤ 0}, where z = [p>, 1]> is the vector of homogeneous
coordinates of p ∈ R3, and

Tπk =
[
I3 pk

0>3×1 −r2
k

]
,∀k ∈ K. (6.9)

The dynamic model of each agent is given by the second-order Lagrangian dynamics:

Mi(qi)q̈i +Nqi(qi, q̇i)q̇i + gi(qi) + fi(qi, q̇i) = τi, (6.10)

∀i ∈ V, where qi ∈ Rni is the vector of generalized coordinates (e.g., pose of mobile
base and joint coordinates of the arms), and the rest of the terms as in (4.3) with a
slight change of notation;fi(·) here represents unmodeled nonlinearities and external
disturbances. Without loss of generality, we assume that ni = n ∈ N,∀i ∈ V. In
addition, we denote as {Bi} the frame of the mobile base of agent i and pBi : Rn → R3

its inertial position. Moreover, the matrix Ṁi − 2Ni is skew-symmetric [169], and
we further make the following assumption:

Assumption 6.1. There exist positive constants ci such that ‖fi(qi, q̇i)‖ ≤ ci‖qi‖‖q̇i‖,
∀(qi, q̇i) ∈ Rn × Rn, i ∈ V.

We consider that each agent is composed by `i rigid links (see Fig. 6.11) with
Qi = {1, . . . , `i} the corresponding index set. Each link of agent i is approximated
by the ellipsoid set [167] Eim(qi) = {z ∈ R4 s.t. z>Eim(qi)z ≤ 0}; z = [p>, 1]>
is the homogeneous coordinates of p ∈ R3, and Eim : Rn → R4×4 is defined as
Eim(qi) = T−Tim (qi)ÊimT−1

im
(qi), where Êim = diag{a−2

im
, b−2
im
, c−2
im
,−1} corresponds

to the positive lengths aim , bim , cim of the principal axes of the ellipsoid, and
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Tim : Rn → R4×4 is the transformation matrix for the coordinate frame {im} placed
at the center of mass of the m-th link of agent i, aligned with the principal axes of
Eim :

Tim(qi) =
[
Rim(qi) pim(qi)

0>3×1 1

]
,

with Rim : Rn → R3×3 being the rotation matrix of the center of mass of the link,
∀m ∈ Qi, i ∈ V. For an ellipsoid Eim , i ∈ V,m ∈ Qi, we denote as Exyim , E

xz
im
, Eyzim its

projections on the planes x-y, x-z and y-z, respectively, with corresponding matrix
terms Exyim , E

xz
im
, Eyzim . Note that the following holds for two different ellipsoids Eim

and Ejl :

Eim(qi) ∩ Ejl(qj) 6= ∅ ∧
◦
Eim(qi) ∩

◦
Ejl(qj) = ∅ ⇔

Esim(qi) ∩ Esjl(qj) 6= ∅ ∧
◦
Esim(qi) ∩

◦
Esjl(qj) = ∅,

∀s ∈ {xy, xz, yz}, i.e., in order for Eim , Ejl to collide (touch externally), all their
projections on the three planes must also collide. Therefore, a sufficient condition
for Eim and Ejl not to collide is Esim(qi) ∩ Esjl(qj) = ∅, for some s ∈ {xy, xz, yz}. In
view of Proposition 6.2 in Chapter 2, that means that the characteristic equations
fsim,jl(λ) := det(λEsim(qi)− Esjl(qj)) = 0 must always have one positive real root and
two negative distinct roots for at least one s ∈ {xy, xz, yz}. Hence, be denoting
the discriminant of fsim,jl(λ) = 0 as ∆s

im,jl
, Proposition 6.1 in Chapter 2 suggests

that ∆s
im,jl

must remain always positive for at least one s ∈ {xy, xz, yz}, since
a collision would imply ∆s

im,jl
= 0, ∀s ∈ {xy, xz, yz}. Therefore, by defining the

function δ : R→ R≥0 as:

δ(x) =
{
φδ(x), x > 0,
0, x ≤ 0,

(6.11)

where φδ is an appropriate polynomial that ensures that δ(x) is twice continuously
differentiable everywhere (e.g. φδ(x) = x3), we can conclude that a sufficient
condition for Eim and Ejl not to collide is δ(∆xy

im,jl
)+ δ(∆xz

im,jl
)+ δ(∆yz

im,jl
) > 0, since

a collision would result in ∆s
im,jl

= 0⇔ δ(∆s
im,jl

) = 0,∀s ∈ {xy, xz, yz}.
Next, we define the constant d̄Bi , which is the maximum distance of the

base to a point in the agent’s volume over all possible configurations, i.e. d̄Bi =
supqi∈Rn{‖pBi(qi)−pi(qi)‖}, pi ∈

⋃
m∈Qi Eim(qi). We also denote d̄B = [d̄B1 , . . . , d̄BN ]>

∈ RN≥0. Moreover, we consider that each agent has a sensor located at the center
of its mobile base pBi with a sensing radius dconi ≥ 2 maxi∈V{d̄Bi}+ εd, where εd
is an arbitrarily small positive constant. Hence, each agent has the sensing sphere
Di(qi) = {p ∈ R3 s.t. ‖p− pBi(qi)‖ ≤ dconi} and its neighborhood set at each time
instant is defined as Ni(qi) = {j ∈ V\{i} s.t. ‖pBi(qi)− pBj (qj)‖ ≤ dconi}.

As mentioned in Section 6.1, we are interested in defining transition systems for
the motion of the agents in the workspace in order to be able to assign complex high
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level goals through logic formulas. Moreover, since many applications necessitate the
cooperation of the agents in order to execute some task (e.g. transport an object), we
consider that a nonempty subset Ñi ⊆ Ni(qi(0)), i ∈ V , of the initial neighbors of the
agents must stay connected through their motion in the workspace. In addition, it
follows that the transition system of each agent must contain information regarding
the current position of its neighbors. The problem in hand is equivalent to designing
decentralized control laws τi, i ∈ V, for the appropriate transitions of the agents
among the predefined regions of interest in the workspace.

Next, we provide the following necessary definitions.

Definition 6.5. An agent i ∈ V is in region k ∈ K at a configuration qi ∈ Rn,
denoted as Ai(qi) ∈ πk, if and only if ‖pim(qi)−pk‖ ≤ rk−max{αim , βim , cim},∀m ∈
Qi ⇒ ‖pBi(qi)− pk‖ ≤ rk − d̄Bi .

Definition 6.6. Agents i, j ∈ V, with i 6= j, are in collision-free configurations
qi, qj ∈ Rn, denoted as Ai(qi) 6≡ Aj(qj), if and only if Eim(qi) ∩ Ejl(qj) = ∅,∀m ∈
Qi, l ∈ Qj .

Given the aforementioned discussion, we make the following assumptions regard-
ing the agents and the validity of the workspace:

Assumption 6.2. The regions of interest are

(i) large enough such that all the robots can fit, i.e., given a specific k ∈ K, there
exist qi, i ∈ V, such that Ai(qi) ∈ πk, ∀i ∈ V, with Ai(qi) 6≡ Aj(qj), ∀i, j ∈ V,
with i 6= j.

(ii) sufficiently far from each other and the obstacle workspace, i.e.,

‖pk − pk′‖ ≥ max
i∈V
{2d̄Bi}+ rk + rk′ + εp,

r0 − ‖pk‖ ≥ max
i∈V
{2d̄Bi},

∀k, k′ ∈ K, k 6= k′, where εp is an arbitrarily small positive constant.

Next, in order to proceed, we need the following definition.

Definition 6.7. Assume that Ai(qi(t0)) ∈ πk, i ∈ V , for some t0 ∈ R≥0, k ∈ K, with
Ai(qi(t0)) 6≡ Aj(qj(t0)),∀j ∈ V\{i}. There exists a transition for agent i between πk
and πk′ , k′ ∈ K, denoted as (πk, t0) i−→ (πk′ , tf ), if and only if there exists a finite time
tf ≥ t0, such that Ai(qi(tf )) ∈ πk′ and Ai(qi(t)) 6≡ Aj(qj(t)), Eim(qi(t)) ∩ Ei`(qi(t)),
Eim(qi(t)) ∩ πz = ∅,∀m, ` ∈ Qi,m 6= `, j ∈ V\{i}, z ∈ K\{k, k′}, t ∈ [t0, tf ].

Given the aforementioned definitions, the treated problem is the design of
decentralized control laws for the transitions of the agents between two regions of
interest in the workspace, while preventing collisions of the agents with each other,
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the workspace boundary, and the remaining regions of interest. More specifically,
we aim to design a finite transition system for each agent of the form [38]

Ti = (Π,Πi,0,
i−→,APi,Li,Fi), (6.12)

where Π = {π1, . . . , πK} is the set of regions of interest that the agents can be at,
according to Def. 6.5, Πi,0 ⊆ Π is a set of initial regions that each agent can start
from, i−→⊂ (Π × R≥0)2 is the transition relation of Def. 6.7, APi is a set of given
atomic propositions, represented as boolean variables, that hold in the regions of
interest, Li : Π→ 2APi is a labeling function, and Fi : Π→ Π|Ñi| is a function that
maps the region that agent i occupies to the regions the initial neighbors Ñi of agent
i are at. Therefore, the treated problem is the design of bounded controllers τi for
the establishment of the transitions i−→. Moreover, as discussed before, the control
protocol should also guarantee the connectivity maintenance of a subset of the initial
neighbors Ñi,∀i ∈ V. Another desired property important in applications involving
robotic manipulators, is the nonsingularity of the Jacobian matrix Ji : Rn → R6×n,
that transforms the generalized coordinate rates of agent i ∈ V to generalized
velocities [169]. That is, the set Si = {qi ∈ Rn s.t. det(Ji(qi)[Ji(qi)]>) = 0} should
be avoided, ∀i ∈ V.

Formally, we define the problem treated in this section as follows:

Problem 6.2. Consider N mobile manipulators with dynamics (6.10) and K
regions of interest πk, k ∈ K, with q̇i(t0) <∞, Ai(qi(t0)) ∈ πki , ki ∈ K,∀i ∈ V and
Ai(qi(t0)) 6≡ Aj(qj(t0)), Eim(qi(t0)) ∩ Ei`(qi(t0)) = ∅,∀i, j ∈ V, i 6= j,m, ` ∈ Qi,m 6=
`. Given nonempty subsets of the initial edge sets Ñi ⊆ Ni(qi(0)) ⊆ V,∀i ∈ V, the
fact that det(Ji(qi(t0))[Ji(qi(t0))]>) 6= 0,∀i ∈ V , as well as the indices k′i ∈ K, i ∈ V ,
such that ‖pk′

i
− pk′

j
‖ + rk′

i
+ rk′

j
≤ dconi ,∀j ∈ Ñi, i ∈ V, design decentralized

controllers τi such that, for all i ∈ V:

1. (πki , t0) i−→ (πk′
i
, tfi), for some tfi ≥ t0,

2. r0 − (‖pBi(t)‖+ d̄Bi) > 0,∀t ∈ [t0, tfi ],

3. j∗i ∈ Ni(qi(t)),∀j∗i ∈ Ñi, t ∈ [t0, tfi ],

4. qi(t) ∈ Rn\Si,∀t ∈ [t0, tfi ].

The aforementioned specifications concern 1) the agent transitions according to
Def. 6.7, 2) the confinement of the agents in W, 3) the connectivity maintenance
between a subset of initially connected agents and 4) the agent singularity avoidance.
Moreover, the fact that the initial edge sets Ñi are nonempty implies that the sensing
radius of each agent i covers the regions πkj of the agents in the neighboring set
Ñi. Similarly, the condition ‖pk′

i
− pk′

j
‖+ rk′

i
+ rk′

j
≤ dconi ,∀j ∈ Ñi, is a feasibility

condition for the goal regions, since otherwise it would be impossible for two initially
connected agents to stay connected. Intuitively, the sensing radii dconi should be
large enough to allow transitions of the multi-agent system to the entire workspace.
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6.4.2 Main Results
Continuous Control Design

To solve Problem 6.2, we denote as ϕi : RNn → R≥0 a decentralized potential
function, with the following properties:

(i) The function ϕi(q) is not defined, i.e., ϕi(q) =∞, ∀i ∈ V, when a collision or
a connectivity break occurs,

(ii) The critical points of ϕi where the vector field ∇qiϕi(q) vanishes, i.e., the
points where ∇qiϕi(q) = 0, consist of the goal configurations and a set of
configurations whose region of attraction (by following the negated vector field
curves) is a set of measure zero.

(iii) It holds that ∇qiϕi(q) +
∑
j∈Ni(qi)∇qiϕj(q) = 0 ⇔ ∇qiϕi(q) = 0 and∑

j∈Ni(qi)∇qiϕj(q) = 0, ∀i ∈ N , q ∈ RNn.

More specifically, ϕi(q) is a function of two main terms, a goal function γi : Rn →
R≥0, that should vanish when Ai(qi) ∈ πk′

i
, and an obstacle function, βi : Rn → R≥0

is a bounded that encodes inter-agent collisions, collisions between the agents and
the obstacle boundary/undesired regions of interest, connectivity losses between
initially connected agents and singularities of the Jacobian matrix Ji(qi);

Next, we provide an analytic construction of the goal and obstacle terms. However,
the construction of the function ϕi is out of the scope of this work. Examples can
be found in [37]1 and [170].

γi - Goal Function
Function γi encodes the control objective of agent i, i.e., reach the region of

interest πk′
i
. Hence, we define γi : Rn → R≥0 as

γi(qi) = ‖qi − qk′
i
‖2, (6.13)

where qk′
i

is a configuration such that rk′ − ‖pBi(qk′i) − pk′
i
‖ ≤ d̄Bi − ε, for an

arbitrarily small positive constant ε, which implies Ai(qk′
i
) ∈ πk′

i
, ∀i ∈ V. In case

that multiple agents have the same target, i.e., there exists at least one j ∈ V\{i}
such that πk′

j
= πk′

i
, then we assume that Ai(qk′

i
) 6≡ Aj(qk′

j
).

βi - Collision/Connectivity/Singularity Function
The function βi encodes all inter-agent collisions, collisions with the boundary of

the workspace and the undesired regions of interest, connectivity between initially
connected agents and singularities of the Jacobian matrix Ji(qi),∀i ∈ V.

Consider the function ∆im,jl : R2n → R≥0, with ∆im,jl(qi, qj) = δ(∆xy
im,jl

(qi, qj))+
δ(∆xz

im,jl
(qi, qj)) + δ(∆yz

im,jl
(qi, qj)), where ∆s

im,jl
: R2n → R≥0 is the discriminant

of the cubic equation det{λEsim(qi)− Esjl(qj)} = 0,∀s ∈ {xy, xz, yz}, for two given
ellipsoids Eim and Ejl ,m ∈ Qi, l ∈ Qj , i, j,∈ V, and δ as defined in (6.11). As

1In that case, we could choose ϕi = 1
1−φi

, where φi is the proposed function of [37]
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discussed in Section 6.4.1, a sufficient condition for the ellipsoids Eim and Ejl not to
collide, is ∆im,jl(qi(t), qj(t)) > 0,∀t ∈ R≥0.

Additionally, we define the greatest lower bound of the ∆im,jl when the point
pjl is on the boundary of the sensing radius ∂Di(qi) of agent i, as ∆̃im,jl =
inf(qi,qj)∈R2n{∆im,jl(qi, qj)} s.t. ‖pBi(qi) − pjl(qj)‖ = dconi ,∀m ∈ Qi, l ∈ Qj , i, j ∈
V . Since dconi > 2 maxi∈V{d̄Bi}+ εd, it follows that there exists a positive constant
ε∆ such that ∆̃im,jl ≥ ε∆ > 0,∀m ∈ Qi, l ∈ Qj , i, j ∈ V, i 6= j.

Moreover, we define the function ∆im,πk : Rn → R≥0, with ∆im,πk(qi) =
δ(∆xy

im,πk
(qi))+δ(∆xz

im,πk
(qi))+δ(∆yz

im,πk
(qi)), where ∆s

im,πk
: Rn → R is the discrim-

inant of the cubic equation det(λEsim(qi)− T sπk), with T sπk the projected version of
Tπk in (6.9), s ∈ {xy, xz, yz}, and δ as given in (6.11). A sufficient condition for Eim
and region πk, k ∈ K not to collide is ∆im,πk(qi(t)) > 0,∀t ∈ R≥0,m ∈ Qi, i ∈ V.

We further define the function ηij,c : Rn × Rn → R, with ηij,c(qi, qj) = d2
coni −

‖pBi(qi) − pBj (qj)‖2, and the distance functions βim,jl : R≥0 → R≥0, βij,c : R →
R≥0, βiw : R≥0 → R as

βim,jl(∆im,jl) =
{
φi,a(∆im,jl), 0 ≤ ∆im,jl < ∆̄im,jl ,

∆̄im,jl , ∆̄im,jl ≤ ∆im,jl ,

βij,c(ηij,c) =


0, ηij,c < 0,
φi,c(ηij,c), 0 ≤ ηij,c < d2

coni ,

d2
coni , d2

coni ≤ ηij,c,

βiw(‖pBi‖
2) = (rw − d̄Bi)

2 − ‖pBi‖
2,

where ∆̄im,jl is a constant satisfying 0 < ∆̄im,jl ≤ ∆̃im,jl ,∀m ∈ Qi, l ∈ Qj , i, j ∈
V, i 6= j, and φi,a, φi,c are strictly increasing polynomials appropriately selected to
guarantee that the functions βim,jl , and βij,c, respectively, are twice continuously
differentiable everywhere, with φi,a(0) = φi,c(0) = 0,∀i ∈ V . Note that the functions
defined above use only local information in the sensing range dconi of agent i. The
function βim,jl becomes zero when ellipsoid Eim collides with ellipsoid Ejl , whereas
βij,c becomes zero when agent i loses connectivity with agent j. Similarly, βiw
encodes the collision of agent i with the workspace boundary.

Finally, we choose the function βi : RNn → R≥0 as

βi(q) =(det(Ji(qi)[Ji(qi)]>))2βiw(‖pBi‖
2)
∏
j∈Ñi

βij,c(ηij,c)

∏
(m,j,l)∈T̃

βim,jl(∆im,jl)
∏

(m,k)∈L̃

∆im,πk(qi), (6.14)

∀i ∈ V, where T̃ = Qi × V ×Qj , L̃ = Qi × (K\{ki, k′i}), and we have omitted the
dependence on q for brevity. Note that we have included the term (det(JiJ>i ))2 to
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also account for singularities of Ji,∀i ∈ V and the term
∏

(m,j,l)∈T̃ βim,jl(∆im,jl)
takes into account also the collisions between the ellipsoidal rigid bodies of agent i.

With the introduced notation, the properties of the functions ϕi are:

(i) βi(q)→ 0⇔ (ϕi(q)→∞),∀i ∈ V,

(ii) ∇qiϕi(q)|qi=q?i = 0,∀q?i ∈ Rn s.t. γi(q?i ) = 0 and the regions of attraction
of the points {q ∈ RNn : ∇qiϕi(q)|qi=q̃i = 0, γi(q̃i) 6= 0}, i ∈ V, are sets of
measure zero.

By further denoting Di = {q ∈ RNn : βi(q) > 0}, we are ready to state the main
theorem, that summarizes the main results of this work.

Theorem 6.2. Under the Assumptions 6.1-6.2, the decentralized control laws τi :
Di × Rn → Rn, with

τi(q, q̇i) = gi(qi)−∇qiϕi(q)−
∑

j∈Ni(qi)

∇qiϕj(q)− ĉi(qi, q̇i)‖qi‖q̇i − λiq̇i, (6.15)

∀i ∈ V, along with the adaptation laws ˙̂ci : Rn × Rn → R:

˙̂ci(qi, q̇i) = σi‖q̇i‖2‖qi‖, (6.16)

with ĉi(qi(t0), q̇i(t0)) <∞, σi ∈ R≥0 , ∀i ∈ V, guarantee the transitions (πki , t0) i−→
(πk′

i
, tfi) for finite tfi , i ∈ V for almost all initial conditions, while ensuring βi >

0,∀i ∈ V, as well as the boundedness of all closed loop signals, providing, therefore,
a solution to Problem 6.2.

Proof. The closed loop system of (6.10) is written as:

Mi(qi)q̈i +Ni(qi, q̇i)q̇i + fi(qi, q̇i) = −∇qiϕi(qi)− λiq̇i − ĉ(qi, q̇i)‖qi‖q̇i−∑
j∈Ni(qi)

∇qiϕj(q), (6.17)

∀i ∈ V. Due to Assumption 6.2, the domain where the functions ϕi(q) are well-
defined (i.e., where βi > 0) is connected. Hence, consider the Lyapunov-like function
V : RN × RNn × RN × D1 × · · · × DN → R≥0, with

V (ϕ, q̇, c̃, q) =
∑
i∈V

ϕi(q) + 1
2 [q̇>i Mi(qi)q̇i + 1

σi
c̃2i ]

where ϕ and c̃ are the stack vectors containing all ϕi and c̃i, respectively, i ∈ V,
and c̃i : Rn × Rn → R, with c̃i(qi, q̇i) = ĉi(qi, q̇i)− ci,∀i ∈ V . Note that, since there
are no collision or singularities at t0, the functions βi(q), i ∈ V, are strictly positive
at t0 which implies the boundedness of V at t0. Therefore, since q̇i(t0) < ∞ and
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ĉi(t0) < ∞,∀i ∈ V, there exists a positive and finite constant M < ∞ such that
V0 := V (ϕ(q(t0)), q̇(t0), c̃(q(t0), q(t0)) ≤M .

By differentiating V , substituting the dynamics (6.10), employing the skew
symmetry of Ṁi − 2Ni as well as

∑
i∈V([∇qiϕi(q)]>q̇i +

∑
j∈Ni(qi)[∇qjϕi(q)]

>q̇j) =∑
i∈V([∇qiϕi(q)]> +

∑
j∈Ni(qi)[∇qiϕj(q)]

>)q̇i, we obtain

V̇ =
∑
i∈V

{
q̇>i

(
∇qiϕi(q) +

∑
j∈Ni(qi)

∇qiϕj(q) + τi − gi(qi)
)
− q̇>i fi(qi, q̇i) + 1

σi
c̃i ˙̂ci

}
,

(6.18)

which, by substituting the control and adaptation laws (6.15), (6.16) becomes:

V̇ =
∑
i∈V
{−λi‖q̇i‖2 − ĉi‖q̇i‖2‖qi‖ − q̇>i fi(qi, q̇i) + c̃i‖q̇i‖2‖qi‖

≤
∑
i∈V
{−λi‖q̇i‖2 − (ĉi − ci − c̃i)‖q̇i‖2‖qi‖ (6.19)

where we have used the property ‖fi(qi, q̇i)‖ ≤ ci‖qi‖‖q̇i‖. Since c̃i = ĉi − ci, we
obtain V̇ ≤ −

∑
i∈V λi‖q̇i‖2, which implies that V is non-increasing along the

trajectories of the closed loop system. Hence, we conclude that V (t) ≤ V0 ≤M , as
well as the boundedness of c̃i, ϕi, q̇i and hence of ĉi,∀i ∈ V, t ≥ t0. Therefore, we
conclude that βi(q(t)) > 0,∀t ≥ t0, i ∈ V.

Hence, inter-agent collisions, collision with the undesired regions and the obstacle
boundary, connectivity losses between the subsets of the initially connected agents
and singularity configurations are avoided.

Moreover, by invoking LaSalle’s Invariance Principle, the system converges to
the largest invariant set contained in

S = {(q, q̇) ∈ D1 × · · · × DN × RNn s.t. q̇ = 0Nn×1}. (6.20)

For S to be invariant, we require that q̈i = 0n×1,∀i ∈ V, and thus we conclude for
the closed loop system (6.17) that ∇qiϕi(q) = 0n×1,∀i ∈ V, since ‖fi(qi, 0n×1)‖ ≤
0,∀qi ∈ Rn, in view of Assumption 6.1. Therefore, by invoking the properties of ϕi(q),
each agent i ∈ V will converge to a critical point of ϕi, i.e., all the configurations
where ∇qiϕi(q) = 0n×1,∀i ∈ V. However, due to properties of ϕi(q), the initial
conditions that lead to configurations q̃i such that ∇qiϕi(q)|qi=q̃i = 0n×1 and
γi(q̃i) 6= 0 are sets of measure zero in the configuration space [35]. Hence, the agents
will converge to the configurations where γi(qi) = 0 from almost all initial conditions,
i.e., lim

t→∞
γi(qi(t)) = 0. Therefore, since rk′ − ‖pBi(qk′i)− pk′i‖ ≤ d̄Bi − ε, it can be

concluded that there exists a finite time instance tfi such that Ai(qi(tfi)) ∈ πk′ ,
∀i ∈ V and hence, each agent i will be at its goal region pk′

i
at time tfi ,∀i ∈ V. In

addition, the boundedness of qi, q̇i implies the boundedness of the adaptation laws
˙̂ci,∀i ∈ V. Hence, the control laws (6.15) are also bounded.
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Figure 6.12: (a): The initial position of the agents in the workspace of the simulation
example. (b): The first transition of the agents in the workspace. Agent 1 transits from
π1 to π2, agent 2 from π2 to π1, and agent 3 from π1 to π3. (c): The second transition
of the agents in the workspace. Agent 1 transits from π2 to π1, agent 2 from π1 to π2,
and agent 3 from π3 to π2.

Remark 6.3. Note that the design of the obstacle functions (6.14) renders the con-
trol laws (6.15) decentralized, in the sense that each agent uses only local information
with respect to its neighboring agents, according to its limited sensing radius. Each
agent can obtain the necessary information to cancel the term

∑
j∈Ni(qi)∇qiϕj(q)

from its neighboring agents.
Finally, note that the considered dynamic model (6.10) applies for more general

manipulation robots (e.g. underwater or aerial manipulators), without limiting the
proposed methodology to mobile ones.

Hybrid Control Framework

Due to the proposed continuous control protocol of Section 6.4.2, the transitions
(πki , t0) i−→ (πk′

i
, tfi) of Problem 6.2 are well-defined, according to Def. 6.7. Moreover,

since all the agents i ∈ V remain connected with the subset of their initial neighbors
Ṽi and there exist finite constants tfi , such that Ai(qi(tfi)) ∈ πk′i ,∀i ∈ V, all the
agents are aware of their neighbors state, when a transition is performed. Hence,
the transition system (6.12) is well defined, ∀i ∈ V. Consider, therefore, that
Ai(qi(0)) ∈ πki,0 , ki,0 ∈ K,∀i ∈ V, as well as a given desired path for each agent,
that does not violate the connectivity condition of Problem 6.2. Then, the iterative
application of the control protocol (6.15) for each transition of the desired path of
agent i guarantees the successful execution of the desired paths, with all the closed
loop signals being bounded.

Remark 6.4. Note that, according to the aforementioned analysis, we implicitly
assume that the agents start executing their respective transitions at the same time
(we do not take into account individual control jumps in the Lyapunov analysis, i.e.,
it is valid only for one transition). Intuition suggests that if the regions of interest
are sufficiently far from each other, then the agents will be able to perform the
sequence of their transitions independently. Detailed technical analysis of such cases
is part of our future goals.
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Figure 6.13: The obstacle functions βi, i ∈ {1, 2, 3}, which remain strictly positive.

6.4.3 Simulation Results

To demonstrate the validity of the proposed methodology, we consider the simplified
example of three agents in a workspace with r0 = 12 and three regions of interest,
with rk = 4,∀k ∈ {1, 2, 3} m. Each agent consists of a mobile base and a rigid link
connected with a rotational joint, with d̄Bi = 1m, ∀i ∈ {1, 2, 3}. We also choose
p1 = [−5,−5]m, p2 = [6,−4]m, p3 = [−3, 6]m. The initial base positions are taken
as pB1 = [−3,−4]>m, pB2 = [3,−4]>m, pB3 = [−4,−5]>m with d̄Bi = 1.25m,∀i ∈
{1, 2, 3}, which imply that A1(q1(0)),A3(q3(0)) ∈ π1 and A2(q2(0)) ∈ π2 (see Fig.
6.12(a). The control inputs for the agents are the 2D force acting on the mobile base,
and the joint torque of the link. We also consider a sensing radius of dconi = 8m and
the subsets of initial neighbors as Ñ1 = {2}, Ñ2 = {1, 3}, and Ñ3 = {2}, i.e., agent
1 has to stay connected with agent 2, agent 2 has to stay connected with agents 1
and 3 and agent 3 has to stay connected with agent 2. The agents are required to
perform two transitions. Regarding the first transition, we choose πk′1 = π2 for agent
1, πk′2 = π1 for agent 2, and πk′3 = π3, for agent 3. Regarding the second transition,
we choose πk′1 = π1, πk′2 = π2, and πk′3 = π2. The control parameters and gains
where chosen as ki = 5, λi = 10, ρi = 1, and σi = 0.01,∀i ∈ {1, 2, 3}. We employed
the potential field from [37]. The simulation results are depicted in Fig. 6.12-6.15.
In particular, Fig. 6.12(b) and 6.12(c) illustrate the two consecutive transitions of
the agents. Fig. 6.13 depicts the obstacle functions βi which are strictly positive,
∀i ∈ {1, 2, 3}. Finally, the control inputs are given in Fig. 6.14 and the parameter
errors c̃ are shown in Fig. 6.15, which indicates their boundedness. As proven in the
theoretical analysis, the transitions are successfully performed while satisfying all
the desired specifications.
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Figure 6.14: The resulting control inputs τi, ∀i ∈ {1, 2, 3} for the two transitions.
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Figure 6.15: The parameter deviations c̃i,∀i ∈ {1, 2, 3}, which are shown to be
bounded.

6.5 Conclusion and Future Work

In this work, we proposed hybrid control strategies for the motion planning of
teams of aerial vehicles as well as mobile manipulators under LTL specifications.
By using decentralized navigation functions that guarantee inter-agent collision
avoidance as well as connectivity maintenance, we abstracted each agent’s motion
as a finite transition system between regions of interest. Each agent then can
derive the plan that satisfies its given LTL formula through formal-verification
techniques. Simulation studies and experimental results verified the validity of the
proposed algorithms. Future efforts will be devoted towards addressing abstractions
of cooperative tasks between the agents by employing hybrid control techniques as
well as abstraction reconfiguration due to potential execution incapability of the
transitions and partially known environments.



Chapter 7

Abstractions for Multi-Agent
Cooperative-Manipulation Schemes

This chapter addresses the problem of deriving well-defined abstractions for the
motion planning of a team of robotic agents and objects. In particular, we propose
two methodologies for the discrete abstraction of such systems. Firstly, we consider
the trajectory tracking of a cooperatively manipulated object without necessitating
feedback of the contact forces/torques or inter-agent communication. By employing
the prescribed performance control methodology, we pre-determine the transient
and steady state of the coupled object-agents system. The latter, along with a region
partition of the workspace that depends on the physical volume of the object and
the agents, allows us to define timed transitions for the coupled system among the
derived workspace regions. Therefore, we abstract its motion as a finite transition
system and, by employing standard automata-based methodologies, we define high
level complex tasks for the object that can be encoded by timed temporal logics.
Secondly, we present a hybrid control framework for the motion planning of a
multi-agent system including N robotic agents and M objects, under high level goals
expressed as Linear Temporal Logic (LTL) formulas. We design control protocols
that allow the transition of the agents as well as the cooperative transportation of
the objects by the agents, among predefined regions of interest in the workspace.
This allows to abstract the coupled behavior of the agents and the objects as a
finite transition system and to design a high-level multi-agent plan that satisfies the
agents’ and the objects’ specifications, given as temporal logic formulas. Simulation
results verify the validity of the proposed frameworks.

7.1 Introduction

As pointed out in the previous chapter, temporal-logic based motion planning has
gained significant amount of attention over the last decade, since it provides a fully
automated correct-by-design controller synthesis approach for autonomous robots.
Temporal logics, such as linear temporal logic (LTL), provide formal high-level
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languages that can describe planning objectives more complex than the well-studied
navigation algorithms, and have been used extensively both in single- as well as in
multi-agent setups. The objectives are given as a temporal logic formula with respect
to a discretized abstraction of the system (usually a finite transition system), and
then, a high-level discrete path is found by off-the-shelf model-checking algorithms,
given the abstracted system and the task specification [38].

Most works in the related literature consider temporal logic-based motion plan-
ning for fully actuated, autonomous agents. Consider, however, cases where some
unactuated objects must undergo a series of processes in a workspace with au-
tonomous agents (e.g., car factories). In such cases, the agents, except for satisfying
their own motion specifications, are also responsible for coordinating with each
other in order to transport the objects around the workspace. When the unactuated
objects’ specifications are expressed using temporal logics, then the abstraction of
the agents’ behavior becomes much more complex, since it has to take into account
the objects’ goals.

In contrast to the related literature, which mainly considers the trajectory
tracking of manipulated objects, we are here interested in complex tasks, possibly
including time, such as “never take the object to dangerous regions” or “keep
moving the object from region A to B within a predefined time interval” which must
be executed via the control actions of the agents. Such tasks can be expressed by
temporal logic languages. Except for Linear Temporal Logic (LTL), which is the most
common language that has been incorporated in the multi-agent motion planning
problem, Metric and Metric Interval Temporal Logic (MTL, MITL) [39, 40, 171],
as well as Time Window Temporal Logic (TWTL) are languages that encode time
specifications and were used for multi-agent motion planning in [151, 172, 173]. As
highlighted in the previous chapter, in order to be able to define temporal logic
objectives, the continuous-time system must be abstracted to a higher-level discrete
representation that incorporates the motion and the actions of the system.

The previous chapters focused on the cooperative manipulation of an object by
multiple robotic agents, as well as the multi-agent discrete abstraction and control
synthesis for the satisfaction of temporal logic formulas. In this chapter, we combine
these results to address the discrete abstraction for cooperative manipulation schemes,
from two difference aspects. Firstly, we study the timed abstraction of a system
comprising of N robotic agents rigidly grasping an object. By using the prescribed
performance control methodology of Chapter 4, we design a distributed model-free
control protocol for the trajectory tracking of the cooperatively manipulated object
that allows us to model the motion of the coupled object-agents system as a weighted
finite transition system. Then, by employing formal verification-based methodologies,
we derive a path that satisfies a given MITL task. Secondly, we present a novel
hybrid control framework for the motion planning of a team of N autonomous
agents and M unactuated objects under LTL specifications. Using previous results
on navigation functions (similarly to Chapter 6), we design feedback control laws for
i) the navigation of the agents and ii) the cooperative transportation of the objects
by the agents, among predefined regions of interest in the workspace, while ensuring



7.2. Timed Abstractions for Distributed Cooperative Manipulation 145

Figure 7.1: Two robotic arms rigidly grasping an object.

inter-agent collision avoidance. This allows us to model the coupled behavior of
the agents and the objects with a finite transition system, which can be used for
the design of high-level plans that satisfy the given LTL specifications. Simulation
results verify the validity of the proposed frameworks.

The rest of the chapter consists of two main parts: Firstly, Section 7.2 presents
the timed abstraction of a cooperative manipulated object, with 7.2.1 and 7.2.2
describing the problem formulation and the proposed solution and 7.2.3 providing
simulation results. Secondly, Section 7.3 presents the abstraction of the multi-agent-
object system, with 7.3.1, 7.3.2, and 7.3.3 providing the problem formulation, the
proposed solution, and the simulation results, respectively. Finally, Section 7.4
concludes the chapter.

7.2 Timed Abstractions for Distributed Cooperative
Manipulation

7.2.1 Problem Formulation

Consider a bounded workspaceW ⊂ R3 containing N robotic agents rigidly grasping
an object, as shown in Fig. 7.1. The agents are considered to be fully actuated
and they consist of a base that is able to move around the workspace (e.g., mobile
or aerial vehicle) and a robotic arm. The reference frames corresponding to the
i-th end-effector and the object’s center of mass are denoted with {Ei} and {O},
respectively, whereas {I} corresponds to an inertial reference frame. The rigidity of
the grasps implies that the agents can exert any force/torque along every direction
to the object. We consider that each agent i knows only its own state, position and
velocity, as well as its own and the object’s geometric parameters. More specifically,
we assume that each agent i knows the distance from its grasping point {Ei} to
the object’s center of mass {O} as well as the relative orientation offset between
the two frames {Ei} and {O}. This information can be either retrieved on-line via
appropriate sensors or transmitted off-line to the agents, without the need of inter-
agent on-line communication. Finally, no interaction force/torque measurements are
required and the dynamic model of the object and the agents is considered unknown.
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Figure 7.2: An example of the system shown in Fig. 7.1 in the configuration that
produces L̂.

System model

The modeling of the object and the agents is identical to the one of Chapter 5 and
its derivation is omitted. The joint space variables of agent i ∈ N is qi ∈ Rni , with
ni = nαi + 6, qi = [pTBi , η

T
Bi
, αTi ]T . Each agent i ∈ N = {1, . . . , N} has access to

its own state qi as well as ṗBiBi , ω
Bi
Bi

, and α̇i via on-board sensors, and it can obtain
ṗBi , ωBi via the transformation given in Chapter 5. The task-space dynamics of the
agents is given by

Mi(qi)v̇i + Ci(qi, q̇i)vi + gi(qi) + fi(qi, q̇i) + wi(qi, t) = ui − λi, (7.1)

where we use here fi(·) for modeling uncertainties and wi(·) for external disturbances,
which are assumed to be continuous in qi, q̇i, and bounded in t. Moreover, as noted
in Chapter 5, the matrix JBi(ηBi), which maps η̇Bi to ωBi , and the agent Jacobian
matrix Ji become singular when θBi = ±π2 and at kinematic singularities, respectively.
We assume here that the agents do not operate close to such points.

The object dynamic equations are given by

ẋO = JO(ηO)vO (7.2a)
MO(xO)v̇O + CO(xO, vO)vO + gO(xO) + wO(t) = λO, (7.2b)

with the matrix JO(·) and the dynamic terms as in Chapters 4, 5, and w
O

(t) a
bounded vector field representing external disturbances. The matrix JO(ηO) is not
defined when θO = ±π2 , which, however, is guaranteed to be avoided by the control
design. The coupled dynamics between the object and the agents is given by

M̃(q)v̇O + C̃(q, q̇)vO + h̃(q, q̇) + w̃(q, t) = GT (q)ū, (7.3)

with the coupled dynamic terms as in Chapter 5. We assume again here that the
geometric object parameters are known and therefore each agent can compute pO, ηO
and vO by the coupled kinematic equations, without employing any sensory data.

Workspace Partition

As mentioned in Section 7.1, we are interested in designing a well-defined abstraction
of the coupled object-agents system, so that we can define MITL formulas over certain
properties in a discrete set of regions of the workspace. Therefore, we provide now a
partition of W into cell regions. We denote by Sq the set that consists of all points
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Figure 7.3: The workspace partition according to the bounding box of the coupled
system.

ps ∈ W that physically belong to the coupled system, i.e., they consist part of either
the volume of the agents or the volume of the object. Note that these points depend
on the actual value of q. We further define the constant L̂ ≥ sup q∈Rn

ps∈Sq
d(ps, pO(q)),

where, with a slight abuse of notation and in view of the coupled object-agents
kinematics and the forward kinematics of the agents, we express pO as a function
of q. Note that, although the explicit computation of Sq may not be possible, L̂ is
an upper bound of the maximum distance between the object center of mass and a
point in the coupled system’s volume over all possible configurations q, and thus,
it can be measured. For instance, Fig. 7.2 shows L̂ for the system of Fig. 7.1. It is
straightforward to conclude that

ps ∈ B(pO(q), L̂),∀ps ∈ Sq, q ∈ Rn. (7.4)

Next, we partition the workspace W into R equally sized rectangular regions
Π = {π1, . . . , πR}, whose geometric centers are denoted as pcπj ∈ W, j ∈ {1, . . . , R}.
The length of the region sides is set to D = 2L̂+2l0, where l0 is an arbitrary positive
constant. Hence, each region πj can be formally defined as follows:

πj ={p ∈ W s.t. (p)k ∈ [(pcπj )k − L̂− l0, (p
c
πj )k + L̂+ l0),∀k ∈ {x, y, z}},

with d(pcπj+1
, pcπj ) = (2L̂ + 2l0),∀j ∈ {1, . . . , R − 1}, and (pcπj )z = L̂ + l0,∀j ∈

{1, . . . , R}; (a)k, k ∈ {x, y, z}, denotes the k-th coordinate of a = [(a)x, (a)y, (a)z]T ∈
R3. An illustration of the aforementioned partition is depicted in Fig. 7.3.

Note that each πj is a uniformly bounded and convex set and also πj ∩ πj′ =
∅,∀j, j′ ∈ {1, . . . , R} with j 6= j′. We also define the neighborhood D of region πj as
the set of its adjacent regions, i.e., D(πj) = {πj′ ∈ Π s.t. d(pcπj , p

c
πj′

) = (2L̂+ 2l0)},
which is symmetric, i.e., πj′ ∈ D(πj)⇔ πj ∈ D(πj′).

To proceed we need the following definitions regarding the timed transition of
the coupled system between two regions πj , πj′ :

Definition 7.1. The coupled object-agents system is in region πj at a configuration
q, denoted as A(q) ∈ πj , if and only if the following hold:
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1. ps ∈ πj ,∀ps ∈ Sq

2. d(pO(q), pcπj ) < l0.

Definition 7.2. Assume that A(q(t0)) ∈ πj , j ∈ {1, . . . , R}, for some t0 ∈ R≥0.
Then, there exists a transition for the coupled object-agents system from πj to
πj′ , j

′ ∈ {1, . . . , R} with time duration δtj,j′ ∈ R≥0, denoted as πj
T−→ πj′ , if and

only if there exists a bounded control trajectory ū in (7.3), such that the following
hold:

1. A(q(t0 + δtj,j′)) ∈ πj′ ,

2. ps ∈ πj ∪ πj′ ,∀ps ∈ Sq, t ∈ [t0, t0 + δtj,j′ ].

Note that the entire system object-agents must remain in πj , πj′ during the
transition and therefore the requirement πj′ ∈ D(πj) is implicit in Definition 7.2.

Specification

Given the workspace partition, we can introduce a set of atomic propositions AP for
the object, which are expressed as Boolean variables that correspond to properties
of interest in the regions of the workspace (e.g., “Obstacle region”, “Goal region”).
Formally, the labeling function L : Π→ 2AP assigns to each region πj the subset of
the atomic propositions AP that are true in πj .

Definition 7.3. Given a time trajectory q(t), t ≥ 0, a timed sequence of q is
the infinite sequence β = (q(t1), t1)(q(t2), t2) . . . , with tm ∈ R≥0, tm+1 > tm and
A(q(tm)) ∈ πjm , jm ∈ {1, . . . , R},∀m ∈ N. The timed behavior of β is the infinite
sequence σβ = (σ1, t1)(σ2, t2) . . . , with σm ∈ 2AP , σm ∈ L(πjm) for A(q(tm)) ∈
πjm , jm ∈ {1, . . . , R}, ∀m ∈ N, i.e., the set of atomic propositions that are true
when A(q(tm)) ∈ πjm .

Definition 7.4. The timed run β satisfies an MITL formula φ if and only if σβ |= φ.

We are now ready to state the problem treated in this section.

Problem 7.1. GivenN agents rigidly grasping an object inW subject to the coupled
dynamics (7.3), the workspace partition Π such that A(q(0)) ∈ πj0 , j0 ∈ {1, . . . , R},
a MITL formula φ over AP and the labeling function L, derive a control strategy
that achieves a timed sequence β which yields the satisfaction of φ.

7.2.2 Main Results
Control Design

The first ingredient of the proposed solution is the design of a decentralized control
protocol ū such that a transition relation between two adjacent regions according to
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Figure 7.4: Top view of a transition between two adjacent regions πj and πj′ . Since
pO ∈ B(pj,j′(t), l0), we conclude that ps ∈ B(pO, L̂) ⊂ B(pj,j′(t), l0 + L̂) ⊂ πj ∪ πj′ .

Definition 7.2 is established. Assume, therefore, that A(q(t0)) ∈ πj , j ∈ {1, . . . , R}
for some t0 ∈ R≥0. We aim to find a bounded ū, such that A(q(t0 + δtj,j′)) ∈ πj′ ,
with πj′ ∈ D(πj), and ps ∈ πj ∪ πj′ ,∀ps ∈ Sq, t ∈ [t0, t0 + δtj,j′ ], for a predefined
arbitrary constant δtj,j′ ∈ R≥0 corresponding to the transition πj

T−→ πj′ .
The first step is to associate to the transition a smooth and bounded trajectory

with bounded time derivative, defined by the line segment that connects pcπj and pcπj′ ,
i.e. define pj,j′ : [t0,∞)→ R3, such that pj,j′(t0) = pcπj , pj,j′(t) = pcπj′ ,∀t ≥ t0+δtj,j′
and

B(pj,j′(t), L̂+ l0) ⊂ πj ∪ πj′ , ∀t ≥ t0. (7.5)
An example of pj,j′ is

pj,j′(t) =


pcπj′ − p

c
πj

δtj,j′
t+

pcπj (δtj,j′ − 1)− pcπj′
δtj,j′

t0, t ∈ T1

pcπj′ , t ∈ T2

, (7.6)

where T1 = [t0, t0 + δtj,j′), T2 = [t0 + δtj,j′ ,∞). The intuition behind the solution
of Problem 7.1 via the definition of pj,j′ is the following: if we guarantee that
the object’s center of mass stays l0-close to pj,j′ , i.e., d(pO(t), pj,j′(t)) < l0,∀t ≥
t0, then d(pO(t0 + δtj,j′), pcπj′ ) < l0 and, by invoking (7.4) and (7.5), we obtain
ps ∈ B(pO(t), L̂) ⊂ B(pj,j′(t), L̂ + l0) ⊂ πj ∪ πj′ ,∀ps ∈ Sq, t ≥ t0 (and therefore
t ∈ [t0, t0 + δtj,j′ ]), and thus the requirements of Definition 7.2 for the transition
relation are met. Fig. 7.4 illustrates the aforementioned reasoning.

Along with pj,j′ , we consider that the object has to comply with certain spec-
ifications associated with its orientation. Therefore, we also define a smooth and
bounded orientation trajectory ηj,j′ = [φj,j′ , θj,j′ , ψj,j′ ]T : [t0,∞)→ T with bounded
time derivative, that has to be tracked by the object’s center of mass. We choose
θj,j′(t) ∈ [−θ∗, θ∗] ⊂ (−π2 ,

π
2 ), ∀t ∈ R≥0, with θ∗ ∈ (0, π2 ), so as to ensure the

singularity avoidance of JOr(xO). We form, therefore, the desired pose trajectory
xj,j′ : [t0,∞)→M, with xj,j′(t) = [pTj,j′(t), ηTj,j′(t)]T . In case of multiple consecutive
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transitions . . . πh
T−→ πj

T−→ πj′
T−→ πh′ . . . over the intervals . . . ,δth,j , δtj,j′ ,

δtj′,h′ ,. . . , the desired orientation trajectories . . . , ηh,j(t), ηj,j′(t), ηj′,h′(t), . . . must
be continuous at the transition points, i.e., ηh,j(t0) = ηj,j′(t0) and ηj,j′(t0 + δtj,j′)
= ηj′,h′(t0 + δtj,j′).

Therefore, Problem 7.1 is equivalent to a problem of trajectory tracking within
certain bounds. Finally, we make the following assumption:

Assumption 7.1. The configuration of the object at t = t0 does not result in a
singular JOr (xO(t0)), i.e., θO(t0) ∈ (−π2 ,

π
2 ) and θj,j′(t) is chosen such that

− π
2 + θ∗ < θO(t0)− θj,j′(t0) < π

2 − θ
∗.

We can now define the associated position and orientation errors ep = [ep1 , ep2 , ep3 ]
∈ R3, eη = [eηφ , eηθ , eηψ ] ∈ T as follows:

ep = pO − pj,j′(t), (7.7a)
eη = ηO − ηj,j′(t), (7.7b)

∀t ∈ [t0,∞).
A suitable methodology for the control design in hand is that of prescribed

performance control, which is adapted in this work in order to achieve predefined
transient and steady state response bounds for the pose errors. Following Section
2.1 and the already introduced control design of Chapter 4, prescribed performance
characterizes the behavior where the aforementioned errors evolve strictly within a
predefined region that is bounded by absolutely decaying functions of time, called
performance functions. The mathematical expressions of prescribed performance
are given by the inequalities:

−ρpk(t) < epk(t) < ρpk(t), ∀k ∈ {1, 2, 3}, (7.8a)
−ρη`(t) < eη`(t) < ρη`(t), ∀` ∈ {φ, η, ψ}, (7.8b)

∀t ∈ [t0,∞), where ρpk , ρηl : [t0,∞)→ R>0 with

ρpk(t) = (ρ0
pk
− ρ∞pk)e−lpk (t−t0) + ρ∞pk , ∀k ∈ {1, 2, 3}, (7.9a)

ρη`(t) = (ρ0
η`
− ρ∞η`)e

−lη` (t−t0) + ρ∞η` , ∀` ∈ {φ, θ, ψ}, (7.9b)

are designer-specified, smooth, bounded and decreasing positive functions of time
with lpk , lη` , ρ

∞
pk
, ρ∞η` , k ∈ {1, 2, 3}, ` ∈ {φ, θ, ψ} positive parameters incorporating

the desired transient and steady state performance respectively, as described in
Section 2.1.

Next, we propose a state feedback control protocol that does not incorporate any
information on the agents’ or the object’s dynamics or the external disturbances and
guarantees (7.8) for all t ∈ [t0,∞) and hence [t0, t0 + δtj,j′ ], which, by appropriately
selecting ρpk(t), ρη`(t), k ∈ {1, 2, 3}, ` ∈ {φ, θ,
ψ} and given that A(q(t0)) ∈ πj , guarantees a representation singularity-free (i.e.,
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θO(t) 6= π
2 , t ∈ [t0,∞)) transition πj

T−→ πj′ with time duration of δtj,j′ , as will be
clarified in the sequel.

Define first the stack pose error es :∈M:

es =



es1
es2
es3
es4
es5
es6


=



ep1

ep2

ep3

eηφ
eηθ
eηψ


= xO − xj,j′(t), (7.10)

∀t ∈ [t0,∞), and perform the following steps:
Step I-a. Select the corresponding functions ρpk , ρη` as in (7.9) with

1. ρ0
pk

= ρpk(t0) = l0, ∀k ∈ {1, 2, 3}, ρ0
ηθ

= ρηθ(t0) = π

2 − θ
∗, ρ0

η`
= ρη`(t0) >

|eη`(t0)|, ∀` ∈ {φ, ψ},

2. lpk , lη` ∈ R>0,∀k ∈ {1, 2, 3}, ` ∈ {φ, θ, ψ},

3. ρ∞pk ∈ (0, ρ0
pk

), ρ∞η` ∈ (0, ρ0
η`

), ∀k ∈ {1, 2, 3}, ` ∈ {φ, θ, ψ}.

Step I-b. Define the normalized errors ξs ∈ R6:

ξs =


ξs1
...
ξs6

 = ρ−1
s (t)es, (7.11)

where ρs(t) = diag{ρp1(t), ρp2(t), ρp3(t), ρηφ(t), ρηθ(t), ρηψ(t)} ∈ R6×6, and design
the reference velocity vector vO,des : (−1, 1)6 × [t0,∞)→ R6, with:

vO,des(ξs, t) =
[
ṗO,des(ξs, t)
ωO,des(ξs, t)

]
= −gsJOr (xO)ρ−1

s (t)rs(ξs)εs(ξs)

= −gsJOr (ρs(t)ξs + xj,j′(t))ρ−1
s (t)rs(ξs)εs(ξs), (7.12)

where gs is a positive scalar tunable gain and the signals εs : (−1, 1)6 → R6, rs :
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(−1, 1)6 → R6 are defined as:

εs(ξs) =


εs1(ξs1)

...
εs6(ξs6)

 =


ln
(

1 + ξs1
1− ξs1

)
...

ln
(

1 + ξs6
1− ξs6

)
 , (7.13)

rs(ξs) =diag
{[

∂εsm(ξsm)
∂ξsm

]
m∈{1,...,6}

}

=diag
{[

2
(1− ξ2

sm)

]
m∈{1,...,6}

}
. (7.14)

Step II-a. Define the velocity error vector ev ∈ R6 with

ev =


ev1

...
ev6

 = vO − vO,des(ξs, t), (7.15)

and select the corresponding positive performance functions ρvm : [t0,∞) → R>0
with ρvm(t) = (ρ0

vm − ρ
∞
vm)e−lvm (t−t0) + ρ∞vm , such that ρ0

vm > |evm(t0)|, lvm > 0 and
ρ∞vm ∈ (0, ρ0

vm), ∀m ∈ {1, . . . , 6}.
Step II-b. Define the normalized velocity errors ξv ∈ R6:

ξv =


ξv1

...
ξv6

 = ρ−1
v (t)ev, (7.16)

where ρv(t) = diag{[ρvm(t)]m∈{1,...,6}}, and design the distributed control protocol
for each agent i ∈ N as ui : (−1, 1)6 × (−1, 1)6 × [t0,∞)→ R6:

ui(ξs, ξv, t) = −cigv
(
J−1
Oi

(qi)
)T
ρ−1
v (t)rv(ξv)εv(ξv), (7.17)

where JOi the coupled agent-to-object Jacobian, gv is a positive scalar tunable
gain, and ci are predefined load sharing coefficients satisfying

∑
i∈N ci = 1 and

0 ≤ ci ≤ 1,∀i ∈ N . The signals εv : (−1, 1)6 → R6 and rv : (−1, 1)6 → R6×6 are
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defined as:

εv(ξv) =


εv1(ξv1)

...
εv6(ξv6)

 =


ln
(

1 + ξv1

1− ξv1

)
...

ln
(

1 + ξv6

1− ξv6

)
 , (7.18)

rv(ξv) =diag
{[

∂εvm(ξvm)
∂ξvm

]
m∈{1,...,6}

}

=diag
{[

2
(1− ξ2

vm)

]
m∈{1,...,6}

}
. (7.19)

The control law (7.17) can be written in vector form:

ū(ξs, ξv, t) =


u1(ξs, ξv, t)

...
uN (ξs, ξv, t)

 = U j
′

j

=− CgG∗(q)ρ−1
v (t)rv(ξv)εv(ξv), (7.20)

where G∗(q) as in (4.42), Cg = gvdiag{[ciI6]i∈N } ∈ R6N×6N , and the notation U j
′

j

stands for the transition from πj to πj′ .
The aforementioned control protocol for the transition πj

T−→ πj′ is summarized
in Algorithm 1.

Algorithm 1 Transition Algorithm

1: Compute trajectory xj,j′(t) associated to πj
T−→ πj′

2: Compute pose error es = xO − xj,j′(t)
3: Define pose performance functions ρs(t)
4: Define the pose normalized error ξs = ρ−1

s (t)es
5: Define reference velocity vO,des(ξs, t)
6: Compute velocity error ev = vO − vO,des(ξs, t)
7: Define velocity performance functions ρv(t)
8: Define the velocity normalized error ξv = ρ−1

v (t)ev
9: Compute distributed control laws ui(ξs, ξv, t), i ∈ N

Remark 7.1. Notice by (7.12) and (7.17) that the proposed control protocol is
distributed in the sense that each agent needs feedback only from the state of the
object’s center of mass, which can be obtained by the coupled kinematics. The param-
eters needed for the computation of ρpk(t), ρη`(t), ρvm(t),∀k ∈ {1, 2, 3}, ` ∈ {φ, θ, ψ},
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m ∈ {1, . . . , 6} as well as ci, gs, gv and ηj,j′(t), i ∈ N , can be transmitted off-line
to the agents. Moreover, the proposed control law does not incorporate any prior
knowledge of the model nonlinearities/disturbances or force/torque measurements
at the contact points. Furthermore, the proposed methodology results in a low
complexity design. Notice that no hard calculations (neither analytic nor numerical)
are required to output the proposed control signal, thus making its distributed
implementation straightforward.

Remark 7.2. Similarly to (4.42), we can also guarantee internal force regulation
by including in (7.20) a vector of desired internal forces fint,d ∈ R6N that belongs
to the nullspace of GT , i.e., fint,d = (I6N − 1

NG
∗(q)GT (q))f̂int,d, where f̂int,d is a

constant vector that can be transmitted off-line to the agents.

The next theorem summarizes the results of this section.

Theorem 7.1. Consider N agents rigidly grasping an object with unknown coupled
dynamics (7.3) and A(q(t0)) ∈ πj , j ∈ {1, . . . , R}. Then, the distributed control
protocol (7.10)-(7.19) guarantees that πj

T−→ πj′ with time duration δtj,j′ and all
closed loop signals being bounded, and thus establishes a transition relation between
πj and πj′ for the coupled object-agents system, according to Definition 7.2.

Proof. By following the proof of Theorem 4.2, we conclude that ξs(t) ∈ (−1, 1)6,
ξv(t) ∈ (−1, 1)6, ∀t ∈ R≥0. Therefore, it holds that |esm(t)| < ρsm(t),∀m ∈
{1, . . . , 6} and thus |epk(t)| < l0,∀p ∈ {1, 2, 3}, t ∈ [t0,∞), since ρ0

pk
= l0,∀k ∈

{1, 2, 3}. Therefore, pO(q(t)) ∈ B(pj,j′(t), l0),∀t ≥ t0 and, consequently, pO(q(t0 +
δtj,j′)) ∈ B(pcπj′ , l0), since pj,j′(t0 + δtj,j′) = pcπj′ . Moreover, since pO(q(t)) ∈
B(pj,j′(t), l0), we deduce that B(pO(q(t)), L̂) ⊂ B(pj,j′(t), l0 + L̂) and invoking (7.4)
and (7.5), we conclude that ps ∈ πj ∪πj′ ,∀t ∈ [t0, t0 +δtj,j′ ] ⊂ [t0,∞), and therefore
a transition relation with time duration δtj,j′ is successfully established. Finally, since
ρ0
ηθ

= ρηθ (t0) = π
2−θ

∗ and |eηθ (t)| < ρηθ (t) ≤ ρηθ (t0), |θj,j′(t)| < θ∗,∀t ∈ [t0,∞), we
conclude that |θO(t)| < π

2 ,∀t ∈ [t0,∞), ensuring thus the representation singularity-
free transition πj

T−→ πj′ .

High-Level Plan Generation

The second part of the proposed solution is the derivation of a high-level plan that
satisfies the given MITL formula φ and can be generated using standard techniques
from automata-based formal verification methodologies. Thanks to our proposed
control law that allows the transition πj

T−→ πj′ for all πj ∈ Π with πj′ ∈ D(πj)
in a predefined time interval δtj,j′ , we can abstract the motion of the coupled
object-agents system as a finite weighted transition system (WTS) [38]

T = {Π,Π0,
T−→,AP,L, γ}, (7.21)

where
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• Π is the set of states defined in Section 7.2.1,

• Π0 ⊂ Π is a set of initial states,

• T−→⊆ Π×Π is a transition relation according to Definition 7.2.

• AP and L are the atomic propositions and the labeling function, respectively,
as defined in Section 7.2.1, and

• γ : ( T−→)→ R≥0 is a map that assigns to each transition its time duration, i.e.,
γ(πj

T−→ πj′) = δtj,j′ .

Therefore, by designing the switching protocol Urj+1
rj (t) from (7.20):

Urj+1
rj (t) = −CgG∗(q(t))ρ−1

v (t)rv(ξv(t))εv(ξv(t)),∀t ∈ [tj , tj + δtrj ,rj+1), (7.22)

j ∈ N, with (i) t1 = 0, (ii) tj+1 = tj + δtrj ,rj+1 and (iii) rj ∈ {1, . . . , R}, ∀j ∈ N, we
can define the timed run of the WTS as the infinite sequence r = (πr1 , t1)(πr2 , t2) . . . ,
where πr1 ∈ Π0 with A(q(0)) ∈ πr1 , πrj ∈ Π, rj ∈ {1, . . . , R} and tj are the corre-
sponding time stamps such that A(q(tj)) ∈ πrj ,∀j ∈ N. Every timed run r generates
the timed word w(r) = (L(πr1), t1)(L(πr2), t2) . . . over AP where L(πrj ), j ∈ N, is
the subset of the atomic propositions AP that are true when A(q(tj)) ∈ πrj .

Figure 7.5: The aerial robots employed in the simulation rigidly grasping an object,
with the frames {Bi}, {Ei}, {O}, i ∈ N = {1, 2}.

The given MITL formula φ is translated into a Timed Büchi Automaton Atφ
[39] and the product Ap = T ⊗ Atφ is built [38]. The projection of the accepting
runs of Ap onto T provides a timed run rφ of T that satisfies φ; rφ has the form
rφ = (πr1 , t1)(πr2 , t2) . . . , i.e., an infinite1 sequence of regions πrj to be visited
at specific time instants tj (i.e., A(q(tj)) ∈ πrj ) with t1 = 0 and tj+1 = tj +
δtrj ,rj+1 , rj ∈ {1, . . . , R},∀j ∈ N. More details on the technique are beyond the
scope of this work and the reader is referred to [38, 39, 172].

The execution of rφ = (πr1 , t1)(πr2 , t2) . . . produces a trajectory q(t), t ∈ R≥0,
with timed sequence βφ = (q(t1), t1)
(q(t2), t2) . . . , with A(q(tj)) ∈ πrj ,∀j ∈ N. Following Definition 7.3, βφ has the timed

1It can be proven that if such a run exists, then there also exists a run that can be always
represented as a finite prefix followed by infinite repetitions of a finite suffix [38].
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(a)
(b)

Figure 7.6: Illustration of the initial workspace and pose of the system object-agents
in the V-REP environment (a) and in top view (b). The red cells imply obstacle regions
whereas the green cells are the goal ones.

behavior σβφ = (σ1, t1)(σ2, t2) . . . with σj ∈ L(πrj ), forA(q(tj)) ∈ πrj ,∀j ∈ N. Since
all πrj belong to rφ,∀j ∈ N, the latter implies that σβφ |= φ and therefore that βφ
satisfies φ. The aforementioned discussion is summarized as follows:

Theorem 7.2. The execution of rφ = (πr1 , t1)(πr2 , t2) . . . of T that satisfies φ
guarantees a timed behavior σβφ of the coupled object-agents system that yields the
satisfaction of φ and provides, therefore, a solution to Problem 7.1.

7.2.3 Simulation Results

The validity of the proposed framework is verified through a simulation study in the
Virtual Robot Experimentation Platform (V-REP) [109]. We consider a rectangular
rigid body of dimensions 0.025×0.2×0.025 m3 representing the object that is rigidly
grasped by two agents. Each agent i ∈ N = {1, 2} consists of a quadrotor base
{Bi} and a robotic arm of two degrees of freedom αi1 , αi2 ∈ [−π2 ,

π
2 ], as depicted

in Fig. 7.5. The states of the agents are taken as qi = [pTBi , η
T
Bi
, αi1 , αi2 ]T ∈ R8

and the control inputs as τi = [fTBi , µ
T
Bi
, τα1 , τα2 ]T , i ∈ {1, 2}. We consider that

the quadrotor is fully actuated, as mentioned in Section 7.2.1, and there exists an
embedded algorithm that translates the generalized force λBi = [fTBi , µ

T
Bi

]T to the
actual motor inputs.

The initial conditions of the system are taken such that pO(0) = [0, 0, 1.5]Tm, ηO(0)
= [0, 0, 0]T r. The workspace is partitioned into R = 16 regions, with L̂ = 0.75 m
and l0 = 0.5 m. Fig. 7.6 illustrates the aforementioned setup at t = 0, from which
it can be deduced that A(q(0)) ∈ π1. We further define the atomic propositions
AP = {“green1”, “green2”, “red”, “obs”}, representing goal (“green1”, “green2”) and
obstacle (‘obs”) regions with L(π5) = {“green1”},L(π14) = {“green2”},L(π6) =
L(π10) = {“obs”} and L(πj) = ∅, for the remaining regions.
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We consider the MITL formula

φ = (�[0,∞)¬“obs”) ∧ ♦[0,60](“green1” ∧ ♦[0,24]“green2”)

, which describes the following behavior: the coupled system

1. must always avoid the obstacle regions,

2. must visit the first green region in the first 60 seconds and after that visit the
second green region in the next 24 seconds.

By following the procedure described in Section 7.2.2, we obtain the accepting timed
run

rφ =(πr1 , t1)(πr2 , t2) · · · = (π1, 0)(π2, 6)(π3, 12)(π4, 18)(π5, 24)(π12, 30)(π13, 36)
(π14, 42)(π11, 48)(π12, 54)(π5, 60).

Regarding each transition πrj
T−→ πrj+1 , j ∈ {1, . . . , 10}, we choose δtrj ,rj′ = 6 s,

prj ,rj′ (t) as in (7.6) and ηrj ,rj′ (t) = [0, 0, π4 sin(π3 (t−trj ))]T 2, where trj = jδtrj ,rj′ =
6j plays the role of t0 for each transition. Regarding the performance function
parameters, we choose ρ0

pk
= ρpk(trj ) = l0 = 0.5m, lpk = 0.5, ρ∞pk = lim

t→∞
ρpk(t) =

0.1 m,∀k ∈ {1, 2, 3}, ρ0
η`

= ρη`(trj ) = π
2 r, lη` = 0.5, ρ∞η` = lim

t→∞
ρη`(t) = π

12 r, ∀` ∈
{φ, θ, ψ}, ρ0

vm = ρvm(trj ) = 2|evm(trj )|+0.5, lvm = 0.5 and ρ∞vm = lim
t→∞

ρvm(t) = 0.1,
m ∈ {1, . . . , 6}, j ∈ {1, . . . , 10}. The two agents contribute equally to the task by
choosing c1 = c2 = 0.5. Finally, the control gains are chosen as gs = 1, gv = 10.

The simulation results are depicted in Figs. 7.7-7.10. More specifically, Fig. 7.7
depicts the timed transitions of the coupled object-agents system, from which it
can be deduced that pO(t) ∈ B(prj ,rj′ , l0) and therefore ps ∈ πrj ∪ πrj′ , ∀ps ∈
Sq, j ∈ {1, . . . , 10}. Moreover, Fig. 7.8 and 7.9 illustrate the errors es(t) and ev(t)
along with the performance functions ρs(t), ρv(t), respectively, for all the transitions
πrj → πrj′ , j ∈ {1, . . . , 10}. Finally, the resulted control inputs τ1, τ2 for the two
agents are shown in Fig. 7.10. The aforementioned simulation paradigm is illustrated
in the accompanying video.

7.3 Motion and Cooperative Transportation Planning for
Multi-Agent Systems under Temporal Logic Formulas

7.3.1 System Model and Problem Formulation
Consider N > 1 robotic agents operating in a workspaceW with M > 0 objects;W is
a bounded open ball in 3D space, i.e.,W := B̊(0, r0) = {p ∈ R3 s.t. ‖p‖ < r0}, where

2Note that the nature of the quadrotors makes the whole system underactuated and values
φrj ,rj′ (t), θrj ,rj′ (t) 6= 0 are not possible to be achieved without interfering with pO(t).
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(a)

(b) (c)
Figure 7.7: (a): The overall desired object trajectory (with red), the actual object
trajectory (with black), the domain specified by B(prj ,rj′ (t), l0), ∀j ∈ {1, . . . , 10} (with
green), and the domain specified by B(pO(t), L̂) (with blue), for t ∈ [0, 60] s. (b), (c):
Illustration of the system at the final region at t = 60s in the V-REP environment
along with the ball B(pO(60), L̂). Since pO ∈ B(prj ,rj′ (t), l0), the desired timed run is
successfully executed.

r0 ∈ R>0 is the radius ofW . The objects are represented by rigid bodies whereas the
robotic agents are fully actuated and consist of a fully actuated holonomic moving
part (i.e., mobile base) and a robotic arm, having, therefore, access to the entire
workspace. Within W there exist K > 1 smaller spheres around points of interest,
which are described by πk := B(pπk , rπk) = {p ∈ R3 s.t. ‖p − pπk‖ ≤ rπk}, where
pπk ∈ R3 is the center and rπk ∈ R>0 the radius of πk. We denote the set of all πk
as Π := {π1, . . . , πK}. Moreover, we introduce disjoint sets of atomic propositions
Ψi,ΨO

j , expressed as boolean variables, that represent services provided to agent
i ∈ N and object j ∈ M in Π. The services provided at each region πk are given
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Figure 7.8: The pose errors es(t) (with blue) along with the performance functions
ρs(t) (with red) (in m,m,m, r, r, r, respectively).

by the labeling functions Li : Π→ 2Ψi ,LOj : Π→ 2ΨOj , which assign to each region
πk, k ∈ K, the subset of services Ψi and ΨO

j , respectively, that can be provided in that
region to agent i ∈ N = {1, . . . , N} and object j ∈ M = {1, . . . ,M}, respectively.
In addition, we consider that the agents and the object are initially (t = 0) in the
regions of interest πinit(i), πinitO(j), where the functions init : N → K = {1, . . . ,K},
initO :M→K specify the initial region indices. We denote by {Ei}, {O} the robotic
arms’ end-effector and object’s center of mass frames, respectively; {I} corresponds
to an inertial frame of reference. In the following, we present the modeling of the
coupled kinematics and dynamics of the object and the agents.

We denote by qi, q̇i ∈ Rni , with ni ∈ N,∀i ∈ N , the generalized joint-space
variables and their time derivatives for agent i. The overall joint configuration is
then q := [q>1 , . . . , q>N ]>, q̇ := [q̇>1 , . . . , q̇>N ]> ∈ Rn, with n :=

∑
i∈N ni. In addition,

the inertial position and Euler-angle orientation of the ith end-effector, denoted by
pi and ηi, respectively, expressed in an inertial reference frame, can be derived by the
forward kinematics and are smooth functions of qi, i.e. pi : Rni → R3, ηi : Rni → T.
The generalized velocity of each agent’s end-effector vi := [ṗ>i , ω>i ]> ∈ R6, can be
considered as a transformed state through the differential kinematics vi = Ji(qi)q̇i
[26], where Ji : Rni → R6×ni is a smooth function representing the geometric
Jacobian matrix, ∀i ∈ N [26]. The matrix inverse of Ji is well defined in the
set away from kinematic singularities [26], which we define as Si := {qi ∈ Rni :
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Figure 7.9: The velocity errors ev(t) (with blue) along with the performance functions
ρv(t) (with red) (in m/s,m/s,m/s, r/s, r/s, r/s, respectively).

det(Ji(qi)[Ji(qi)]>) > 0}, ∀i ∈ N .
The differential equation describing the task-space dynamics of each agent is

[26]:

Mi(qi)v̇i + Ci(qi, q̇i)vi + gi(qi) = ui − fi, (7.23a)

with the standard dynamic terms (see previous chapters), which are well-defined in
the set Si, away from kinematic singularities. Avoidance of such configurations is
not explicitly taken account in this section. Note, however, that the agents’ tasks
consist of navigating as well as cooperatively transporting the objects to predefined
points in the workspace. This along with the fact that the agents consist of fully
actuated moving bases imposes a kinematic redundancy, which can be exploited to
avoid kinematic singularities.

We consider that each agent i, for a given qi, covers a spherical region Ai :
Rni ⇒ R3 of constant radius ri ∈ R>0 that bounds its volume for that given qi, i.e.,
Ai(qi) := B(ci(qi), ri), where ci : Rni → R3 is the center of the spherical region (a
point on the robotic arm), ∀i ∈ N ; Ai can be obtained by considering the smallest
sphere that covers the workspace of the robotic arm, extended with the mobile base
part. Moreover, we consider that the agents have specific power capabilities, which
for simplicity, we match to positive integers ζi > 0, i ∈ N , via an analogous relation.



7.3. Motion and Cooperative Transportation Planning for Multi-Agent Systems under
Temporal Logic Formulas 161

(a) The resulting control inputs τ1(t) (in N , Nm, and Nm, respectively).

(b) The resulting control inputs τ2(t) (in N , Nm, and Nm, respectively)
Figure 7.10: The resulting control inputs τi = [fTBi , µ

T
Bi
, ταi,1 , ταi,2 ] for i = 1 and

i = 2.
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Regarding the objects, we denote by xOj := [(pOj )>, (ηOj )>]> ∈ M, vOj :=
[(ṗOj )>, (ωOj )>]> ∈ R12, ∀j ∈ M, the pose (with pOj being the position of the
center of mass with respect to (and expressed in) an inertial reference frame, and
ηOj := [ηOj,1, ηOj,2, ηOj,3]> denoting the extrinsic Euler angles) and generalized velocity
of the jth object’s center of mass, which is considered as the object’s state. The
object dynamic equations are given by the standard Newton-Euler form (see previous
chapters):

ẋOj = JOj (xOj )vOj , (7.24a)
MO(xOj )v̇Oj + CO(xOj , vOj )vOj + gO(xOj ) = fOj , (7.24b)

where JOj (xOj ) represents here the representation Jacobian matrix that is only
defined in the subset of M that does not include the configurations where the pitch
angle ηOj,2 is ±π2 , namely, representation singularities, i.e., JOj : SOj → R6×6, with
SOj := {xOj ∈M : |ηOj,2| < π

2 }, ∀j ∈M.
Similarly to the agents, each object’s volume is represented by the spherical set

Oj : R3 ⇒ R3 of a constant radius rOj ∈ R>0, i.e., Oj(xOj ) := B(xOj , rOj ), ∀j ∈M.
Next, we provide the coupled dynamics between an object j ∈M and a subset

T ⊆ N of agents that grasp it rigidly (see Fig. 7.1). Although the derivation of the
coupled dynamics is identical to the previous chapters, we present it here due to
the slight change of notation. In view of Fig. 7.1, one concludes that the pose of the
agents and the object’s center of mass are related as

pi(qi) = pOj +Ri(qi)pEiEi/Oj , (7.25a)
ηi(qi) = ηOj + ηEi/Oj , (7.25b)

∀i ∈ T , where Ri : Rni → SO(3) is the rotation matrix from {I} to the ith agent’s
end-effector {Ei}, and pEiEi/Oj , ηEi/Oj are the constant distance and orientation offset
between {O} and {Ei}, respectively. Following (7.25), along with the fact that, due
to the grasping rigidity, it holds that ωi = ωOj ,∀i ∈ T , one obtains

vi = JOi,j(qi)vOj , (7.26)

where JOi,j : Rni → R6×6 is the object-to-agent Jacobian matrix, with

JOi,j(x) :=
[

I3 −S(Ri(x)pEiEi/Oj )
03×3 I3

]
,∀x ∈ Rni ,

which is always full-rank.
The agent task-space dynamics (7.23) can be written in vector form as:

MT (qT )v̇T + CT (qT , q̇T )vT + gT (qT ) = uT − fT , (7.27)

where qT := [q>i ]>i∈T , q̇T := [q̇>i ]>i∈T , vT := [v>i ]>i∈T , gT (qT ) :=
[
[gi(qi)]>

]>
i∈T

, fT :=
[f>i ]>i∈T and MT (qT ) := diag{[Mi(qi)]i∈T }, CT (qT , q̇T ) := diag{[Ci(qi, q̇i)]i∈T }.
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The kineto-statics duality along with the grasp rigidity suggest that the force fOj
acting on the object’s center of mass and the generalized forces fi, i ∈ T , exerted by
the agents at the grasping points, are related through:

fOj = [GT ,j(qT )]>fT , (7.28)

where GT ,j : RnT → R6N×6, with GT ,j(qT ) :=
[
[JOi,j(qi)]>

]>
i∈T

is the grasp matrix,
and nT :=

∑
i∈T ni. By combining (7.28) with (7.24), (7.27), and (7.25) we obtain

the coupled dynamics

M̃T ,j(xT ,j)v̇Oj + C̃T ,j(xT ,j)vOj + g̃T ,j(xT ,j) = [GT ,j(qT )]>uT , (7.29)

where

M̃T ,j(xT ,j) := MO(xOj ) + [GT ,j(qT )]>MT (qT )GT ,j(qT )

C̃T ,j(xT ,j) := CO(xOj , vOj ) + [GT ,j(qT )]>MT (qT )ĠT ,j(qT )

+ [GT ,j(qT )]>CT (qT , q̇T )GT ,j(qT )

g̃T ,j(xT ,j) := gO(xOj ) + [GT ,j(qT )]>gT (qT ).

and xT ,j is the overall state xT ,j := [q>T , q̇>T , (xOj )>, (vOj )>]> ∈ R2nT +6 ×M. Note
that the aforementioned coupled terms are defined only when qi ∈ Si ⊂ Rni ,∀i ∈ T .
We also use the following Lemma from Chapter 4 that is necessary for the following
analysis.

Lemma 7.1. The matrices Bi(qi) and M̃T ,j(xT ,j) are symmetric and positive
definite and the matrices Ḃi(qi)− 2Ni(qi, q̇i) and ˙̃

MT ,j(xT ,j)− 2C̃T ,j(xT ,j) are skew
symmetric, ∀i ∈ N , j ∈M, T ⊆ N .

Regarding the volume of the coupled agents-object system, we denote by
AOT ,j : R3 ⇒ R3 the sphere centered at pOj with constant radius rT ,j ∈ R>0,
i.e., AOT ,j(pOj ) := B(pOj , rT ,j), which is large enough to cover the volume of the
coupled system in all configurations qT 3. This conservative formulation emanates
from the sphere-world restriction of the multi-agent navigation function framework
[36, 114]. In order to take into account other spaces, ideas from [174] could be
employed or extensions of the respective works of [35], [175] to the multi-agent case
could be developed.

Moreover, in order to take into account the introduced agents’ power capabilities
ζi, i ∈ N , we consider a function Λ ∈ {>,⊥} that outputs whether the agents that
grasp an object are able to transport the object, based on their power capabilities. For
instance, Λ(mO

j , ζT ) = >, where mO
j ∈ R>0 is the mass of object j and ζT := [ζi]>i∈T ,

implies that the agents T have sufficient power capabilities to cooperatively transport
object j.

3rT ,j can be chosen as the largest distance of the object’s center of mass to a point in the
agents’ volume over all possible qT (see previous section)
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Problem Formulation

In this subsection, the problem formulation is provided. We first introduce some
preliminary required notation. We define the boolean functions AGi,j : Rni ×M→
{>,⊥}, i ∈ N , j ∈ M, to denote whether agent i ∈ N rigidly grasps an object
j ∈M at a given configuration qi, x

O
j ; We also define AGi,0 : Rni ×MM → {>,⊥},

to denote that agent i does not grasp any objects, i.e., AGi,j(qi, xOj ) = ⊥,∀j ∈
M ⇔ AGi,0(qi, xO) = >, ∀i ∈ N , where xO := [(xOj )>]>j∈M ∈ MM . Note also that
AGi,`(qi, xO` ) = >, ` ∈M⇔ AGi,j(qi, xOj ) = ⊥,∀j ∈M\{`}, i.e., agent i can grasp
at most one object at a time.

In addition, we use the boolean functions Ci,l : Rni+nl → {⊥,>}, Ci,Oj : Rni ×
M→ {⊥,>}, COj,O` : M2 → {⊥,>}, to denote collision between agents i, l ∈ N , i 6=
l, agent i ∈ N and object j ∈M and objects j, ` ∈M, j 6= `, respectively.

We also assume the existence of a procedure Ps that outputs whether or not a
set of non-intersecting spheres fits in a larger sphere as well as possible positions
of the spheres in the case they fit. More specifically, given a region of interest πk
and a number Ñ ∈ N of sphere radii (of agents and/or objects) the procedure can
be seen as a function Ps := [Ps,0,P>s,1]>, where Ps,0 : RÑ+1

≥0 → {>,⊥} outputs
whether the spheres fit in the region πk whereas Ps,1 provides possible configurations
of the agents and the objects or 0 in case the spheres do not fit. For instance,
Ps,0(rπ2 , r1, r3, r

O
1 , r

O
5 ) determines whether the agents 1, 3 and the objects 1, 5 fit in

region π2, without colliding with each other; (q1, q3, x
O
1 , x

O
5 ) = Ps,1(rπ2 , r1, r3, r

O
1 , r

O
5 )

provides a set of configurations such that A1(q1),A3(q3),O1(xO1 ),O5(xO5 ) ⊂ π2 and
C1,3(q1, q3) = CO1,O5(xO1 , xO5 ) = Ci,Oj (qi, xOj ) = ⊥,∀(i, j) ∈ {1, 3} × {1, 5}. The
problem of finding an algorithm Ps is a special case of the sphere packing problem
[176]. Note, however, that we are not interested in finding the maximum number of
spheres that can be packed in a larger sphere but, rather, in the simpler problem of
determining whether a set of spheres can be packed in a larger sphere.

The following definitions address the transitions of the agents and the objects
between the regions of interest.

Definition 7.5. (Transition) Consider that Ai(qi(t0)) ⊂ πk, for some i ∈ N , k ∈
K, t0 ∈ R≥0, and Ci,l(qi(t0), ql(t0)) = Ci,Oj (qj(t0), xOj (t0)) = ⊥,∀l ∈ N\{i}, j ∈ M.
Then, there exists a transition for agent i from region πk to πk′ , k′ ∈ K, denoted
as πk →i πk′ , if there exists a finite tf ≥ t0 and a bounded feedback control
trajectory ui such that Ai(qi(tf )) ⊂ πk′ , Ci,l(qi(t), ql(t)) = Ci,Oj (qi(t), xOj (t)) = ⊥,
and Ai(qi(t)) ∩ πm = ∅, ∀t ∈ [t0, tf ], l ∈ N\{i}, j ∈M,m ∈ K\{k, k′}.

Definition 7.6. (Grasping) Consider that Ai(qi(t0)) ⊂ πk, Oj(xOj (t0)) ⊂ πk,
k ∈ K for some i ∈ N , j ∈M, t0 ∈ R≥0, with AGi,0(qi(t0), xO(t0)) = >, and

1. Ci,l(qi(t0), ql(t0)) = Ci,O
j′

(qi(t0), xOj′(t0)) = ⊥,∀l ∈ N\{i}, j′ ∈M,

2. Ci′,Oj (qi′(t0), xOj (t0)) = COj,O`(xOj (t0), xO` (t0)) = ⊥,∀i′ ∈ N , ` ∈M\{j}.
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Then, agent i grasps object j, denoted as i g−→ j, if there exists a finite tf ≥ t0 and
a bounded control trajectory ui such that AGi,j(qi(tf ), xOj (tf )) = >, Ai(qi(t)) ⊂ πk,
Oj(xOj (t)) ⊂ πk, k ∈ K with

1. Ci,l(qi(t), ql(t)) = Ci,O`(qi(t), xO` (t)) = ⊥,

2. Cl,Oj (ql(t), xOj (t)) = COj,O`(xOj (t), xO` (t)) = ⊥,

∀t ∈ [t0, tf ], l ∈ N\{i}, ` ∈M\{j}.

Definition 7.7. (Releasing) Consider that Ai(qi(t0)) ⊂ πk, Oj(xOj (t0)) ⊂ πk,
k ∈ K for some i ∈ N , j ∈M, t0 ∈ R≥0, with AGi,j(qi(t0), xOj (t0)) = >, and

1. Ci,l(qi(t0), ql(t0)) = Ci,O`(qi(t0), xO` (t0)) = ⊥,

2. Cl,Oj (ql(t0), xOj (t0)) = COj,O`(xOj (t0), xO` (t0)) = ⊥,

∀l ∈ N\{i}, ` ∈ M\{j}. Then, agent i releases object j, denoted as i
r−→ j,

if there exists a finite tf ≥ t0 and a bounded control trajectory ui such that
AGi,0(qi(tf ), xO(tf )) = >, Ai(qi(t)) ⊂ πk, Oj(xOj (t)) ⊂ πk, k ∈ K with

1. Ci,l(qi(t), ql(t)) = Ci,O`(qi(t), xO` (t)) = ⊥,

2. Cl,Oj (ql(t), xOj (t)) = COj,O`(xOj (t), xO` (t)) = ⊥,

∀t ∈ [t0, tf ], l ∈ N\{i}, ` ∈M\{j}.

Definition 7.8. (Transportation) Consider a nonempty subset of agents T ⊆ N
with Ai(qi(t0)) ⊂ πk, ∀i ∈ T , and Oj(xOj (t0)) ⊂ πk, for some j ∈M, k ∈ K, t0 ≥ 0,
with AGi,j(qi(t0), xOj (t0)) = >, ∀i ∈ T and

1. Ci,l(qi(t0), ql(t0)) = Ci,O`(qi(t0), xO` (t0)) = ⊥,

2. Cz,Oj (ql(t0), xOj (t0)) = COj,O`(xOj (t0), xO` (t0)) = ⊥,

∀i, l ∈ N , with i 6= l, ` ∈M\{j}, z ∈ N\T . Then, the team of agents T transports
the object j from region πk to region πk′ , k

′ ∈ K, denoted as πk
T−→T ,j πk′ , if there

exists a finite tf ≥ t0 and bounded control laws ui, i ∈ T , such that Ai(qi(tf )) ⊂
πk′ ,∀i ∈ T ,Oj(xOj (tf )) ⊂ πk′ , AGi,j(qi(t), xOj (t)) = >, and

1. Ci,l(qi(t), ql(t)) = Ci,O`(qi(t), xO` (t)) = ⊥,

2. Cz,Oj (ql(t), xOj (t)) = COj,O`(xOj (t), xO` (t)) = ⊥,

and AOT ,j(pOj (t)) ∩ πm = ∅, ∀t ∈ [t0, tf ], i, l ∈ N , with i 6= l, ` ∈ M\{j}, z ∈
N\T ,m ∈ K\{k, k′}.
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Loosely speaking, the aforementioned definitions correspond to specific actions of
the agents, namely transition, grasp, release, and transport. We do not define these
actions explicitly though, since we will employ directly designed continuous control
inputs ui, as will be seen later. Moreover, in the grasping/releasing definitions, we
have not incorporated explicitly collisions between the agent and the object to be
grasped/released other than the grasping point. Such collisions will be assumed to
be avoided in the next section.

Our goal is to control the multi-agent system such that the agents and the objects
obey a given specification over their atomic propositions Ψi,ΨO

j ,∀i ∈ N , j ∈ M.
Given the trajectories qi(t), xOj (t), t ∈ R≥0, of agent i and object j, respectively,
their corresponding behaviors are given by the infinite sequences

bi := (qi(t), σi) := (qi(ti,1), σi,1)(qi(ti,2), σi,2) . . . ,
bOj := (xOj (t), σOj ) := (xOj (tOj,1), σOj,1)(xOj (tOj,2), σOj,2) . . . ,

with ti,`+1 > ti,` ≥ 0, tOj,`+1 > tOj,` ≥ 0,∀` ∈ N, representing specific time stamps. The
sequences σi, σOj are the services provided to the agent and the object, respectively,
over their trajectories, i.e., σi,` ∈ 2Ψi , σOj,l ∈ 2ΨOj with Ai(qi(ti,`)) ⊂ πki,` , σi,` ∈
Li(πki,`) and Oj(xOj (tOj,l)) ⊂ πkOj,l , σ

O

j,l ∈ LOj (πkO
j,l

), ki,`, kOj,l ∈ K,∀`, l ∈ N, i ∈ N , j ∈
M, where Li and LOj are the previously defined labeling functions. The following
Lemma then follows:

Lemma 7.2. The behaviors bi, bOj satisfy formulas φi, φOj if σi |= φi and σOj |= φOj ,
respectively.

The control objectives are given as LTL formulas φi, φOj over Ψi,ΨO
j , respectively,

∀i ∈ N , j ∈M. The LTL formulas φi, φOj are satisfied if there exist behaviors bi, bOj
of agent i and object j that satisfy φi, φ

O
j . We are now ready to give a formal

problem statement:

Problem 7.2. Consider N robotic agents and M objects in W subject to the
dynamics (7.23) and (7.24), respectively, and

1. q̇i(0) = 0, vOj = 0, Ai(qi(0)) ⊂ πinit(i),Oj(xOj (0)) ⊂ πinitO(j), ∀i ∈ N , j ∈M,

2. Ci,l(qi(0), ql(0)) = COj,O`(xOj (0), xO` (0)) = Ci,Oj (qi(0), xO` (0)) = ⊥, ∀i, l ∈
N , i 6= l, j, ` ∈M, j 6= `.

Given the disjoint sets Ψi,ΨO
j , N LTL formulas φi over Ψi and M LTL formulas

φOj over ΨO
j , develop a control strategy that achieves behaviors bi, bOj which yield

the satisfaction of φi, φOj ,∀i ∈ N , j ∈M.

Note that it is implicit in the problem statement the fact that the agents/objects
starting in the same region can actually fit without colliding with each other.
Technically, it holds that Ps,0(rπk , [ri]i∈{i∈N :init(i)=k}, [rOj ]j∈{j∈M:initO(j)=k}) = >,
∀k ∈ K.
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7.3.2 Main Results
Continuous Control Design

The first ingredient of our solution is the development of feedback control laws that
establish agent transitions and object transportations as defined in Def. 7.5 and 7.8,
respectively. We do not focus on the grasping/releasing actions of Def. 7.6, 7.7 and
we refer to some existing methodologies that can derive the corresponding control
laws (e.g., [177],[178]).

Assume that the conditions of Problem 7.2 hold for some t0 ∈ R≥0, i.e., all
agents and objects are located in regions of interest with zero velocity. We design a
control law such that a subset of agents performs a transition between two regions
of interest and another subset of agents performs cooperative object transportation,
according to Def. 7.5 and 7.8, respectively. Let Z, T ,G,R ⊆ N denote disjoint
sets of agents corresponding to transition, transportation, grasping and releasing
actions, respectively, with |Z| + |T | + |G| + |R| ≤ |N | and Az(qz(t0)) ⊂ πkz ,
Aτ (qτ (t0)) ⊂ πkτ , Ag(qg(t0)) ⊂ πkg , Aρ(qρ(t0)) ⊂ πkρ , where kz, kτ , kg, kρ ∈ K,
∀z ∈ Z, τ ∈ T , g ∈ G, ρ ∈ R. Note that there might be idle agents in some regions,
not performing any actions, i.e., the set N\(Z ∪ V ∪ G ∪ Q) might not be empty.

More specifically, regarding the transportation actions, we consider that the set
T consists of T̄ disjoint teams of agents, with each team consisting of agents that
are in the same region of interest and aim to collaboratively transport an object,
i.e. T = T1 ∪ T2 ∪ . . . TT̄ , and Aτ (qτ (t0)) ⊂ πkTm ,∀τ ∈ Tm,m ∈ {1, . . . , T̄}, where
kTm ∈ K,∀m ∈ {1, . . . , T̄}. Let also S := {sT1 , sT2 , . . . , sTT̄ },X := {[xg]g∈G},Y :=
{[yρ]ρ∈R} ⊆ M be disjoint sets of objects to be transported, grasped, and released,
respectively. More specifically, each team Tm in the set T will transport cooperatively
object sTm , m ∈ {1, . . . , T̄}, each agent g ∈ G will grasp object xg ∈ X and each
agent ρ ∈ R will release object yρ ∈ Y . Then, suppose that the following conditions
also hold at t0:

• OsTm (xOsTm (t0)) ⊂ πkTm ,∀m ∈ {1, . . . , T̄}, Oxg (xOxg (t0)) ⊂ πkg ,∀g ∈ G,
Oyρ(xOyρ(t0)) ⊂ πkρ ,∀ρ ∈ R,

• AGρ,yρ(qρ(t0), xOyρ(t0)) = >,∀ρ ∈ R, AGz,0(qz(t0), xO(t0)) = >,∀z ∈ Z,
AGg,0(qg(t0), xO(t0)) = >,∀g ∈ G, AGτ,sTm (qτ (t0), xOsTm (t0)) = >, ∀τ ∈
Tm,m ∈ {1, . . . , T̄},

which mean, intuitively, that the objects sTm , xg, yρ to be transported, grasped,
released, are in the regions πkTm , πkg , πkρ , respectively, and there is also grasping
compliance with the corresponding agents. By also assuming that the agents do not
collide with each other or with the objects (except for the transportation/releasing
task agents), we guarantee that the conditions of Def. 7.5-7.8 hold.

In the following, we design uz and uτ such that πkz →z πk′z and πkTm
T−→Tm,sTm

πk′Tm
, with k′z, k

′
τm ∈ K,∀z ∈ Z,m ∈ {1, . . . , T̄}, assuming that (i) there exist

appropriate ug and uρ that guarantee g g−→ xg and ρ
r−→ yρ in πkg , πkρ , respectively,
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∀g ∈ G, ρ ∈ R and (ii) that the agents and objects fit in their respective goal regions,
i.e.,

Ps,0
(
rπk , [rz]z∈QZ,k , [rg]g∈QG,k , [rρ]ρ∈QR,k ,

[rTm,sTm ]m∈QT ,k , [rOxg ]g∈QG,k , [rOyρ ]ρ∈QR,k
)

= > (7.30)

∀k ∈ K, where we define the sets: QZ,k := {z ∈ Z : k′z = k},QG,k := {g ∈ G : kg =
k},QR,k := {ρ ∈ R : kr = k},QT ,k := {m ∈ {1, . . . , T̄} : k′Tm = k}, that correspond
to the indices of the agents and objects that are in region k ∈ K.

Example 7.1. As an example, consider N = 6 agents, N = {1, . . . , 6}, M = 3
objects, M = {1, 2, 3} in a workspace that contains K = 4 regions of interest,
K = {1, . . . , 4}. Let t0 = 0 and, according to Problem 7.2, take init(1) = init(5) =
1, init(2) = 2, init(3) = init(4) = 3, and init(6) = 4, i.e., agents 1 and 5 are in region
πinit(1) = πinit(5) = π1, agent 2 is in region πinit(2) = π2, agents 3 and 4 are in
region πinit(3) = πinit(4) = π3 and agent 6 is in region πinit(6) = π4. We also consider
initO(1) = 1, initO(2) = 2, initO(3) = 3 implying that the 3 objects are in regions
π1, π2 and π3, respectively. We assume that agents 1, 5 grasp objet 1, and agents 3, 4
grasp object 3, i.e., AG1,1(q1(0), xO1 (0)) = AG5,1(q5(0), xO1 (0)) = AG3,3(q3(0), xO3 (0))
= AG4,3(q4(0), xO4 (0)) = AG2,0(q2(0), xO(0)) = AG6,0(q6(0), xO(0)) = >. Agents 1
and 5 aim to cooperatively transport object 1 to π4, agent 2 aims to grasp object 2,
agents 3 and 4 aim to cooperatively transport object 3 to π1 and agent 6 aims to
perform a transition to region π2. Therefore, Z = {6}, T̄ = 2, T1 = {1, 5}, T2 = {3, 4},
T = T1 ∪T2 = {1, 5, 4, 3}, G = {2},R = ∅, sT1 = 1, sT2 = 2, S = {sT1 , sT2} = {1, 2},
X = {x2} = {2},Y = ∅. Moreover, the region indices kz, kτ , kg, kr, kTm , k′z, k′Tm , z ∈
Z = {6}, τ ∈ T = {1, 5, 4, 3}, g ∈ G = {2}, r ∈ R = ∅,m ∈ {1, 2}, take the form
k6 = 4, k1 = k5 = 1, k2 = 2, k3 = k4 = 3, kT1 = 1, kT3 = 3, k′6 = 2, k′T1

= 4, k′T2
= 1.

Finally, the actions that need to be performed by the agents are π1
T−→T1,1 π4, 2 g−→ 2,

π3
T−→T2,3 π1 and π4 → π2.

Next, for each region πk, we compute from Ps a set of configurations for the
agents and objects in this region. More specifically,

([q?z ]z∈QZ,k , [q?g ]g∈QG,k , [q?ρ]ρ∈QR,k , [xO?sTm ]m∈QT ,k , [xO?xg ]g∈QG,k , [xO?yρ ]ρ∈QR,k) =

Ps,1
(
rπk , [rz]z∈QZ,k , [rg]g∈QG,k , [rρ]ρ∈QR,k , [rTm,sTm ]m∈QT ,k , [rOxg ]g∈QG,k , [rOyρ ]ρ∈QR,k

)
,

where we have used the notation of (7.30). Hence, we now have the goal configurations
for the agents Z performing the transitions as well as agents T performing the
cooperative transportations.

Following Section 2.3.1, we define the error functions γz : RnZ → R≥0 with
γz(qz) := ‖qz − q?z‖2, ∀z ∈ Z, nZ :=

∑
z∈Z nz, and γTm : M→ R≥0 as γTm(xOsTm ) :=

‖pOsTm − p
O?

sTm
‖2, where pO?sTm is the position part of xO?sTm .
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Regarding the collision avoidance, we have the following collision functions:

βi,l(qi, ql) := ‖ci(qi)− cl(ql)‖2 − (ri + rl)2,∀i, l ∈ N\T , i 6= l,

βi,Oj (qi) := ‖ci(qi)− pOj ‖2 − (ri + rOj )2, ∀i ∈ N\T , j ∈M\S

βi,Tm(qi, xOsTm ) := ‖ci(qi)− pOsTm ‖
2 − (ri + rTm,sTm )2, ∀i ∈ N\T ,m ∈ {1, . . . , T̄},

βTm,T`(x
O
sTm

, xOsT`
) := ‖pOsTm − p

O
sT`
‖2 − (rTm,sTm + rT`,sT` )2, ∀m, ` ∈ {1, . . . , T̄},m 6= `,

βTm,Oj (x
O
sTm

) := ‖pOsTm − p
O
j ‖2 − (rTm,sTm + rOj )2, ∀m ∈ {1, . . . , T̄}, j ∈M\S,

βi,πk (qi) := ‖ci(qi)− pπk‖
2 − (ri + rπk )2,∀i ∈ Z, k ∈ K\{kz, k′z},

βTm,πk (xOsTm ) := ‖pOsTm − pπk‖
2 − (rTm,sTm + rπk )2, ∀m ∈ {1, . . . , T̄}, k ∈ K\{kTm , k

′
Tm},

βi,W(qi) := (r0 − ri)2 − ‖ci(qi)‖2,∀i ∈ N\T
βTm,W(xOsTm ) := (r0 − rTm,sTm )2 − ‖pOsTm ‖

2, ∀m ∈ {1, . . . , T̄},

that incorporate collisions among the navigating agents, the navigating agents and
the objects, the transportation agents, the transportation agents and the objects,
the navigating agents and the undesired regions, the transportation agents and
the undesired regions, the navigating agents and the workspace boundary, and
the transportation agents and the workspace boundary, respectively. Therefore, by
following the procedure described in Section 2.3.1, we can form the total obstacle
function G : RnZ ×M|S| → R≥0 and thus, define the navigation function [35, 36]
ϕ : RnZ ×M|S| → [0, 1] as

ϕ(qZ , xOS ) := γ(qZ , xOS )(
[γ(qZ , xOS )]κ +G(qZ , xOS )

) 1
κ

,

where xOS := [(xOsTm )>]>
m∈{1,...,T̄} ∈M|S|, γ(qZ , xOS ) :=

∑
z∈Z γz(qz) +

∑
m∈{1,...,T̄}

γTm(xOsTm ) and κ > 0 is a positive gain used to derive the proof correctness of ϕ
[35, 36]. Note that, a sufficient condition for avoidance of the undesired regions and
avoidance of collisions and singularities is ϕ(qZ , xOS ) < 1.

Next, we design the feedback control protocols uz : Rnz × Rnz → R6, uτ :
Sτ × SOsTm × R6, ∀z ∈ Z, τ ∈ Tm,m ∈ {1, . . . , T̄} as follows:

uz(qz, xOS , q̇z) = gqz (qz)−∇qzϕ(qZ , xOS )−Kz q̇z, (7.31a)

uτ (qτ , xOsTm , v
O

sTm
) = [JOτ,sTm (qτ )]−>

{
cτ

(
gO(xOsTm )−

[JOsTm (xOsTm )]>∇xOsTm
ϕ(qZ , xOS )− vOsTm

)}
+ gτ (qτ ), (7.31b)

where cτ are load sharing coefficients, with the properties cτ > 0, ∀τ ∈ Tm,∑
τ∈Tm cτ = 1, ∀m ∈ {1, . . . , T̄}, Kz = diag{kz} ∈ Rnz×nz , with kz > 0,∀z ∈ Z, is

a constant positive definite gain matrix. The proof of convergence of the closed loop
system is stated in the next Lemma.
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Lemma 7.3. Consider the sets of agent Z, T ,G,R and the set of objects S,X ,R in
their respective regions interest, as defined above, described by the dynamics (7.23),
(7.24), (7.29) at t0 > 0. Then, under the assumptions that: (i) the actions g g−→
xg, ρ

r−→ yρ are guaranteed, (ii) (7.30) holds and (iii) the robots and objects operate
in singularity-free (kinematic- and representation ones, respectively) configurations,
the control protocols (7.31) guarantee the existence of a tf > t0 such that πkz →z πk′z
and πkTm

T−→Tm,sTm πk′Tm
,∀z ∈ Z,m ∈ {1, . . . , T̄}, according to Def. 7.5 and 7.8,

respectively.

Proof. Define T̄ := {1, . . . , T̄} and, following the notation of Section 7.3.1, consider
the stacked vector states xTm,sTm := [q>Tm , q̇

>
Tm , (x

O
sTm

)>, (vOsTm )>]>,m ∈ T̄ , d :=
[q>Z , q̇>Z , [x>Tm,sTm ]>

m∈T̄ ]> as well as the domain: D := RnZ ×RnZ × ST1 × · · · × STT̄ ×
RnT × SOsT1 × · · · × SOsT

T̄
× R6|S|, where STm :=

∏
τ∈Tm Sτ ,∀m ∈ T̄ , and nT :=∑

m∈T̄
∑
τ∈Tm nτ . Consider now the candidate Lyapunov function V : D → R≥0,

with

V (d) =ϕ(qZ , xOS ) + 1
2
∑
z∈Z

q̇Tz Bz(qz)q̇z + 1
2
∑
m∈T̄

[vOsTm ]>M̃Tm,sTm (xTm,sTm )vOsTm .

Note that, since no collisions occur and the robots and objects have zero velocity
at t0, we conclude that V0 := V (d(t0)) = ϕ(qZ(t0), xOS (t0)) =: ϕ0 < 1, and hence
d(t0) ∈ D̃ := {d ∈ D : ϕ(qZ , xOS ) ≤ ϕ0 < 1}. By considering the closed loop system
∂
∂td = fcl(d) (An explicit expression for fcl can be obtained by combining (7.23),
(7.29), (7.31)), we can verify the locally Lipschitz property of fcl, and thus the
existence of a unique maximal solution d : [t0, tmax)→ D̃, for a finite time instant
tmax > t0. By differentiating V and substituting (7.23), (7.29), we obtain

V̇ =
∑
z∈Z

{
[∇qzϕ(qZ , xOS )]>q̇z + q̇>z

(
τz −Nz(qz, q̇z)q̇z − gqz (qz)

)
+ 1

2 q̇
>
z Ṁz(qz)q̇z

}
+
∑
m∈T̄

{
[∇xOsTm

ϕ(qZ , xOS )]>ẋOsTm + [vOsTm ]>
( ∑
τ∈Tm

[JOτ,sTm (qτ )]>uτ − gO(xOsTm )vOsTm

−
∑
τ∈Tm

[JOτ,sTm (qτ )]>gτ (qτ )− C̃Tm,sTm (xTm,sTm )
)

+ 1
2 [vOsTm ]> ˙̃

MTm,sTm (xTm,sTm )vOsTm
}
,

∀d ∈ D̃, where we have also used the fact that fz = 0,∀z ∈ Z, since the agents
performing transportation actions are not in contact with any objects (and there
are no collisions in D̃). By employing Lemma 7.1 as well as (7.24a), V̇ becomes:

V̇ =
∑
z∈Z

q̇>z

(
∇qzϕ(qZ , xOS ) + τz − gqz (qz)

)∑
m∈T̄

[vOsTm ]>
(

[JOsTm (xOsTm )]>∇xOsTm
ϕ(qZ , xOS )+

∑
τ∈Tm

[JOτ,sTm (qτ )]>uτ −
∑
τ∈Tm

[JOτ,sTm (qτ )]>gτ (qτ )− gO(xOsTm )
)
,
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and after substituting (7.31): V̇ = −
∑
z∈Z q̇zKz q̇z−

∑
m∈T̃ ‖v

O
sTm
‖2, ∀d ∈ D̃, which

is strictly negative unless q̇z = 0, vOsTm = 0,∀z ∈ Z,m ∈ T̃ . Since JOτ,sTm (qτ ) is always
non-singular, and Jτ (qτ (t)) has full-rank by assumption for the maximal solution,
∀τ ∈ Tm,m ∈ T̃ , the latter implies also that q̇τ = 0, ∀τ ∈ Tm,m ∈ T̃ . Hence,
V (d(t)) ≤ V0 < 1, ∀t ∈ [t0, tmax), which suggests that ϕ(qZ(t), xOS (t)) ≤ ϕ0 < 1
and d(t) ∈ D̃, ∀t ∈ [t0, tmax). Therefore, since D̃ is compact, the solution d(t) is
defined over the entire time horizon in D̃ [28], i.e. d : [t0,∞) → D̃. Moreover,
according to La Salle’s Invariance Principle [28], the system will converge to the
largest invariant set contained in the set {d ∈ D̃ : q̇z = 0, vOsTm = 0,∀z ∈ Z,m ∈ T̃ }.
In order for this set to be invariant, we require that q̈z = 0, v̇OsTm = 0, which, by
employing (7.31), (7.23), (7.29), and the assumption of non-singular JOsTm (xOsTm (t)),
∀t ∈ R≥0, implies that ∇qzϕ(qZ , xOS ) = 0, ∇xOsTm ϕ(qZ , xOS ) = 0, ∀z ∈ Z,m ∈ T̃ .
Since ϕ is a navigation function [36], this condition is true only at the destination
configurations (i.e., where γ(qZ , xOS ) = 0) and a set of isolated saddle points. By
choosing κ sufficiently large, the region of attraction of the saddle points is a set of
measure zero [35, 114]. Thus, the system converges to the destination configuration
from almost everywhere, i.e., ‖qz(t)− q?z‖ → 0 and ‖pOsTm (t)− pO?sTm‖ → 0. Therefore,
there exist finite time instants tfz , tfm > t0, such that Az(qz(tfz)) ⊂ πk′z and
Aτ (qτ (tfm)),OsTm (xOsTm (tfv)) ⊂ πk′Tm

, with inter-agent collision avoidance, ∀z ∈
Z, τ ∈ Tm,m ∈ T̃ . Since the actions g g−→ xg, ρ

r−→ yρ are also performed, we denote
as tfg , tfρ the times that these actions have been completed, g ∈ G, ρ ∈ R. Hence, by
setting tf := max{max

z∈Z
tfz ,max

m∈T̃
tfm ,max

g∈G
tfg ,max

ρ∈R
tfρ}, all the actions of all agents

will be completed at tf .

Remark 7.3. We could modify the dynamic model (7.24) by employing the physical
acceleration ẍOj instead of the generalized accelerations v̇Oj , j ∈M. In that way, we
would avoid using the term JOj and hence ensure that representation singularities
(when |ηOj,2| = π

2 ) do not affect our scheme. Note that the actual difference lies in
the use of η̇Oj instead of ωOj , j ∈ M. Feedback, however, of η̇Oj is not a realistic
assumption, since most sensors provide on-line measurements of the angular velocity
ωOj and hence, the conversion via JOj cannot be avoided.

Remark 7.4. The fact that we consider fully actuated holonomic mobile bases is
not restrictive, since a similar analysis can be performed for non-holonomic agents
(see [105]). Note also that in our analysis we do not take into account potential
collisions between agents that grasp and transport the same object, since we just
consider the bounded spherical volume of the system. This specification constitutes
part of our ongoing work.
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High-Level Plan Generation

The second part of the solution is the derivation of a high-level plan that satisfies the
given LTL formulas φi and φOj and can be generated by using standard techniques
from automata-based formal verification methodologies. Thanks to (i) the proposed
control laws that allow agent transitions and object transportations πk →i πk′ and
πk

T−→T ,j πk′ , respectively, and (ii) the off-the-self control laws that guarantee grasp
and release actions i g−→ j and i

r−→ j, we can abstract the behavior of the agents
using a finite transition system as presented in the sequel.

Definition 7.9. The coupled behavior of the overall system of all the N agents and
M objects is modeled by the transition system T S = (Πs,Πinit

s ,→s,AG,Ψ,L,Λ, Ps, χ),
where

1. Πs ⊂ Π̄ × Π̄O × ĀG is the set of states; Π̄ := Π1 × · · · × ΠN and Π̄O :=
ΠO

1 × · · · ×ΠO

M are the set of states-regions that the agents and the objects
can be at, with Πi = ΠO

j = Π,∀i ∈ N , j ∈ M; AG := AG1 × · · · × AGN is
the set of boolean grasping variables introduced in Section 7.3.1, with AGi :=
{AGi,0} ∪ {[AGi,j ]j∈M},∀i ∈ N . By defining π̄ := (πk1 , · · · , πkN ) , π̄O :=
(πkO1 , · · · , πkOM ), w̄ = (w1, · · · , wN ), with πki , πkOj ∈ Π (i.e., ki, kOj ∈ K,∀i ∈
N , j ∈ M) and wi ∈ AGi,∀i ∈ N , then the coupled state πs := (π̄, π̄O, w̄)
belongs to Πs, i.e., (π̄, π̄O, w̄) ∈ Πs if

a) Ps,0
(
rπk , [ri]i∈{i∈N :ki=k}, [rOj ]j∈{j∈M:kO

j
=k}

)
= >, i.e., the respective

agents and objects fit in the region, ∀k ∈ K,
b) ki = kOj for all i ∈ N , j ∈ M such that wi = AGi,j = >, i.e., an agent

must be in the same region with the object it grasps,

2. Πinit
s ⊂ Πs is the initial set of states at t = 0, which, owing to (i), satisfies the

conditions of Problem 7.2,

3. →s⊂ Πs × Πs is a transition relation defined as follows: given the states
πs, π̃s ∈ Π, with

πs :=(π̄, π̄O, w̄) := (πk1 , . . . , πkN , πkO1
, . . . , πkO

M
, w1, . . . , wN ),

π̃s :=(˜̄π, ˜̄πO, ˜̄w) := (π
k̃1
, . . . , π

k̃N
, π
k̃O1
, . . . , π

k̃O1
, w̃1, . . . , w̃N ), (7.32)

a transition πs →s π̃s occurs if all the following hold:

a) @i ∈ N , j ∈ M such that wi = AGi,j = >, w̃i = AGi,0 = >, (or
wi = AGi,0 = >, w̃i = AGi,j = >) and ki 6= k̃i, i.e., there are no
simultaneous grasp/release and navigation actions,
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b) @i ∈ N , j ∈ M such that wi = AGi,j = >, w̃i = AGi,0 = >, (or
wi = AGi,0 = >, w̃i = AGi,j = >) and ki = kOj 6= k̃i = k̃Oj , i.e., there are
no simultaneous grasp/release and transportation actions,

c) @i ∈ N , j, j′ ∈ M, with j 6= j′, such that wi = AGi,j = > and w̃i =
AGi,j′ = > (wi = AGi,j′ = > and w̃i = AGi,j′ = >), i.e., there are no
simultaneous grasp and release actions,

d) @j ∈M such that kOj 6= k̃Oj and wi 6= AGi,j ,∀i ∈ N ( or w̃i 6= AGi,j ,∀i ∈
N ), i.e., there is no transportation of a non-grasped object,

e) @j ∈ M, T ⊆ N such that kOj 6= k̃Oj and Λ(mO
j , ζT ) = ⊥, where wi =

w̃i = AGi,j = > ⇔ i ∈ T , i.e., the agents grasping an object are powerful
enough to transfer it,

4. Ψ := Ψ̄ ∪ Ψ̄O with Ψ̄ =
⋃
i∈N Ψi and Ψ̄O =

⋃
j∈MΨO

j , are the atomic
propositions of the agents and objects, respectively, as defined in Section 7.3.1.

5. L : Πs → 2Ψ is a labeling function defined as follows: Given a state πs as in
(7.32) and ψs :=

(⋃
i∈N ψi

)⋃(⋃
j∈M ψOj

)
with ψi ∈ 2Ψi , ψOj ∈ 2ΨOj , then

ψs ∈ L(πs) if ψi ∈ Li(πki) and ψOj ∈ LOj (πkO
j

),∀i ∈ N , j ∈M.

6. Λ and Ps as defined in Section 7.3.1.

7. χ : (→s)→ R≥0 is a function that assigns a cost to each transition πs →s π̃s.
This cost might be related to the distance of the agents’ regions in πs to
the ones in π̃s, combined with the cost efficiency of the agents involved in
transport tasks (according to ζi, i ∈ N ).

Next, we form the global LTL formula φ := (∧i∈Nφi) ∧ (∧j∈MφOj ) over the
set Ψ. Then, we translate φ to a Büchi Automaton BA and we build the product
T̃ S := T S ×BA. Using basic graph-search theory, we can find the accepting runs of
T̃ S that satisfy φ and minimize the total cost χ. These runs are directly projected
to a sequence of desired states to be visited in the T S. Although the semantics
of LTL are defined over infinite sequences of services, it can be proven that there
always exists a high-level plan that takes the form of a finite state sequence followed
by an infinite repetition of another finite state sequence. For more details on the
followed technique, the reader is referred to the related literature, e.g., [38].

Following the aforementioned methodology, we obtain a high-level plan as se-
quences of states and atomic propositions πpl := πs,1πs,2 . . . and ψpl := ψs,1ψs,1 . . . |=
φ, which minimizes the cost χ, with

πs,` := (π̄`, π̄O,`, w̄`) ∈ Πs,∀` ∈ N,

ψs,` :=
( ⋃
i∈N

ψi,`

)⋃( ⋃
j∈M

ψOj,`

)
∈ 2Ψ,L(πs,`),∀` ∈ N,

where
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• π̄` := πk1,` , πk2,` , . . . with ki,` ∈ K,∀i ∈ N ,

• π̄O,` := πkO1,`
, πkO2,`

, . . . with kOj,` ∈ K,∀j ∈M,

• w̄` := w1,`, w2,`, . . . with wi,` ∈ AGi,∀i ∈ N ,

• ψi,` ∈ 2Ψi ,Li(πki,`),∀i ∈ N ,

• ψOj,` ∈ 2ΨOj ,LOj (πkO
j,`

),∀j ∈M.

The path πpl is then projected to the individual sequences of the regions
πkO

j,1
πkO

j,2
. . . for each object j ∈ M, as well as to the individual sequences of

the regions πki,1πki,2 . . . and the boolean grasping variables wi,1wi,2 . . . for each
agent i ∈ N . The aforementioned sequences determine the behavior of agent i ∈ N ,
i.e., the sequence of actions (transition, transportation, grasp, release or stay idle)
it must take.

By the definition of L in Def. 7.9, we obtain that ψi,` ∈ Li(πki,`), ψOj,` ∈
LOj (πkO

j,`
),∀i ∈ N , j ∈M, ` ∈ N. Therefore, since φ = (∧i∈Nφi) ∧ (∧j∈MφOj ) is sat-

isfied by ψ, we conclude that ψi,1ψi,2 . . . |= φi and ψOj,1ψOj,2 . . . |= φOj ,∀i ∈ N , j ∈M.
The sequences πki,1πki,2 . . . , ψi,1ψi,2 . . . and πkO

j,1
πkO

j,2
. . . , ψOj,1ψ

O
j,2 . . . over Π, 2Ψi

and Π, 2ΨOj , respectively, produce the trajectories qi(t) and xOj (t),∀i ∈ N , j ∈ M.
The corresponding behaviors are βi = (qi(t), σi) = (qi(ti,1), σi,1)(qi(ti,2), σi,2) . . .
and βOj = (xOj (t), σOj ) = (xOj (tOj,1), σOj,1)(xOj (tOj,2), σOj,2) . . . , respectively, according
to Section 7.3.1, with Ai(qi(ti,`)) ⊂ πki,` , σi,` ∈ Li(πki,`) and Oj(xOj (tOj,m)) ∈
πkO

j,`
, σOj,` ∈ LOj (πkO

j,`
). Thus, it is guaranteed that σi |= φi, σ

O
j |= φOj and consequently,

the behaviors βi and βOj satisfy the formulas φi and φOj , respectively, ∀i ∈ N , j ∈M.
The aforementioned reasoning is summarized in the next theorem:

Theorem 7.3. The execution of the path (πpl, ψpl) of T S guarantees behaviors βi, βOj
that yield the satisfaction of φi and φOj , respectively, ∀i ∈ N , j ∈ M, providing,
therefore, a solution to Problem 7.2.

Remark 7.5. Note that although the overall set of states of T S increases expo-
nentially with respect to the number of agents/objects/regions, some states are not
reachable, due to our constraints for the object transportation and the size of the
regions, reducing thus the state complexity.

7.3.3 Simulation Results
In this section we demonstrate our approach with computer simulations. We con-
sider a workspace of radius r0 = 30m, with K = 4 regions of interest or radius
rπk = 3.5m, ∀k ∈ K, centered at pπ1 = (0, 0, 0), pπ2 = (−14m,−14m, 0), pπ3 =
(20m,−10m, 0), pπ4 = (−16m, 15m, 0), respectively (see Fig. 7.11). Moreover, we
consider two cuboid objects of bounding radius rOj = 0.5m, and mass mO

j = 0.5kg,
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Figure 7.11: The initial workspace of the second simulation example, consisting of 3
agents and 2 objects. The agents and the objects are indicated via their corresponding
radii.

∀j ∈ {1, 2}, initiated at xO1 (0) = [−16m, 15m, 0.5m, 0, 0, 0]> xO2 (0) = [−1.5m, 0.2m,
0.5m, 0, 0, 0]>, which implies that O1(xO1 (0)) ⊂ π2, and O2(xO1 (0)) ⊂ π1. The consid-
ered agents consist of a mobile base and a 2-dof rotational robotic arm. The mobile
base is rectangular with dimensions 0.5m× 0.5m× 0.2m and mass 0.5kg, and the
two arm links have length 1m and mass 0.5kg each. The state vectors of the agents
are qi = [xci , yci , qi1 , qi2 ]> ∈ R4, q̇ = [ẋci , ẏci , q̇i1 , q̇i2 ]> ∈ R4, where xci , yci are the
planar position of the bases’ center of mass, and qi1 , qi2 the angles of the arms’ joints.
The geometric characteristics of the considered agents lead to a bounding radius
of ri = 1.25m, ∀i ∈ N . The atomic propositions are Ψi = {“i-π1”, . . . , “i-π4”},
∀i ∈ N , and ΨO = {“Oj-π1”, . . . , “Oj-π4”}, ∀j ∈ M, indicating whether the
agents/objects are in the corresponding regions. The labeling functions are, there-
fore, Li(πk) = {“i-πk”}, LOj (πk) = {“Oj-πk”}, ∀k ∈ K, i ∈ N , j ∈ M. We test two
scenarios with N = 2, 3 agents, respectively. We generate the optimal high-level plan
for these scenarios and present two indicative transitions of the continuous execution
for the second case. The simulations were carried out using Python environment on
a laptop computer with 4 cores at 2.6GHz CPU and 8GB of RAM memory.

1. We consider N = 2 agents with initial conditions q1(0) = [0.5m, 0, π
4 rad,

π
4 rad]>, q2(0) = [18.5m, 11.5m, π4 rad, π4 rad]>, q̇i(0) = [0, 0, 0, 0]>,∀i ∈ {1, 2}
which imply that A1(q1(0)) ⊂ π1, A2(q2(0)) ⊂ π3, and that no collisions occur
at t = 0, i.e., C1,2(q1(0), q2(0)) = CO1,O2(xO1 (0), xO2 (0)) = Ci,Oj (q1(0), xOj (0)) =
⊥,∀(i, j) ∈ {1, 2} × {1, 2}. We also assume that AGi,0(qi(0), xO(0)) = >,∀i ∈
{1, 2}. We represent the agents’ power capabilities with the scalars ζ1 = 2, ζ2 =
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Table 7.1: The agent actions for the discrete path of the first simulation example

πs,` Actions πs,` Actions

πs,1 (−) πs,14 (π1
T−→{1,2},2 π2)

πs,2 (−, π3 →2 π1) πs,15 (1 r−→ 2, 2 r−→ 2)
πs,3 (1 g−→ 2, 2 g−→ 2) πs,16 (π2 →2 π4, π2 →2 π4)

πs,4 (π1
T−→{1,2},2 π4) πs,17 (1 g−→ 1, 2 g−→ 1)

πs,5 (π4
T−→{1,2},2 π1) πs,18 (π4

T−→{1,2},1 π1)

πs,6 (1 r−→ 2, 2 r−→ 2) πs,19 (π1
T−→{1,2},1 π4)

πs,7 (π1 →1 π2, π1 →2 π2) π?s,20 (−, 2 r−→ 1)
πs,8 (1 g−→ 1, 2 g−→ 1) π?s,21 (−, π4 →2 π3)

πs,9 (π2
T−→{1,2},1 π4) π?s,22 (−, π3 →2 π4)

πs,10 (1 r−→ 1, 2 r−→ 1) π?s,23 (−, 2 g−→ 1)

πs,11 (−, π4 →2 π3) π?s,24 (π4
T−→{1,2},1 π1)

πs,12 (π4 →2 π1, π3 →2 π1) π?s,25 (π1
T−→{1,2},1 π4)

πs,13 (1 g−→ 2, 2 g−→ 2)

4 and construct the functions Λ(mO
1 , ζT ) = > if and only if

∑
τ∈T ζτ ≥ 5, with

AGτ,1 = > ⇔ τ ∈ T , and Λ(mO
2 , ζT ) = > if and only if

∑
τ∈T ζτ ≥ 6, with

AGτ,2 = > ⇔ τ ∈ T , i.e., the objects can be transported only if the agents that
grasp them have a sum of capability scalars no less than 5 and 6, respectively.
Regarding the cost χ, we simply choose the sum of the distances of the transi-
tion and transportation regions, i.e., given πs, π̃s as in (7.32) such that πs →s

π̃s, we have that χ =
∑
i∈{1,2}{‖pπki − pπk̃i

‖2}+
∑
j∈{1,2} ‖pπkO

j

− pπ
k̃O
j

‖2}.

The LTL formula is taken as (�¬“1-π3”) ∧ (�♦“2-π3”) ∧ (�♦“O1-π1”) ∧
�(“O1-π1”→©“O1-π4”)∧ (♦“O2-π4”), which represents the following behav-
ior. Agent 1 must never go to region π3, which must be visited by agent 2
infinitely many times, object 1 must be taken infinitely often to region π1,
always followed by a visit in region π4, and object 2 must be eventually taken
to region π4.

The resulting transition system T S consists of 560 reachable states and 7680
transitions and it was created in 3.19 sec. The Büchi automaton BA contains
7 states and 29 transitions and the product T̃ S contains 3920 states and
50976 transitions. Table 7.1 shows the actions of the agents for the derived
path, which is the sequence of states πs,1πs,2 . . . ...(π?s,20, . . . , π

?
s,25)ω, where

the states with (?) constitute the suffix that is run infinitely many times.
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Loosely speaking, the derived path describes the following behavior: Agent
2 goes first to π1 to grasp and transfer object 2 to π4 and back to π1 with
agent 1. The two agents then navigate to π2 to take object 1 to π4. In the
following, after agent 2 goes to π3, they both go to π1 to transfer object 2 to
π2. Then, they navigate to π4 to transfer object 1 to π1 and back. Finally, the
actions that are run infinitely many times consist of agent 2 going to from π4
to π3 and back, and transferring object 1 to π1 and π4 with agent 1. One can
verify that the resulting path satisfies the LTL formula. Note also that the
regions are not large enough to contain both agents and objects in a grasping
configuration, which played an important role in the derivation of the plan.
The time taken for the construction of the product T̃ S and the derivation of
the path was 2.79 sec.

2. We now consider N = 3 agents with q1(0), q2(0) as in case (i), q3(0) =
[−14m, 15m, π4 rad, π4 rad]> =⇒ A3(q3(0)) ∈ π4, AG3,0(qi(0), xO(0)) = >,
ζ3 = 3, and no collisions occurring at t = 0. The functions Λ and χ are the
same as in case (i). The formula in this scenario is (�¬“1-π3”)∧ (�♦“2-π3”)∧
(�♦“O1-π1”)∧�(“O1-π1”→ ♦“O1-π4”)∧ (�♦“O2-π3”), which represents the
following behavior. Agent 1 must never visit region π3, which must be visited
infinitely many times by agent 2, object 1 must be taken infinitely many times
to region π1, eventually followed by a visit in region π4, and object 2 must be
taken infinitely many times to region π2.
The resulting transition system T S consists of 3112 reachable states and
154960 transitions and it was created in 100.74 sec. The Büchi automaton BA
contains 9 states and 49 transitions and the product T̃ S contains 28008 states
and 1890625 transitions. Table 7.2 shows the agent actions for the derived
path as the sequence of states πs,1πs,2 . . . ...(π?s,10, π

?
s,11)ω. In this case, the

three agents navigate first to regions π2, π1, and π1, respectively, and agents 2
and 3 take object 2 to π3. Next, agent 3 goes to π2 to transfer object 1 to π1
and then π4 with agent 1. The latter transportations occur infinitely often.
The time taken for the construction of the product T̃ S and the derivation
of the path was 4573.89 sec. It is worth noting the exponential increase of
the computation time with the simple addition of just one agent, which can
be attributed to the centralized manner of the proposed methodology. The
necessity, therefore, of less computational, decentralized schemes is evident
and constitutes the main focus of our future directions.

Next, we present the continuous execution of the transitions πs,1 →s πs,2, and
πs,3 →s πs,4 for the second simulation scenario. More specifically, Fig. 7.12 depicts
the navigation of the three agents π1 →1 π2, π3 →2 π1, and π4 →3 π1, that
corresponds to πs,1 →s πs,2, with gains Kz = diag{0.01, 0.01, 0.01}, ∀z ∈ {1, 2, 3},
and which had a duration of 900 sec. Moreover, Fig. 7.13 depicts the transportation
of object 2 by agents 2 and 3, i.e., π1

T−→{2,3} π3, that corresponds to πs,3 →s πs,4,
with load sharing coefficients c1 = c2 = 0.5, and corresponding time duration 300 sec.
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Figure 7.12: The transition πs,1 →s πs,2 (a), that corresponds to the navigation of
the agents π1 →1 π2, π3 →2 π1, π4 →3 π1.

Figure 7.13: The transition πs,3 →s πs,4 (b), that corresponds to the transportation
π1

T−→{2,3} π3.
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Table 7.2: The agent actions for the discrete path of the second simulation example

πs,` Actions

πs,1 (−)
πs,2 (π1 →1 π2, π3 →2 π1, π4 →3 π1)
πs,3 (−, 2 g−→ 1, 3 g−→ 2)

πs,4 (−, π1
T−→{2,3},2 π3,)

πs,5 (−,−, 3 r−→ 2)
πs,6 (−,−, π3 →3 π2)
πs,7 (1 g−→ 1, 3 g−→ 1)

πs,8 (π2
T−→{1,3},1 π1,−)

πs,9 (π1
T−→{1,3},1 π4,−)

π?s,10 (π4
T−→{1,3},1 π1,−)

π?s,11 (π1
T−→{1,3},1 π4,−)

7.4 Conclusion and Future Work

We addressed the problem of defining abstractions for cooperative manipulation
schemes by designing continuous control protocols. Firstly, we abstracted the motion
of an object in the workspace into a timed transition system via a decentralized
continuous control law for the trajectory tracking of the object’s center of mass. In the
following, we presented a novel hybrid control framework for the motion planning of
a system comprising of N agents and M objects. We designed appropriate continuous
control protocols that guarantee the agent transition and object transportation
among predefined regions of interest. In that way, the coupled multi-agent system
is abstracted in a finite transition system, which is used to derive plans that
satisfy complex LTL formulas. Future efforts will be devoted towards compensating
uncertainties in the object’s geometrical characteristics, considering non-rigid grasps,
as well as incorporating limited sensing information in the second abstraction that
deals with the multi-agent-object system.





Chapter 8

Summary and Future Research Directions

This thesis focused on solving the problem of multi-agent and multi-agent-object
planning and control under complex specifications expressed as temporal logic
formulas. We divided the thesis into three main subproblems, namely formation-
control, cooperative object manipulation, and hybrid control synthesis for the
temporal-logic-based planning of multi-agent manipulator-endowed and multi-agent-
object systems.

In Chapter 3, we proposed a decentralized control protocol based on the pre-
scribed performance control methodology for the formation of tree graph in SE(3),
while guaranteeing collision avoidance and connectivity maintenance among the ini-
tially connected agents. Simulation results have verified the validity of the proposed
approach. Future efforts will be devoted towards ensuring collision avoidance among
all the agents as well performing real-time experiments.

In Chapter 4, we proposed two novel decentralized control protocols for the
cooperative manipulation of an object by a team of robotic agents without the
use of force/torque sensors. Firstly, we designed an adaptive control law based on
quaternion feedback to avoid potential representation singularities. Secondly, we
employed the prescribed control methodology, to achieve predefined transient and
steady state for the center of mass of the object. Both control laws are robust against
modeling uncertainties and external disturbances. Future directions will aim at
dealing with non-rigid grasps as well as unknown geometric characteristics of the
object.

In Chapter 5, we proposed two novel control protocols for the cooperative
transportation of an object by a team of robotic agents by using Nonlinear Model
Predictive Control. Firstly, we designed a centralized NMPC control protocol, where
a central unit computes the control signals of all the agents, and secondly, we designed
a decentralized NMPC control protocol, based on inter-agent communication. In
both methodologies, we have dealt with inter-agent collision avoidance, collision
avoidance between the agents/object and workspace obstacles as well as singularity
avoidance. Future efforts will be devoted towards addressing non-rigid grasps, and
reducing the NMPC complexity.

181
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In Chapter 6, we proposed decentralized abstractions for teams of robotic
agents over predefined regions of interest in the workspace. In particular, based
on previous results on navigation functions, we synthesize hybrid controllers for
UAVs as well as teams of robotic mobile manipulators, to achieve satisfaction of
their individual LTL formulas. The proposed control protocols are decentralized,
since each agent is based on local information to determine its actions. Simulation
as well as experimental results verify the validity of the proposed approach. Future
efforts aim at incorporating cooperative actions in the abstraction in a decentralized
manner.

In Chapter 7, we design abstractions for multi-agent systems while incorporating
the motion of unactuated objects. Firstly, we employed the PPC design and the
prescribed transient and steady state performance from Chapter 4 to design timed
transitions for the object among a predefined workspace partition. That allowed
us to abstract the motion of the object as a timed transition system and apply
MITL formulas. Secondly, we designed navigation function-based control laws for
the multi-agent navigation and object transportation among predefined regions of
interest. That allowed us to defined a coupled abstracted transition system for the
multi-agent-object system, that incorporates the motion and task specifications of
the objects and the agents, and apply complex tasks expressed as LTL formulas.
Simulation results verified the effectiveness of the proposed methods. Future efforts
will aim at designing decentralized abstractions for a team of multiple robotic agents
and objects.



Bibliography

[1] W. Ren and R. Beard. Consensus Seeking in Multi-agent Systems under Dy-
namically Changing Interaction Topologies. IEEE Transactions on Automatic
Control (TAC), 50(5):655–661, 2005.

[2] R. Olfati-Saber and R. Murray. Consensus problems in networks of agents
with switching topology and time-delays. IEEE Transactions on Automatic
Control (TAC), 49(9):1520–1533, 2004.

[3] A. Jadbabaie, J. Lin, and S. Morse. Coordination of groups of mobile au-
tonomous agents using nearest neighbor rules. IEEE Transactions on Auto-
matic Control (TAC), 48(6):988–1001, 2003.

[4] H. Tanner, A. Jadbabaie, and G. J. Pappas. Flocking in fixed and switching
networks. IEEE Transactions on Automatic Control (TAC), 52(5):863–868,
2007.

[5] D. V. Dimarogonas and K. Kyriakopoulos. On the rendezvous problem for
multiple nonholonomic agents. IEEE Transactions on Automatic Control
(TAC), 52(5):916–922, 2007.

[6] M. Egerstedt and X. Hu. Formation constrained multi-agent control. IEEE
Transactions on Robotics and Automation, 17(6):947–951, 2001.

[7] K. Oh, M. Park, and H. Ahn. A survey of multi-agent formation control.
Automatica, 53:424–440, 2015.

[8] M. Ji and M. Egerstedt. Distributed Coordination Control of Multi-Agent
Systems While Preserving Connectedness. IEEE Transactions on Robotics
(TRO), 23(4):693–703, 2007.

[9] M. Zavlanos and G. J. Pappas. Potential Fields for Maintaining Connectivity
of Mobile Networks. IEEE Transactions on Robotics (TRO), 23(4):812–816,
2007.

[10] M. Zavlanos and G. J. Pappas. Distributed connectivity control of mobile
networks. IEEE Transactions on Robotics (TRO), 24(6):1416–1428, 2008.

183



184 Bibliography

[11] D. V. Dimarogonas, S. G. Loizou, K. J. Kyriakopoulos, and M. Zavlanos. A
Feedback Stabilization and Collision Avoidance Scheme for Multiple Indepen-
dent Non-Point Agents. Automatica, 42(2):229–243, 2006.

[12] H. Bai and J. T. Wen. Cooperative load transport: A formation-control
perspective. IEEE Transactions on Robotics, 26(4):742–750, 2010.

[13] A. Nikou, C. K. Verginis, and D. V. Dimarogonas. Robust distance-based
formation control of multiple rigid bodies with orientation alignment. IFAC
Proceedings Volumes, Toulouse, France, 2017.

[14] C. K. Verginis, M. Mastellaro, and D. V. Dimarogonas. Robust quaternion-
based cooperative manipulation without force/torque information. IFAC
Proceedings Volumes, Toulouse, France, 2017.

[15] C. K. Verginis, M. Mastellaro, and D. V. Dimarogonas. Cooperative manip-
ulation without force/torque measurements control design and experiments.
IEEE Transactions on Control Systems Technology, 2018, submitted.

[16] A. Nikou, C. K. Verginis, S. Heshmati-alamdari, and D. V. Dimarogonas. A
nonlinear model predictive control scheme for cooperative manipulation with
singularity and collision avoidance. Proceedings of the 25th IEEE Mediter-
ranean Conference on Control and Automation (MED), Valletta, Malata, pages
707–712, 2017.

[17] C. K. Verginis, A. Nikou, and D. V. Dimarogonas. Communication-based
decentralized cooperative object transportation using nonlinear model predic-
tive control. European Control Conference (ECC), Limassol, Cyprus, 2017,
submitted.

[18] C. K. Verginis, Z. Xu, and D. V. Dimarogonas. Decentralized motion planning
with collision avoidance for a team of uavs under high level goals. Proceedings
of the International Conference on Robotics and Automation (ICRA), pages
781–787, 2017.

[19] C. K. Verginis and D. V. Dimarogonas. Robust decentralized abstractions for
multiple mobile manipulators. Proceedings of the Conference on Decision and
Control (CDC), Melbourne, Australia, 2017.

[20] C. K. Verginis and D. V. Dimarogonas. Distributed cooperative manipulation
under timed temporal specifications. American Control Conference (ACC),
Seattle, WA, USA, pages 1358–1363, 2016.

[21] C. K. Verginis and D. V. Dimarogonas. Timed abstractions for distributed
cooperative manipulation. Autonomous Robots, pages 1–19, 2017.



Bibliography 185

[22] C. K. Verginis and D. V. Dimarogonas. Multi-agent motion planning and
object transportation under high level goals. IFAC Proceedings Volumes,
Toulouse, France, 2017.

[23] C. K. Verginis and D. V. Dimarogonas. Motion and cooperative transporta-
tion planning for multi-agent systems under temporal logic formulas. IEEE
Transactions on Automation Science and Engineering, 2017, submitted.

[24] L. Lindemann, C. K. Verginis, and D. V. Dimarogonas. Prescribed performance
control for signal temporal logic specifications. Proceedings of the Conference
on Decision and Control (CDC), Melbourne, Australia, 2017.

[25] A. Nikou, S. Heshmati-alamdari, C. K. Verginis, and D. V. Dimarogonas.
Decentralized abstractions and timed constrained planning of a general class
of coupled multi-agent systems. Proceedings of the IEEE Conference on
Decision and Control (CDC), Melbourne, Australia, 2017.

[26] B. Siciliano L. Sciavicco, L. Villani, and G. Oriolo. Robotics: modelling,
planning and control. Springer Science & Business Media, 2010.

[27] R. Horn and C. Johnson. Topics in Matrix Analysis. Cambridge University
Press, 1994.

[28] H. K. Khalil. Nonlinear Systems. Prentice Hall, 2002.

[29] C. P. Bechlioulis and G. A. Rovithakis. A low-complexity global approximation-
free control scheme with prescribed performance for unknown pure feedback
systems. Automatica, 50(4):1217–1226, 2014.

[30] H. Michalska and R. Vinter. Nonlinear Stabilization Using Discontinuous
Moving-Horizon Control. IMA Journal of Mathematical Control and Informa-
tion, 11(4):321–340, 1994.

[31] E. D Sontag. Input to state stability: basic concepts and results. Nonlinear
and Optimal Control Theory, pages 163–220, 2008.

[32] E. D. Sontag. On characterizations of the input-to-state stability property.
Systems and Control Letters, 24(5):351–359, 1995.

[33] E. D. Sontag. Mathematical control theory: deterministic finite dimensional
systems. Springer Science & Business Media, 6, 2013.

[34] A. Bressan and B. Piccoli. Introduction to the mathematical theory of control.
American institute of mathematical sciences Springfield, 2, 2007.

[35] E. Rimon and D. Koditschek. Exact robot navigation using artificial potential
functions. IEEE Transactions on Robotics and Automation (TRA), 8(5):501–
518, 1992.



186 Bibliography

[36] S. G. Loizou and K. J. Kyriakopoulos. A feedback-based multiagent navigation
framework. International Journal of Systems Science, 37(6):377–384, 2006.

[37] D. V. Dimarogonas and K. J. Kyriakopoulos. Decentralized navigation func-
tions for multiple robotic agents with limited sensing capabilities. Journal of
Intelligent & Robotic Systems, 48(3):411–433, 2007.

[38] C. Baier, J.P. Katoen, and K. G. Larsen. Principles of model checking. MIT
Press, 2008.

[39] R. Alur and D. L. Dill. A theory of timed automata. Theoretical computer
science, 126(2):183–235, 1994.

[40] D. Souza and P. Prabhakar. On the expressiveness of mtl in the pointwise and
continuous semantics. International Journal on Software Tools for Technology
Transfer, 9(1):1–4, 2007.

[41] J. Ouaknine and J. Worrell. On the decidability of metric temporal logic.
Annual IEEE Symposium on Logic in Computer Science (LICS’05), pages
188–197, 2005.

[42] W. Ren and R. Beard. Consensus seeking in multi-agent systems under
dynamically changing interaction topologies. IEEE Transactions on Automatic
Control (TAC), 50(5):655–661, 2005.

[43] R. Olfati-Saber and R. Murray. Distributed cooperative control of multiple
vehicle formations using structural potential functions. IFAC Proceedings
Volumes, 15(1):242–248, 2002.

[44] S. Smith, Mireille E Broucke, and Bruce A Francis. Stabilizing a multi-agent
system to an equilateral polygon formation. 17th International Symposium on
Mathematical Theory of Networks and Systems, pages 2415–2424, 2006.

[45] J. Hendrickx, B. Anderson, J. Delvenne, and V. Blondel. Directed graphs for
the analysis of rigidity and persistence in autonomous agent systems. Interna-
tional Journal of Robust and Nonlinear Control (IJRNC), 17(10-11):960–981,
2007.

[46] B. Anderson, C. Yu, S. Dasgupta, and S. Morse. Control of a three-coleader
formation in the plane. Systems and Control Letters, 56(9):573–578, 2007.

[47] B. Anderson, C. Yu, B. Fidan, and J. Hendrickx. Rigid Graph Control
Architectures for Autonomous Formations. IEEE Control Systems, 28:48–63,
2008.

[48] D. V. Dimarogonas and K. Johansson. On the stability of distance-based
formation control. Proceedings of the IEEE Conference on Decision and
Control (CDC), Cancun, Mexico, pages 1200–1205, 2008.



Bibliography 187

[49] M. Cao, B. Anderson, S. Morse, and C. Yu. Control of acyclic formations of
mobile autonomous agents. Proceedings of the IEEE Conference on Decision
and Control (CDC), Cancun, Mexico, pages 1187–1192, 2008.

[50] C. Yu, B. Anderson, S. Dasgupta, and B. Fidan. Control of minimally persistent
formations in the plane. SIAM Journal on Control and Optimization, 48(1):206–
233, 2009.

[51] L. Krick, M. Broucke, and B. Francis. Stabilisation of infinitesimally rigid
formations of multi-robot networks. International Journal of Control (IJC),
82(3):423–439, 2009.

[52] F. Dorfler and B. Francis. Geometric Analysis of the Formation Problem
for Autonomous Robots. IEEE Transactions on Automatic Control (TAC),
55(10):2379–2384, 2010.

[53] K. Oh and H. Ahn. Formation control of mobile agents based on inter-agent
distance dynamics. Automatica, 47(10):2306–2312, 2011.

[54] M. Cao, S. Morse, C. Yu, B. Anderson, and S. Dasgupta. Maintaining a Di-
rected, Triangular Formation of Mobile Autonomous Agents. Communications
in Information and Systems, 11(1):1, 2011.

[55] T. Summers, Changbin C. Yu, S. Dasgupta, and B. Anderson. Control of
minimally persistent leader-remote-follower and coleader formations in the
plane. IEEE Transactions on Automatic Control (TAC), 56(12):2778–2792,
2011.

[56] M. Park, K. Oh, and H. Ahn. Modified gradient control for acyclic minimally
persistent formations to escape from collinear position. Proceedings of the
IEEE Conference on Decision and Control (CDC), Maui, HI, USA, pages
1423–1427, 2012.

[57] A. Belabbas, S. Mou, S. Morse, and B. Anderson. Robustness Issues with
Undirected Formations. 51st IEEE Conference on Decision and Control
(CDC), pages 1445–1450, 2012.

[58] K. Oh and H. Ahn. Distance-based undirected formations of single-integrator
and double-integrator modeled agents in n-dimensional space. International
Journal of Robust and Nonlinear Control (IJRNC), 24(12):1809–1820, 2014.

[59] M. Basiri, A. Bishop, and P. Jensfelt. Distributed control of triangular
formations with angle-only constraints. Systems and Control Letters, 59(2):147–
154, 2010.

[60] Tolga Eren. Formation shape control based on bearing rigidity. International
Journal of Control (IJC), 85(9):1361–1379, 2012.



188 Bibliography

[61] M. Trinh, K. Oh, and H. Ahn. Angle-based control of directed acyclic forma-
tions with three-leaders. 2014 International Conference on Mechatronics and
Control (ICMC), Jinzhou, China, pages 2268–2271, 2014.

[62] S. Zhao and D. Zelazo. Bearing rigidity and almost global bearing-only
formation stabilization. IEEE Transactions on Automatic Control (TAC),
61(5):1255–1268, 2016.

[63] A. Bishop, M. Deghat, B. Anderson, and Y. Hong. Distributed formation
control with relaxed motion requirements. International Journal of Robust
and Nonlinear Control (IJRNC), 25(17):3210–3230, 2015.

[64] K. Fathian, D. Rachinskii, M. Spong, and N. Gans. Globally asymptotically
stable distributed control for distance and bearing based multi-agent forma-
tions. Proceedings of the IEEE American Control Conference (ACC), Boston,
MA, USA, pages 4642–4648, 2016.

[65] Y. Karayiannidis, D. V. Dimarogonas, and D. Kragic. Multi-agent average
consensus control with prescribed performance guarantees. Proceedings of the
IEEE Conference on Decision and Control (CDC), Maui, HI, USA, pages
2219–2225, 2012.

[66] C. Bechlioulis and K. Kyriakopoulos. Robust model-free formation control
with prescribed performance and connectivity maintenance for nonlinear multi-
agent systems. Proceedings of the IEEE Conference on Decision and Control
(CDC), Los Angeles, CA, USA, pages 4509–4514, 2014.

[67] M. Mesbahi and M. Egerstedt. Graph Theoretic Methods in Multiagent
Networks. Princeton University Press, 2010.

[68] T. Lee, D. E. Chang, and Y. Eun. Attitude control strategies overcoming
the topological obstruction on so (3). American Control Conference (ACC),
Seattle, WA, USA, pages 2225–2230, 2017.

[69] T. Lee, M .Leok, and N. H. McClamroch. Control of complex maneuvers for
a quadrotor uav using geometric methods on se(3). arXiv:1003.2005, 2010.

[70] S. P. Bhat and D. S. Bernstein. A topological obstruction to continuous global
stabilization of rotational motion and the unwinding phenomenon. Systems &
Control Letters, 39(1):63–70, 2000.

[71] C. G. Mayhew, R. G. Sanfelice, and A. R. Teel. Quaternion-based hybrid
control for robust global attitude tracking. IEEE Transactions on Automatic
Control, 56(11):2555–2566, 2011.

[72] S. A. Schneider and R. H. Cannon. Object impedance control for coopera-
tive manipulation: Theory and experimental results. IEEE Transactions on
Robotics and Automation, 8(3):383–394, 1992.



Bibliography 189

[73] T. G. Sugar and V. Kumar. Control of cooperating mobile manipulators.
IEEE Transactions on robotics and automation, 18(1):94–103, 2002.

[74] O. Khatib, K. Yokoi, K. Chang, D. Ruspini, R. Holmberg, and A. Casal.
Decentralized cooperation between multiple manipulators. IEEE International
Workshop onRobot and Human Communication, pages 183–188, 1996.

[75] Y.-H. Liu, S. Arimoto, and T. Ogasawara. Decentralized cooperation control:
non-communication object handling. Proceedings of the IEEE Conference on
Robotics and Automation (ICRA), 3:2414–2419, 1996.

[76] Y.-H. Liu and S. Arimoto. Decentralized adaptive and nonadaptive po-
sition/force controllers for redundant manipulators in cooperations. The
International Journal of Robotics Research, 17(3):232–247, 1998.

[77] Mohamed Zribi and Shuheen Ahmad. Adaptive control for multiple cooperative
robot arms. Proceedings of the IEEE Conference on Decision and Control
(CDC), pages 1392–1398, 1992.

[78] L. Gudiño-Lau, M. Arteaga, L. Munoz, and V. Parra-Vega. On the control
of cooperative robots without velocity measurements. IEEE Transactions on
Control Systems Technology, 12(4):600–608, 2004.

[79] J. T. Wen and K. Kreutz-Delgado. Motion and force control of multiple
robotic manipulators. Automatica, 28(4):729–743, 1992.

[80] T. Yoshikawa and X.-Z. Zheng. Coordinated dynamic hybrid position/force
control for multiple robot manipulators handling one constrained object. The
International Journal of Robotics Research, 12(3):219–230, 1993.

[81] C. D. Kopf. Dynamic two arm hybrid position/force control. Robotics and
Autonomous Systems, 5(4):369–376, 1989.

[82] F. Caccavale, P. Chiacchio, and S. Chiaverini. Task-space regulation of
cooperative manipulators. Automatica, 36(6):879–887, 2000.

[83] F. Caccavale, P. Chiacchio, A. Marino, and L. Villani. Six-dof impedance
control of dual-arm cooperative manipulators. IEEE/ASME Transactions On
Mechatronics, 13(5):576–586, 2008.

[84] D. Heck, D. Kostic, A. Denasi, and H. Nijmeijer. Internal and external force-
based impedance control for cooperative manipulation. Proceedings of the
IEEE European Control Conference (ECC), pages 2299–2304, 2013.

[85] S. Erhart and S. Hirche. Adaptive force/velocity control for multi-robot
cooperative manipulation under uncertain kinematic parameters. Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 307–314, 2013.



190 Bibliography

[86] S. Erhart, D. Sieber, and S. Hirche. An impedance-based control architecture
for multi-robot cooperative dual-arm mobile manipulation. Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 315–322, 2013.

[87] Y. Kume, Y. Hirata, and K. Kosuge. Coordinated motion control of multiple
mobile manipulators handling a single object without using force/torque
sensors. Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 4077–4082, 2007.

[88] J. Szewczyk, F. Plumet, and P. Bidaud. Planning and controlling cooperating
robots through distributed impedance. Journal of Robotic Systems, 19(6):283–
297, 2002.

[89] A. Tsiamis, C. K. Vergini, C. P. Bechlioulis, and K. J. Kyriakopoulos. Coop-
erative manipulation exploiting only implicit communication. Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 864–869, 2015.

[90] F. Ficuciello, A. Romano, L. Villani, and B. Siciliano. Cartesian impedance
control of redundant manipulators for human-robot co-manipulation. Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 2120–2125, 2014.

[91] A.-N. Ponce-Hinestroza, J.-A. Castro-Castro, H.-I. Guerrero-Reyes, V. Parra-
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